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1 Confirmatory factor analysis (CFA)

In a wide range of research problems, especially in the social sciences, the researcher
may not have access to direct measurements of the variables of interest; for example,
intellectual ability is not something that can be measured in centimeters or kilograms.
However, people who are more able can work on mental problems faster, make fewer
errors, or solve more difficult problems. These differences between individual abilities
underlie IQ tests. A more careful analysis might distinguish different dimensions of an
intellectual ability, including reasoning on verbal, spatial, logical, and other kinds of
problems. As another example, liberal democracy is a characteristic of a society that
will not have natural measurement units associated with it (unlike, say, gross domestic
product per capita as a measure of economic development). Political scientists would
have to rely on expert judgment comparing different societies in terms of how much
political freedom citizens may have or how efficient democratic rule is.

In the above problems, researchers will not have accurate measurements of the main
variable of interest. Instead, they operate with several proxy variables that share cor-
relation with that (latent) variable but also contain measurement error. A popular tool
to analyze problems of this kind is confirmatory factor analysis (CFA). This is a multi-
variate statistical technique used to assess the researcher’s theory, which suggests the
number of (latent, or unobserved) factors and their relation to the observed variables,
or indicators (Lawley and Maxwell 1971; Bartholomew and Knott 1999; Brown 2006).
CFA can be viewed as a subfield of structural equation modeling (SEM) with latent vari-
ables (Bollen 1989) when the latent variables are all assumed to be exogenous. The
terms “latent variables”, “factors”, and “latent factors” will be used interchangeably in
this article.

The method differs substantially from exploratory factor analysis (EFA). In EFA, the
number of factors and their relation to the observed variables is unknown in advance.

c© 2009 StataCorp LP st0169



330 Confirmatory factor analysis

The researcher fits several models and compares them using fit criteria, analysis of eigen-
values of certain (functions of) variance–covariance matrices, or substantive considera-
tions. Once the number of factors and the linear subspace of the factors are determined,
the researcher tries to find a rotation that would separate variables into groups so that
variables within the same group are highly correlated with one another and are said to
originate from the same factor. The factors are constructed to be uncorrelated.

In CFA, the model structure must be specified in advance: the number of factors
is postulated, as well as relations between those factors and observed variables. The
researcher must specify which variables are related to which factor(s). The complete
structure of the model is specified in advance. An advantage of this approach is that
it permits the usual statistical inference to be performed: the standard errors of the
estimated coefficients can be obtained and model tests can be performed.

In Stata, EFA is available via the factor estimation command and the associated
suite of postestimation commands. See [MV] factor.

1.1 The model and identification

Let us denote the unobserved latent factors with ξk, k = 1, . . . ,m, where m is the
number of factors that need to be specified a priori. Let the observed variables be yj ,
j = 1, . . . , p. Let index i = 1, . . . , n enumerate observations. In typical application of
CFA, there will be a handful of factors (sometimes just one factor) with several variables
per factor. Large psychometric scales may contain as many as several dozen or more
than a hundred questions, although most items will be binary rather than continuous.

Linear relations are postulated to hold between the factors and observed variables,

yij = µj +
m∑

k=1

λjkξik + δij , j = 1, . . . , p (1)

where µj is the intercept; λjk are regression coefficients, or factor loadings; and δj are
measurement errors, or unique errors. In matrix form, (1) can be written as

yi = µ + Λξi + δi (2)

where vectors µ, ξi, and δi denote regression intercepts, latent variables, and measure-
ment errors, respectively, and Λ is the matrix of factor loadings. The measurement
errors, δ, are assumed to be independent of the factors, ξ. Let us additionally introduce
the (matrices of) parameters

Φ = V (ξ) = E(ξξ′), Θ = V (δ) = E(δδ′)

using the usual convention that E(ξ) = 0, E(δ) = 0. Then the covariance matrix of the
observed variables is
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V (y) = E {(y − µ)(y − µ)′} = E {(Λξi + δi)(Λξi + δi)
′} = ΛΦΛ′ + Θ = Σ(θ) (3)

where all parameters are put together into vector θ.

Let us highlight the distinctions between EFA and CFA again using the matrix for-
mulation (3). EFA assumes that matrices Φ and Θ are diagonal, and matrix Λ is freely
estimated (and rotated if needed). CFA assumes that matrix Λ has a strong structure
with zeroes (or other constraints) in several places, as dictated by researcher’s substan-
tive theory. In fact, the most common structure of this matrix is known as the model
of factor complexity 1: each variable loads on only one factor. Then Λ has a block
structure:

Λ =




Λ1 0 . . . 0
0 Λ2 . . . 0
...

...
. . .

...
0 0 . . . Λm




Other restrictions and corresponding structure of the Λ matrix can be entertained de-
pending on the model.

Before the researcher proceeds to estimation, he or she needs to establish that the
model is identified (Bollen 1989). Identification means that no two different sets of
parameters can produce the same means and covariance matrix (3).

The minimal set of identification conditions in any latent variable modeling is to set
the location and the scale of the latent variables. The former is usually achieved by
setting the mean of the latent variable to zero, and that is the convention adopted by
confa.

There are two common ways to identify the scales of latent factors. One can set the
variance of the latent variable ξk to 1. Alternatively, one can set one of the loadings λjk

to a fixed number, most commonly 1. Then the latent variable will have the units of that
observed variable, which might be useful if the observed variable is meaningful (e.g.,
the latent variable is wealth, and the observed variable is annual income, in dollars).

A necessary identification condition is that the number of parameters, t, of the model
does not exceed the degrees of freedom in the model. In covariance structure modeling
(and in CFA, as a special case), this is the number of the nonredundant entries of the
covariance matrix (3):

dim θ = t ≤ p∗ = p(p + 1)/2

where t is the number of parameters describing the covariance structure. (As long as
zero values are assumed for the means of the factors and errors, the mean structure is
said to be saturated, and the estimates of µ are the corresponding means, µ̂j = yj .)
If t = p∗, the model is said to be exactly identified, and if t > p∗, it is said to be
overidentified. In the latter case, additional degrees of freedom can be used to test for
model fit; see below.
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There are additional conditions related to identification of the latent structure of
the model. Several sufficient identification rules have been developed for CFA. Bollen
(1989) lists the following rules:

1. Three indicator rule. If the model has factor complexity 1, the covariance matrix
of the error terms, V (δ) = Θ, is diagonal, and each factor has at least three
indicators (observed variables associated with that factor), then the CFA model is
identified.

2. Two indicator rule. If the model has factor complexity 1, the covariance matrix
of the error terms, V (δ) = Θ, is diagonal, there is more than one factor in the
model (m > 1), each row of Φ has at least one nonzero, off-diagonal element, and
each factor has at least two indicators, then the CFA model is identified.

1.2 Estimation, testing, and goodness of fit

One of the most popular methods to estimate the parameters in (1) or (2) is by maximum
likelihood (Jöreskog 1969). If assumptions of i.i.d. data and of the multivariate normality
of the observed data (equivalent to the assumption of multivariate normality of ξ and
δ) are made, then the log likelihood of the data is

ln L {Y,Σ(θ)} = −
n∑

i=1

{
p

2
ln 2π +

1

2
ln |Σ(θ) | +

1

2
(yi − µ)′Σ−1(θ)(yi − µ)

}

= −np

2
ln 2π − n

2
ln |Σ(θ) | − 1

2
tr Σ−1(θ)S (4)

where S is the maximum likelihood estimate (MLE) of the (unstructured) covariance
matrix of the data. The likelihood (4) can be maximized with respect to the parameters

to obtain the MLEs, θ̂, of the parameters of the model. The asymptotic variance–
covariance matrix of the estimates is obtained as the inverse of the observed information
matrix, or the negative Hessian matrix, as usual (Gould, Pitblado, and Sribney 2006).

The (quasi-)MLEs retain some desirable properties when the normality assumptions
are violated (Anderson and Amemiya 1988; Browne 1987; Satorra 1990). The estima-
tors are still asymptotically normal. Moreover if 1) the model structure is correctly
specified and 2) the error terms, δ, are independent of one another and of the factors,
ξ, then the inverse information matrix gives consistent estimates of the variances of
parameter estimates, except for the variance parameters of nonnormal factors or errors.
If those asymptotic robustness conditions are violated, the variance–covariance matrix
is inconsistently estimated by the observed or expected information matrix.

Alternative methods of variance–covariance matrix estimation have been proposed
that ensure inference is asymptotically robust to violations of normality. The most
popular estimate is known as Satorra–Bentler “robust” standard errors, after Satorra
and Bentler (1994); see section 5. Stata provides another estimator: Huber sandwich
standard errors (Huber 1967).
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Other point estimation methods in CFA include generalized least squares (Jöreskog
and Goldberger 1972) and asymptotically distribution free methods (Browne 1984).
They are not currently implemented in confa.

Once the MLEs, θ̂, are obtained, one can form the implied covariance matrix Σ(θ̂).
The goodness of fit of the model is then the discrepancy between this matrix and the
sample covariance matrix S. The substantive researchers can only convincingly claim
that their models are compatible with the data if the model fit is satisfactory, and the
null hypothesis

H0 : V (y) = Σ(θ)

cannot be rejected.

The discrepancy implied by the maximum likelihood method itself is the likelihood-
ratio test statistic

T = −2
[
ln L

{
Y,Σ(θ̂)

}
− lnL(Y, S)

]
d→ χ2

q (5)

which has asymptotic χ2 distribution with degrees of freedom equal to the number of
overidentifying model conditions q = p∗ − t.

There are other concepts of fit popular in SEM and CFA literature (Bentler 1990a;
Marsh, Balla, and Hau 1996). Absolute measures of fit are addressing the absolute

values of the residuals, defined as the entries of the difference matrix S − Σ(θ̂). An
example of such measure is the root of mean squared residual (RMSR), given in section 5.1
by (11). Parsimony indices correct the absolute fit by the number of degrees of freedom
used to attain that level of fit. An example of such measure is the root mean squared
error of approximation (RMSEA), given in section 5.1 by (12). Values of 0.05 or less,
or confidence intervals covering this range, are usually considered to indicate a good
fit. Comparative fit indices relate the attained fit of the model to the independence
model when Σ(·) = diag S with p degrees of freedom. They are intended to work as
pseudo-R2 for structural equation models. Comparative fit indices are close to 0 for
models that are believed to fit poorly and close to 1 for the models that are believed to
fit well. Some of the indices may take a value greater than 1, and that is usually taken
as indication of overfitting. Two such indices are reported by the confa postestimation
suite: the Tucker–Lewis nonnormed fit index (TLI) and Bentler’s comparative fit index
(CFI). Values greater than 0.9 are usually associated with good fit. See section 5 for
methods and formulas.

When the assumptions of multivariate normality and asymptotic robustness are vi-
olated, the (quasi-)likelihood-ratio statistic (5) has a nonstandard distribution based on
the sum of weighted χ2

1 variables. Satorra and Bentler (1994) proposed Satterthwaite-
type corrections: Tsc given by (18) corrects the scale of the distribution, and Tadj given
by (19) corrects both the scale and the number of degrees of freedom.

An alternative procedure to correct for the nonstandard distribution of the likeli-
hood-ratio test statistic is by using resampling methods to obtain approximation for
the distribution in question. Beran and Srivastava (1985) and Bollen and Stine (1992)
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demonstrated how the bootstrap should be performed under the null hypothesis of the
correct model structure. Specifically, they proposed to rotate the data according to

y∗ = Σ1/2(θ̂)S−1/2y

The new variables y∗ are guaranteed to be compatible with (2) and at the same time
retain the multivariate kurtosis properties of the original data. Then a sample of the
rotated data, y∗

b , can be taken; the model is fit to that sample; and the test statistic,
Tb, is computed; the whole process is repeated for b = 1, . . . , B sufficiently many times.
The bootstrap p-value associated with test statistic T is the fraction of exceedances:

pBS =
1

B
#(b : Tb > T )

Other aspects of fit that practitioners will usually check is that the parameter es-
timates have expected signs and the proportions of explained variance of the observed
variables (squared multiple correlations, also known as indicator reliability) are suffi-
ciently high (say, greater than 50%).

1.3 Factor scoring

In many psychological, psychometric, and educational applications, the applied re-
searcher uses the model like (1)–(2) to obtain estimates of the latent traits for indi-

vidual observations. They are usually referred to as factor scores, ξ̂. The model then
serves as an intermediate step in obtaining those scores, although goodness of fit is still
an important consideration. The procedure of obtaining the predicted values for ξ is
usually referred to as scoring.

Two common factor scoring methods are implemented through the predict postesti-
mation command of the confa command. The regression method obtains the estimates
(predictions) of the factor scores by minimizing the (generalized) sum of squared devi-
ations of the factors from their true values, which results in factor scores

ξ̂ri = Φ̂Λ̂′Σ−1(θ̂)(yi − µ̂) (6)

The hatted matrices are the matrices of the MLEs of the model parameters. Equation
(6) can also be justified as an empirical Bayes estimator of ξ̂i, with the model giving the

prior distribution ξ ∼ N(0, Φ̂), and the data from the ith observation used to update
that prior, assuming multivariate normality.

Another scoring method, known as the Bartlett method, imposes an additional as-
sumption of unbiasedness and results in factor scores

ξ̂Bi =
(
Λ̂′Θ̂Λ̂

)−1
Λ̂′Θ̂−1(yi − µ̂) (7)

It is also known as the maximum likelihood method because it provides the maximum
likelihood estimates of ξ conditional on the data yi, with a mild abuse of notation
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because the data are used twice, in estimating the parameters and as inputs to the
predictions.

The two methods typically give very similar answers with highly correlated results.
The factor scores obtained from the Bartlett method are unbiased but have greater
variance, while the factor scores obtained from the regression method are shrunk toward
zero.

2 Description of confa command

The confa command contains estimation and postestimation commands for confirma-
tory factor analysis. Single-level, single-group estimation is supported.1 A variety of
identification conditions can be imposed, and robust standard errors can be reported.
Goodness-of-fit tests can be corrected using the Satorra and Bentler (1994) scaling ap-
proach or using the Bollen and Stine (1992) bootstrap. Complex survey designs specified
through [SVY] svyset are supported.

2.1 Syntax

confa factorspec
[
factorspec ...

] [
if

] [
in

] [
weight

] [
,

correlated(corrspec
[
corrspec ...

]
) unitvar(factorlist | all) free

constraint(numlist) missing usenames vce(vcetype) level(#) svy

from(ones | 2sls | ivreg | smart |ml init args) loglevel(#) ml options
]

The factor specification, factorspec, is

(factorname: varlist)

The correlated-errors specification, corrspec, is
[
(

]
varname k:varname j

[
)

]

The list of factors, factorlist , comprises factornames.

The allowed types of weights are pweights, iweights, and aweights.

estat fitindices
[
, aic bic cfi rmsea rmsr tli all

]

estat aic

estat bic

1. Estimation of more advanced models in which the latent variables can be regressed on one another,
or in which multiple levels of latent or observed variables may be present, or in which mixed
responses (continuous, binary, ordinal, and count) may be present is available with the gllamm

command (Rabe-Hesketh, Skrondal, and Pickles 2002, 2004).
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estat correlate
[
, level(#) bound

]

predict
[
type

]
newvarlist

[
if

] [
in

] [
, regression empiricalbayes ebayes

mle bartlett
]

bollenstine
[
, reps(#) saving(filename) confaoptions(string)

bootstrap options
]

2.2 Options of confa

Model

correlated(corrspec
[
corrspec . . .

]
) specifies the correlated measurement errors δk

and δj corresponding to the variables yk and yj . Here corrspec is of the form
[
(

]
varname k:varname j

[
)

]

where varname k and varname j are some of the observed variables in the model;
that is, they must appear in at least one factorspec statement. If there is only one
correlation specified, the optional parentheses shown above may be omitted. There
should be no space between the colon and varname j.

unitvar(factorlist | all) specifies the factors (from those named in factorspec) that
will be identified by setting their variances to 1. The keyword all can be used to
specify that all the factors have their variances set to 1 (and hence the matrix Φ can
be interpreted as a correlation matrix).

free frees up all the parameters in the model (making it underidentified). It is then
the user’s responsibility to provide identification constraints and adjust the degrees
of freedom of the tests. This option is seldom used.

constraint(numlist) can be used to supply additional constraints. There are no checks
implemented for redundant or conflicting constraints, so in some rare cases, the
degrees of freedom may be incorrect. It might be wise to run the model with the
free and iterate(0) options and then look at the names in the output of matrix
list e(b) to find out the specific names of the parameters.

missing requests full-information maximum-likelihood estimation with missing data.
By default, estimation proceeds by listwise deletion.

usenames requests that the parameters be labeled with the names of the variables and
factors rather than with numeric values (indices of the corresponding matrices). It is
a technical detail that does not affect the estimation procedure in any way, but it is
helpful when working with several models simultaneously, tabulating the estimation
results, and transferring the starting values between models.
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Variance estimation

vce(vcetype) specifies different estimators of the variance–covariance matrix. Com-
mon estimators (vce(oim), observed information matrix, the default; vce(robust),
sandwich information matrix; vce(cluster clustvar), clustered sandwich estimator
with clustering on clustvar) are supported, along with their aliases (the robust and
cluster(clustvar) options). See [R] vce option.

An additional estimator specific to SEM is the Satorra–Bentler estimator (Satorra
and Bentler 1994). It is requested by vce(sbentler) or vce(satorrabentler).
When this option is specified, additional Satorra–Bentler scaled and adjusted good-
ness-of-fit statistics are computed and presented in the output. See section 5 for
details.

Reporting

level(#) changes the confidence level for confidence-interval (CI) reporting.

Other

svy instructs confa to respect the complex survey design, if one is specified.

from(ones | 2sls | ivreg | smart |ml init args) provides the choice of starting values for
the maximization procedure. The ml command’s internal default is to set all pa-
rameters to zero, which leads to a noninvertible matrix, Σ, and ml has to make
many changes to those initial values to find anything feasible. Moreover, this initial
search procedure sometimes leads to a domain where the likelihood is nonconcave,
and optimization might fail there.

ones sets all the parameters to values of one except for covariance parameters (off-
diagonal values of the Φ and Θ matrices), which are set to 0.5. This might be a
reasonable choice for data with variances of observed variables close to 1 and positive
covariances (no inverted scales).

2sls or ivreg requests that the initial parameters for the freely estimated loadings
be set to the two-stage least-squares (2SLS) instrumental-variable estimates of Bollen
(1996). This requires the model to be identified by scaling indicators (i.e., setting
one of the loadings to 1) and to have at least three indicators for each latent variable.
The instruments used are all other indicators of the same factor. No checks for their
validity or search for other instruments is performed.

smart provides an alternative set of starting values that is often reasonable (e.g.,
assuming that the reliability of observed variables is 0.5).

Other specification of starting values, ml init args, should follow the format of ml
init. Those typically include the list of starting values of the form from(# #

. . . #, copy) or a matrix of starting values from(matname,
[
copy | skip

]
). See

[R] ml.
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loglevel(#) specifies the details of output about different stages of model setup and
estimation, and is likely of interest only to programmers. Higher numbers imply
more output.

Additional ml options may be used to control the maximization process. See [R] max-

imize and [R] ml. Of these, the difficult option, which improves the behavior
of the maximizer in relatively flat regions, is likely to be helpful. See its use in the
examples below.

2.3 Descriptions and options of estat

The postestimation command estat fitindices produces fit indices and supports the
following options:

aic requests the Akaike information criterion (AIC).

bic requests the Schwarz Bayesian information criterion (BIC).

cfi requests the CFI (Bentler 1990b).

rmsea requests the RMSEA (Browne and Cudeck 1993).

rmsr requests the RMSR.

tli requests the TLI (Tucker and Lewis 1973).

all requests all the above indices. This is the default behavior if no option is
specified.

The computed fit indices are returned as r() values.

estat aic and estat bic compute the Akaike and Schwarz Bayesian information cri-
teria, respectively.

estat correlate transforms the covariance parameters into correlations for factor co-
variances and measurement-error covariances. The delta method standard errors are
given; for correlations close to plus or minus 1, the CIs may extend beyond the range
of admissible values. Additional options are allowed.

level(#) changes the confidence level for CI reporting.

bound provides an alternative asymmetrical CI based on Fisher’s z transform (Cox
2008) of the correlation coefficient. It guarantees that the end points of the interval
are in the (−1, 1) range, provided the estimate itself is in this range.

2.4 Description and options of predict

The postestimation command predict can be used to obtain factor scores. The follow-
ing options are supported:
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regression, empiricalbayes, or ebayes requests regression, or empirical Bayes, factor
scoring procedure (6).

mle or bartlett requests Bartlett scoring procedure (7).

2.5 Options of bollenstine

reps(#) specifies the number of bootstrap replications. The default is reps(200).

saving(filename) specifies the file where the simulation results (the parameter estimates
and the fit statistics) are to be stored. The default is a temporary file that will be
deleted as soon as bollenstine finishes.

confaoptions(string) allows the transfer of confa options to bollenstine. If nonde-
fault model (unitvar and correlated) options were used, one would need to use
them with bollenstine as well.

If no starting values are specified among confaoptions, the achieved estimates e(b)
will be used as starting values.

In the author’s experience, confa may fall into nonconvergent regions with some
bootstrap samples. It would be then recommended to limit the number of iterations,
say with confaoptions(iter(20) . . .).

Other bootstrap options (except for the forced notable, noheader, nolegend, and
reject(e(converged) == 0) options) are allowed and will be transferred to the
underlying bootstrap command. See [R] bootstrap.

3 Example 1: Simple structure CFA with psychometric
data

A popular and well-known dataset for confirmatory factor analysis is based on Holzinger
and Swineford (1939) data also analyzed by Jöreskog (1969).2 The dataset contains the
measures of performance of 301 children in grades 7 and 8 from two different schools
on several psychometric tests. The complete dataset has 26 psychometric variables.
The benchmark analyses (Jöreskog 1969; Yuan and Bentler 2007) usually use a smaller
subset with 9 or 12 variables, typically linked to three or four factors, respectively. The
relevant subset is available as follows:

2. Available at http://www.coe.tamu.edu/˜bthompson/datasets.htm.
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. use hs-cfa
(Holzinger & Swineford (1939))

. describe

Contains data from hs-cfa.dta
obs: 301 Holzinger & Swineford (1939)
vars: 15 7 Oct 2008 15:14
size: 24,983 (99.8% of memory free) (_dta has notes)

storage display value
variable name type format label variable label

id int %9.0g Identifier
sex byte %8.0g Gender
ageyr byte %9.0g Age, years
agemo byte %9.0g Age, months
school byte %11.0g school School
grade byte %8.0g Grade
x1 double %10.0g Visual perception test from

Spearman vpt, part iii
x2 double %10.0g Cubes, simplification of

brigham�s spatial relations
test

x3 double %10.0g Lozenges from Thorndike--shapes
flipped then identify target

x4 double %10.0g Paragraph comprehension test
x5 double %10.0g Sentence completion test
x6 double %10.0g Word meaning test
x7 double %10.0g Speeded addition test
x8 double %10.0g Speeded counting of dots in shape
x9 double %10.0g Speeded discrim straight and

curved caps

Sorted by:

Specification and starting values

We shall factor analyze these data, grouping the variables together in three factors:
“visual” factor (x1–x3 variables), “textual” factor (x4–x6 variables), and “math” factor
(x7–x9 variables). In matrix terms,




x1

x2

x3

x4

x5

x6

x7

x8

x9




=




µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8

µ9




+




λ11 0 0
λ21 0 0
λ31 0 0
0 λ42 0
0 λ52 0
0 λ62 0
0 0 λ73

0 0 λ83

0 0 λ93







ξ1

ξ2

ξ3


 +




δ1

δ2

δ3

δ4

δ5

δ6

δ7

δ8

δ9




V (ξ) = Φ, V (δ) = diag(θ1, . . . , θ9), Cov(ξ, δ) = 0
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A graphical representation using the standard conventions of structural equation
modeling path diagrams is given in figure 1. Observed variables are represented as boxes
and unobserved variables, as ovals. The directed arrows between objects correspond to
the regression links in the model, and stand-alone arrows toward the observed variables
are measurement errors (the symbols δj are omitted). Two-sided arrows correspond to
correlated constructs (factors).

vis

x1 x2 x3

text

math

x4 x5 x6 x7 x8 x9

Figure 1. The basic model for Holzinger–Swineford data

As described above, this is a moderate size factor analysis model. A simple initial
specification describing the above model is

. confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9)

initial: log likelihood = -168453.1
rescale: log likelihood = -168453.1
rescale eq: log likelihood = -4169.0999
could not calculate numerical derivatives
flat or discontinuous region encountered
convergence not achieved
r(430);

The default search procedures of ml led to a region with flat likelihood, and ml

maximize was unable to overcome this. As described in the previous section, several
options for better starting values are available in confa. For the standardized data, the
from(ones) option will be expected to perform well. If the factors are identified by
unit loadings of the first variable (the default), one can use from(iv) or its equivalent,
from(2sls), to get the initial values of loadings from the Bollen (1996) 2SLS estimation
procedure, with factor variances and covariances obtained from the variances of the
scaling variables, and error variances obtained by assuming the indicator reliabilities of
0.5. Also, with this normalization by the indicator, the from(smart) option provides
another set of initial values with initial loadings estimated from the covariances of the
variable in question and the scaling variable, with other parameters receiving initial
values similarly to the procedure with the from(iv) settings. Let us demonstrate those
procedures:
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. confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9), from(ones)

initial: log likelihood = -3933.9488
rescale: log likelihood = -3933.9488
rescale eq: log likelihood = -3763.1831
Iteration 0: log likelihood = -3820.0525 (not concave)
Iteration 1: log likelihood = -3786.3638
Iteration 2: log likelihood = -3778.5165 (not concave)
Iteration 3: log likelihood = -3748.4099
Iteration 4: log likelihood = -3744.5167 (backed up)
Iteration 5: log likelihood = -3738.5289
Iteration 6: log likelihood = -3737.8633
Iteration 7: log likelihood = -3737.7461
Iteration 8: log likelihood = -3737.7449
Iteration 9: log likelihood = -3737.7449

(output omitted )

. confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9), from(iv)

initial: log likelihood = -3842.5598
rescale: log likelihood = -3842.5598
rescale eq: log likelihood = -3773.2707
Iteration 0: log likelihood = -3773.2707 (not concave)
Iteration 1: log likelihood = -3747.5598
Iteration 2: log likelihood = -3740.8673
Iteration 3: log likelihood = -3737.8022
Iteration 4: log likelihood = -3737.7451
Iteration 5: log likelihood = -3737.7449

(output omitted )

. confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9), from(smart)

initial: log likelihood = -4417.3064
rescale: log likelihood = -4417.3064
rescale eq: log likelihood = -4127.3988
Iteration 0: log likelihood = -4127.3988 (not concave)
Iteration 1: log likelihood = -3883.7073 (not concave)
Iteration 2: log likelihood = -3804.466
Iteration 3: log likelihood = -3768.374
Iteration 4: log likelihood = -3739.6488
Iteration 5: log likelihood = -3737.7715
Iteration 6: log likelihood = -3737.745
Iteration 7: log likelihood = -3737.7449

(output omitted )

It appears that the 2SLS initial values performed best, and it should not be surpris-
ing. The 2SLS estimates are consistent if 1) the model is correctly specified, 2) there are
no variables of factor complexity more than 1, and 3) there are no correlated measure-
ment errors. All other starting-value proposals, on the other hand, have some ad-hoc
heuristics that produce reasonable, feasible, but far from optimal values. It is not guar-
anteed, however, that from(iv) will always produce the best starting values that would
ensure the fastest convergence, especially in misspecified models.

The resulting estimates are identical for all three convergent runs:
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log likelihood = -3737.7449 Number of obs = 301

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Means
x1 4.93577 .0671778 73.47 0.000 4.804104 5.067436
x2 6.08804 .0677543 89.85 0.000 5.955244 6.220836
x3 2.250415 .0650802 34.58 0.000 2.12286 2.37797
x4 3.060908 .066987 45.69 0.000 2.929616 3.1922
x5 4.340532 .0742579 58.45 0.000 4.194989 4.486074
x6 2.185572 .0630445 34.67 0.000 2.062007 2.309137
x7 4.185902 .0626953 66.77 0.000 4.063022 4.308783
x8 5.527076 .0582691 94.85 0.000 5.412871 5.641282
x9 5.374123 .0580698 92.55 0.000 5.260308 5.487938

Loadings
vis
x1 1 . . . . .
x2 .5535013 .1092479 5.07 0.000 .3393794 .7676232
x3 .7293715 .1172686 6.22 0.000 .4995293 .9592138

text
x4 1 . . . . .
x5 1.113077 .0649866 17.13 0.000 .9857055 1.240448
x6 .9261464 .0561948 16.48 0.000 .8160066 1.036286

math
x7 1 . . . . .
x8 1.179951 .1502869 7.85 0.000 .8853936 1.474507
x9 1.081529 .1951225 5.54 0.000 .6990957 1.463962

Factor cov.
vis-vis .8093138 .1497566 5.40 0.000 .5157962 1.102831

text-text .9794911 .1122102 8.73 0.000 .7595632 1.199419
vis-text .4082317 .079676 5.12 0.000 .2520696 .5643939
math-math .3837481 .0920626 4.17 0.000 .2033086 .5641875
text-math .1734945 .0493133 3.52 0.000 .0768422 .2701468
vis-math .2622243 .0553834 4.73 0.000 .1536747 .3707738

Var[error]
x1 .5490568 .11905 4.61 0.000 .315723 .7823905
x2 1.13384 .1042625 10.87 0.000 .9294893 1.338191
x3 .8443248 .0950751 8.88 0.000 .657981 1.030669
x4 .3711736 .047963 7.74 0.000 .2771678 .4651794
x5 .4462552 .0579336 7.70 0.000 .3327075 .559803
x6 .3562031 .0434407 8.20 0.000 .271061 .4413453
x7 .7993921 .0875596 9.13 0.000 .6277784 .9710058
x8 .4876966 .09166 5.32 0.000 .3080462 .667347
x9 .5661322 .0905796 6.25 0.000 .3885995 .7436649

R2
x1 0.5938
x2 0.1788
x3 0.3366
x4 0.7228
x5 0.7287
x6 0.6999
x7 0.3233
x8 0.5211
x9 0.4408

Goodness of fit test: LR = 85.306 ; Prob[chi2(24) > LR] = 0.0000
Test vs independence: LR = 833.546 ; Prob[chi2(36) > LR] = 0.0000
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The reported estimates are as follows: the estimated means of the data (coincide
with the sample means for complete data); loadings, λjk, grouped by the latent variable,
in the order in which those factors and variables were specified in the call to confa;
factor covariances, φkl; and variances of the error terms, δj . All parameters are freely
estimated, except for loadings used for identification (they have a coefficient estimate
equal to 1 and are missing standard errors). This implies that the covariances are
not guaranteed to comply with Cauchy inequality and that the error variances are not
guaranteed to be nonnegative. Violations of these natural range restrictions are known
as Heywood cases and sometimes indicate improper specification of the model.

The next block in the output gives indicator reliabilities defined as a proportion of
the variance of the observed variable explained by the model. They can be thought
of as R2’s in imaginary regressions of the observed variables on their respective latent
factors.

The final set of the displayed statistics is likelihood ratios. The first line is the test
against a saturated model (when Σ̂ = S), and the second line is the test against an

independence model (when Σ̂ = diag S). The first test shows that the model is not
fitting well, which is known in literature, while the second one shows that the current
model is still a big improvement when compared with the null model, in which variables
are assumed independent.

As a final note on the initial values, the internal logic of ml search cannot take into
account various parameter boundaries and constraints specific to confa. If you see in
your output something like

. confa (f1: x_1*) (f2: x_2*) (f3: x_3*), from(smart)

initial: log likelihood = -3332.5231
rescale: log likelihood = -3290.9289
rescale eq: log likelihood = -3130.3676
initial values not feasible

you have come across such an occurrence. You might want to bypass ml search with
an additional search(off) option.

Standard-error estimation

The results reported above assume multivariate normality and use the inverse ob-
served information matrix as the estimator of the variance–covariance matrix of the
coefficient estimates. Other types of estimators are known in SEM, most prominently
Satorra and Bentler (1994) variance estimator (16). It can be specified with a nonstan-
dard vce(sbentler) option:
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. confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9), from(iv)
> vce(sbentler) nolog

log likelihood = -3737.7449 Number of obs = 301

Satorra-Bentler
Coef. Std. Err. z P>|z| [95% Conf. Interval]

(output omitted )
Factor cov.

vis-vis .8093134 .1618238 5.00 0.000 .4921447 1.126482
text-text .9794883 .1187477 8.25 0.000 .746747 1.21223
vis-text .4082305 .0803487 5.08 0.000 .25075 .565711
math-math .38375 .0804103 4.77 0.000 .2261487 .5413514
text-math .1734937 .0551705 3.14 0.002 .0653614 .2816259
vis-math .2622236 .0543578 4.82 0.000 .1556844 .3687629

Var[error]
x1 .5490553 .1403178 3.91 0.000 .2740376 .8240731
x2 1.133841 .1007102 11.26 0.000 .9364526 1.331229
x3 .8443246 .0813374 10.38 0.000 .6849062 1.003743
x4 .3711732 .047562 7.80 0.000 .2779533 .4643931
x5 .4462556 .0526208 8.48 0.000 .3431208 .5493905
x6 .3562028 .0447916 7.95 0.000 .2684129 .4439927
x7 .7993899 .0713344 11.21 0.000 .6595771 .9392028
x8 .4876955 .0701502 6.95 0.000 .3502036 .6251874
x9 .5661339 .0629795 8.99 0.000 .4426963 .6895715

(output omitted )

Goodness of fit test: LR = 85.306 ; Prob[chi2(24) > LR] = 0.0000
Test vs independence: LR = 833.546 ; Prob[chi2(36) > LR] = 0.0000

Satorra-Bentler Tsc = 82.181 ; Prob[chi2(24) > Tsc ] = 0.0000
Satorra-Bentler Tadj = 72.915 ; Prob[chi2(21.3) > Tadj] = 0.0000
Yuan-Bentler T2 = 66.468 ; Prob[chi2(24) > T2 ] = 0.0000

The point estimates are the same as before, but the standard errors are different.
In models with correctly specified structure, the Satorra–Bentler standard errors are
typically larger than the information matrix–based standard errors, although coun-
terexamples can be provided when the distribution of the data has tails lighter than
those of the normal distribution. Note also that additional test statistics are reported:
Tsc, Tadj, and T2. The näıve quasi–maximum-likelihood test statistic reported on the
first line of test statistics is no longer valid when the data do not satisfy the asymptotic
robustness conditions (see p. 332). These additional tests tend to perform much better.
The technical description is given in section 5; see (16) for Satorra–Bentler standard
errors and (18)–(20) for the additional test statistics.

As with most of Stata’s ml-based commands, sandwich standard errors can be ob-
tained with the robust option:

(Continued on next page)
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. confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9), from(iv) robust nolog

log pseudolikelihood = -3737.7449 Number of obs = 301

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

(output omitted )
Loadings

vis
x1 1 . . . . .
x2 .5535009 .1322981 4.18 0.000 .2942013 .8128005
x3 .7293711 .1413231 5.16 0.000 .452383 1.006359

text
x4 1 . . . . .
x5 1.113077 .065795 16.92 0.000 .9841209 1.242033
x6 .9261465 .0614803 15.06 0.000 .8056474 1.046646

math
x7 1 . . . . .
x8 1.179948 .1306601 9.03 0.000 .9238593 1.436037
x9 1.081524 .2668148 4.05 0.000 .5585761 1.604471

Factor cov.
vis-vis .8093134 .1806965 4.48 0.000 .4551548 1.163472

text-text .9794883 .121498 8.06 0.000 .7413566 1.21762
vis-text .4082305 .0994813 4.10 0.000 .2132508 .6032102
math-math .38375 .1068804 3.59 0.000 .1742683 .5932317
text-math .1734937 .0563996 3.08 0.002 .0629525 .2840349
vis-math .2622236 .0601591 4.36 0.000 .1443139 .3801334

Var[error]
x1 .5490553 .1567305 3.50 0.000 .2418692 .8562415
x2 1.133841 .1120656 10.12 0.000 .9141966 1.353485
x3 .8443246 .1004535 8.41 0.000 .6474394 1.04121
x4 .3711732 .0503657 7.37 0.000 .2724582 .4698882
x5 .4462556 .0567984 7.86 0.000 .3349329 .5575784
x6 .3562028 .0465941 7.64 0.000 .2648801 .4475256
x7 .7993899 .0973832 8.21 0.000 .6085223 .9902576
x8 .4876955 .1197326 4.07 0.000 .2530239 .7223671
x9 .5661339 .1189374 4.76 0.000 .333021 .7992468

Goodness of fit test: LR = . ; Prob[chi2( .) > LR] = .
Test vs independence: LR = . ; Prob[chi2( .) > LR] = .

Because the robust option implies that the assumptions of the model are violated,
the likelihood-ratio tests are not computed and indicator reliabilities (squared multiple
correlations) are not reported. Similar behavior is shown by other Stata commands, such
as regress, . . . robust, which omits ANOVA table, because this estimator potentially
corrects for heteroskedasticity of error terms, and in presence of heteroskedasticity, sums
of squared errors are not particularly meaningful. Unlike the Satorra–Bentler variance
estimator, the sandwich estimator does not make any assumptions regarding the model
structure, and hence is likely to retain consistency under a greater variety of situations
compared with the Satorra–Bentler estimator.

Correlated errors

It was argued in substantive literature that one of the reasons the basic CFA model
does not fit well for this dataset is because the variables responsible for the speeded
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counting (x7 and x8) are measuring similar skills, while the other variable in this factor,
x9, has a weaker correlation with either of them than they have with one another.
Hence, the model where errors of x7 and x8 are allowed to correlate might fit better.
Here is how this can be implemented.

. matrix bb=e(b)

. confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9), from(bb, skip)
> correlated(x7:x8)

initial: log likelihood = -3737.7449
rescale: log likelihood = -3737.7449
rescale eq: log likelihood = -3737.7449
Iteration 0: log likelihood = -3737.7449 (not concave)
Iteration 1: log likelihood = -3732.2812
Iteration 2: log likelihood = -3730.0893
Iteration 3: log likelihood = -3723.0064 (not concave)
Iteration 4: log likelihood = -3722.2265
Iteration 5: log likelihood = -3721.8698
Iteration 6: log likelihood = -3721.7297
Iteration 7: log likelihood = -3721.7283
Iteration 8: log likelihood = -3721.7283

log likelihood = -3721.7283 Number of obs = 301

Coef. Std. Err. z P>|z| [95% Conf. Interval]

(output omitted )
Var[error]

x1 .5758433 .1034751 5.57 0.000 .3730357 .7786508
x2 1.122499 .1019974 11.01 0.000 .9225877 1.32241
x3 .8321163 .089874 9.26 0.000 .6559664 1.008266
x4 .3722489 .0479869 7.76 0.000 .2781963 .4663014
x5 .4436604 .0580119 7.65 0.000 .3299592 .5573615
x6 .3570578 .0434528 8.22 0.000 .2718919 .4422236
x7 1.036463 .088125 11.76 0.000 .863741 1.209185
x8 .7948157 .0831437 9.56 0.000 .6318571 .9577743
x9 .0875355 .1967033 0.45 0.656 -.2979959 .473067

Cov[error]
x7-x8 .3527068 .0662993 5.32 0.000 .2227626 .482651

R2
x1 0.5742
x2 0.1870
x3 0.3461
x4 0.7220
x5 0.7303
x6 0.6992
x7 0.1236
x8 0.2215
x9 0.9107

Goodness of fit test: LR = 53.272 ; Prob[chi2(23) > LR] = 0.0003
Test vs independence: LR = 865.579 ; Prob[chi2(36) > LR] = 0.0000

Note the use of starting values: the previous parameter estimates are saved and
transferred via the from(. . ., skip) option. The skip option in parentheses ensures
that the values are copied by the names rather than by position in the initial vector.
The reported R2’s for variables x7 and x8 went down, while the reported R2 for x9 went
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up and became the largest R2 in the model. This is not surprising. The math factor is
primarily based on covariances between the last three variables, and to a lesser extent,
on covariances between the last three and the first six variables. The latter component
is relatively unchanged between the two models. However, with the covariance between
the error terms δ7 and δ8 freely estimated, the covariance between x7 and x8 no longer
contributes to explaining this factor. The burden of identifying this factor shifts to
covariances x7–x9 and x8–x9. The math factor now has to contribute less to explaining
covariances between x7 and x8, and more to explaining covariance of x9 with other
variables. This produces the observed change in reliabilities.

Is this newly introduced correlation significant? The z statistic is reported to be
5.32, and the likelihood ratio can be formed to be 85.306− 53.272 = 32.034, significant
when referred to χ2

1. Virtually identical results can be obtained with the robust variance
estimator that gives the standard error of 0.0654 and z statistic of 5.39, highly significant
at conventional levels.

Let us demonstrate another important procedure for computing significance of the
χ2-difference tests with nonnormal data.

Satorra–Bentler scaled difference test

Nonnormality of the data may cast doubt on the value of both the goodness-of-
fit test and the likelihood-ratio tests of nested models. Satorra and Bentler (2001)
demonstrated how to obtain a scaled version of the nested models test correcting
for multivariate kurtosis. Suppose two models are fit to the data, resulting in the
(quasi-)likelihood-ratio test statistics T0 and T1; degrees of freedom r0 and r1; and scal-
ing factors c0 and c1 (18), where index 0 stands for a more restrictive (null) model.
Then the test statistic is

T d =
(T0 − T1)(r0 − r1)

r0c0 − r1c1

to be referred to χ2 with r1 − r0 degrees of freedom. It is not guaranteed to be nonneg-
ative in finite samples or with grossly misspecified models.

Here is the sequence of steps to obtain the test statistic T d to test for significance
of correlated errors:

. qui confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9), from(bb)
> vce(sbentler)

. local T0 = e(lr_u)

. local r0 = e(df_u)

. local c0 = e(SBc)

. qui confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9), from(bb, skip)
> vce(sbentler) correlated(x7:x8)

. local T1 = e(lr_u)

. local r1 = e(df_u)
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. local c1 = e(SBc)

. local DeltaT = (�T0�-�T1�)*(�r0�-�r1�)/(�r0�*�c0�-�r1�*�c1�)

. di as text "Scaled difference Delta = " as res %6.3f �DeltaT� as text "; Prob
> [chi2>" as res %6.3f �DeltaT� as text "] = " as res %6.4f
> chi2tail(�r0�-�r1�, �DeltaT�)
Scaled difference Delta = 33.484; Prob[chi2>33.484] = 0.0000

See the description of returned values in section 5. The test statistic, which has an
approximate χ2 distribution, again confirms that the correlation is significant.

Bollen–Stine bootstrap

Aside from the Satorra–Bentler fit statistics Tsc and Tadj reported with option
vce(sbentler), an alternative way to correct fit statistics for nonnormality is by resam-
pling methods. The bootstrap procedure for covariance matrices was proposed by Beran
and Srivastava (1985) and Bollen and Stine (1992). This procedure is implemented via
the bollenstine command as a part of the confa package. See syntax diagrams in
section 2.

For a fraction of the bootstrap samples, maximization does not converge (even
though the last parameter estimates are used as starting values, by default). Hence,
bollenstine rejects such samples (via the reject(e(converged)==0) option supplied
to the underlying bootstrap). It is supposed to be used in conjunction with a limit
on the number of iterations given by confaoptions(iter(#) . . .). In most “good”
samples, the convergence is usually achieved in about 5 to 10 iterations. In the output
that follows, the limit on the number of iterations is set to 20. There were two sam-
ples where the bootstrap did not converge, shown with x among the dots produced by
the bootstrap command. If the number of iterations is set to 5, only 208 out of 500
bootstrap samples produce convergent results.

Note the use of confaoptions(corr(x7:x8)) to transfer the original model spec-
ification to bollenstine. Without it, bollenstine would be calling the basic model
without the correlated errors, thus producing inappropriate results.

(Continued on next page)
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. qui confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9), from(bb, skip)
> correlated(x7:x8)

. set seed 1010101

. bollenstine, reps(500) confaoptions(iter(20) corr(x7:x8))
(running confa on estimation sample)

Bootstrap replications (500)
1 2 3 4 5

.................................................. 50

.................................................. 100

.....................x............................ 150

.................................................. 200

.................................................. 250

.................................................. 300

........................x......................... 350

.................................................. 400

.................................................. 450

.................................................. 500

log likelihood = -3721.7283 Number of obs = 301

Bollen-Stine
Coef. Std. Err. z P>|z| [95% Conf. Interval]

(output omitted )
Factor cov.

vis-vis .782528 .1362375 5.74 0.000 .5155074 1.049549
text-text .9784168 .1121731 8.72 0.000 .7585615 1.198272
vis-text .3995371 .0777012 5.14 0.000 .2472456 .5518285
math-math .1466786 .0528322 2.78 0.005 .0431294 .2502278
text-math .1021679 .0360058 2.84 0.005 .0315979 .172738
vis-math .184376 .0512257 3.60 0.000 .0839754 .2847766

Var[error]
x1 .5758433 .1034751 5.57 0.000 .3730357 .7786508
x2 1.122499 .1019974 11.01 0.000 .9225877 1.32241
x3 .8321163 .089874 9.26 0.000 .6559664 1.008266
x4 .3722489 .0479869 7.76 0.000 .2781963 .4663014
x5 .4436604 .0580119 7.65 0.000 .3299592 .5573615
x6 .3570578 .0434528 8.22 0.000 .2718919 .4422236
x7 1.036463 .088125 11.76 0.000 .863741 1.209185
x8 .7948157 .0831437 9.56 0.000 .6318571 .9577743
x9 .0875355 .1967033 0.45 0.656 -.2979959 .473067

Cov[error]
x7-x8 .3527068 .0662993 5.32 0.000 .2227626 .482651

(output omitted )

Goodness of fit test: LR = 53.272 ; Prob[chi2(23) > LR] = 0.0003
Test vs independence: LR = 865.579 ; Prob[chi2(36) > LR] = 0.0000

Bollen-Stine simulated Prob[ LR > 53.2722 ] = 0.0020
Based on 498 replications. The bootstrap 90% interval: (13.258,39.852)

Standard errors have been replaced by the Bollen–Stine bootstrap ones. In addition
to the usual goodness-of-fit tests, the bootstrap p-value and the percentile method CI

for the goodness-of-fit test statistic are reported. The computations of the bootstrap
p-value, the CI, and the standard errors are based on the converged samples only (498
out of 500). Note how this CI compares with the one implied by the theoretical χ2

23 dis-
tribution, [13.091, 35.172]. The test statistic for the current sample size and multivariate
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kurtosis structure appears to be slightly biased upward. The actual test statistic of 53.27
is way outside either interval, and only one out of 498 bootstrap samples produced the
test statistics above it.

Postestimation commands: Fit indices and correlations

There are several postestimation commands available in the confa command that
provide additional estimation and diagnostic results. First, several popular fit indices
can be obtained via the estat fitindices command:

. estat fitindices

Fit indices

RMSEA = 0.0662, 90% CI= (0.0430, 0.0897)
RMSR = 0.0624
TLI = 0.9429
CFI = 0.9635
AIC = 7487.457
BIC = 7569.013

The fit of the model is not that great. RMSEA seems to be barely touching the
desirable region (below 0.05), and CFI is rather low although within the range of what
are considered good-fitting models (from 0.9 to 1.0).

Second, the covariance parameters can be transformed to correlations by estat

correlate. The standard errors are computed by the delta method, and the CIs can
be computed directly by asymptotic normality, or via Fisher’s z transform (Cox 2008)
requested by the bound option, which produces CIs bound to be within a (−1, 1) interval
and shrunk toward zero. If there are any Heywood cases, that is, improper estimates
with implied correlations outside a (−1, 1) interval, then z transform is not applicable,
and a missing CI will result.

. estat corr

Correlation equivalents of covariances

Bollen-Stine
Coef. Std. Err. z P>|z| [95% Conf. Interval]

Factors
vis-text .4566098 .0642273 7.11 0.000 .3307266 .5824929
vis-math .5442157 .0784663 6.94 0.000 .3904246 .6980069
text-math .2696928 .0684068 3.94 0.000 .1356179 .4037677

Errors
x7-x8 .3886009 .053664 7.24 0.000 .2834213 .4937804

(Continued on next page)
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. estat corr, bound

Correlation equivalents of covariances

Bollen-Stine
Coef. Std. Err. z P>|z| [95% Conf. Interval]

Factors
vis-text .4566098 .0642273 7.11 0.000 .32209 .5730564
vis-math .5442157 .0784663 6.94 0.000 .3727556 .6797409
text-math .2696928 .0684068 3.94 0.000 .1311805 .3978771

Errors
x7-x8 .3886009 .053664 7.24 0.000 .2786917 .4884624

Factor predictions

Factor predictions are obtained by the standard postestimation command predict.
The feature of this command is that all factors present in the model must be predicted
at once, so the newvarlist must contain as many new variables as there were factors in
the model:

. predict fa1-fa3, reg

. predict fb1-fb3, bart

. corr fa1-fb3, cov
(obs=301)

fa1 fa2 fa3 fb1 fb2 fb3

fa1 .573319
fa2 .386133 .871388
fa3 .17935 .101985 .135088
fb1 .785136 .400869 .18499 1.15513
fb2 .400869 .981677 .102508 .400869 1.10884
fb3 .184689 .102902 .147167 .18436 .102991 .160725

. corr fa1-fb3
(obs=301)

fa1 fa2 fa3 fb1 fb2 fb3

fa1 1.0000
fa2 0.5463 1.0000
fa3 0.6445 0.2973 1.0000
fb1 0.9648 0.3996 0.4683 1.0000
fb2 0.5028 0.9987 0.2649 0.3542 1.0000
fb3 0.6084 0.2750 0.9988 0.4279 0.2440 1.0000

The factor covariances within each method resemble the estimated Φ matrix, al-
though the regression (empirical Bayes) method factors are shrunk toward zero (and
thus have smaller variances). The factor predictions obtained by the two methods are
almost perfectly correlated, which is to be expected because they are measuring the
same quantities, albeit on different scales.
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Alternative identification

As the last twist that can be applied to these data, let us consider an alternative
identification when factor variances are set to 1 and factor loadings are estimated freely.3

. confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9), from(ones)
> unitvar(_all) corr(x7:x8)

initial: log likelihood = -3933.9488
rescale: log likelihood = -3933.9488
rescale eq: log likelihood = -3763.1831
Iteration 0: log likelihood = -3774.4345 (not concave)

(output omitted )
Iteration 9: log likelihood = -3721.7283

log likelihood = -3721.7283 Number of obs = 301

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Means
x1 4.93577 .0671778 73.47 0.000 4.804104 5.067436
x2 6.08804 .0677543 89.85 0.000 5.955244 6.220836
x3 2.250415 .0650802 34.58 0.000 2.12286 2.37797
x4 3.060908 .066987 45.69 0.000 2.929616 3.1922
x5 4.340532 .0742579 58.45 0.000 4.194989 4.486074
x6 2.185572 .0630445 34.67 0.000 2.062007 2.309137
x7 4.185902 .0626953 66.77 0.000 4.063022 4.308783
x8 5.527076 .0582691 94.85 0.000 5.412871 5.641282
x9 5.374123 .0580698 92.55 0.000 5.260309 5.487938

Loadings
vis
x1 .8846049 .0770051 11.49 0.000 .7336778 1.035532
x2 .5092014 .0782212 6.51 0.000 .3558907 .6625121
x3 .6653939 .0739123 9.00 0.000 .5205284 .8102594

text
x4 .9891496 .0567019 17.44 0.000 .8780159 1.100283
x5 1.102781 .0625864 17.62 0.000 .980114 1.225448
x6 .9161337 .0537635 17.04 0.000 .8107592 1.021508

math
x7 .3829829 .0689764 5.55 0.000 .2477917 .5181741
x8 .4766196 .0775035 6.15 0.000 .3247156 .6285236
x9 .9630566 .1106833 8.70 0.000 .7461214 1.179992

Factor cov.
vis-vis 1 . . . . .

text-text 1 . . . . .
vis-text .4566094 .0642274 7.11 0.000 .330726 .5824928
math-math 1 . . . . .
text-math .269691 .068409 3.94 0.000 .1356118 .4037702
vis-math .5442133 .0784713 6.94 0.000 .3904124 .6980142

3. With an additional restriction if school==2, the results are accurate within 0.01 to those reported
by Yuan and Bentler (2007). The discrepancies are likely to be due to the small differences in the
datasets found in different sources on the Internet.
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Var[error]
x1 .5758446 .1034751 5.57 0.000 .373037 .7786521
x2 1.1225 .1019975 11.01 0.000 .9225884 1.322411
x3 .8321164 .0898742 9.26 0.000 .6559663 1.008267
x4 .3722483 .0479868 7.76 0.000 .2781958 .4663007
x5 .4436603 .0580118 7.65 0.000 .3299593 .5573613
x6 .357058 .0434527 8.22 0.000 .2718922 .4422239
x7 1.036464 .0881257 11.76 0.000 .8637409 1.209187
x8 .794817 .0831478 9.56 0.000 .6318503 .9577837
x9 .0875252 .1967321 0.44 0.656 -.2980627 .4731131

Cov[error]
x7-x8 .3527083 .0663016 5.32 0.000 .2227595 .4826571

R2
x1 0.5742
x2 0.1870
x3 0.3461
x4 0.7220
x5 0.7303
x6 0.6992
x7 0.1236
x8 0.2215
x9 0.9107

Goodness of fit test: LR = 53.272 ; Prob[chi2(23) > LR] = 0.0003
Test vs independence: LR = 865.579 ; Prob[chi2(36) > LR] = 0.0000

Because scaling of the model is different, the previous estimates might be of limited
value, hence the initial values are specified as from(ones). The ivreg option is not
applicable to this situation. The log-likelihood and goodness-of-fit tests are the same
as before: the models are said to be χ2 identical. The variances and covariances of the
error terms are free of the scaling issue and the same as before. Both point estimates of
the factor covariances (which are in fact factor correlations with this identification) and
their standard errors are very close to the factor correlations and their standard errors
reported by estat correlate when the model was identified by unit variable loadings
(see the section above titled Postestimation commands: Fit indices and correlations).

Missing data

By default, confa performs listwise deletion of missing data. Any observation that
has missing values among the observed variables (or the weight variable if weighted
analysis was requested) is dropped from the analysis. Upon excluding such observations,
estimation proceeds as if the data were complete.

A more thorough treatment of missing data (full-information maximum-likelihood
method for missing data in structural equation modeling) is provided with the missing
option. When this option is specified, the following modifications are taken:

1. The sample is restricted to the observations identified by the if and in statements.
If the observed variables have missing values, they are still retained.
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2. Goodness-of-fit tests and R2 for observed variables are not computed because they
rely on the estimate of the unstructured covariance matrix, which is not available
with this method.

3. Factor predictions are not available.

Maximization proceeds by establishing the patterns of missing data and extracting
the relevant submatrices of the mean vector, µ(θ), and covariance matrix, Σ(θ), for
each pattern. A message is printed about the number of missing patterns found; the
computation time should be expected to increase linearly with that number because this
many submatrices of Σ(θ) should be inverted for each evaluation of the log likelihood.

The näıve listwise deletion analysis is appropriate when the data are missing com-
pletely at random (Little and Rubin 2002). The more sophisticated analysis with the
missing option is technically applicable to more complicated situations when the prob-
ability of being missing depends on other observed variables. It can be argued however
that in CFA context, the relevant conditioning should be on the exogenous variables ξ
and δ, which are unobserved. Typically, in the missing-data situations, listwise deletion
will tend to exclude a lot of observations, so specifying the missing option is recom-
mended for most uses. Carrying over the starting values from simpler analysis will speed
up convergence, as usual. My experience suggests that the likelihoods with missing data
tend to have multiple local maximums and thus are more sensitive to starting values.

Let us introduce some missing data in the Holzinger–Swineford example and analyze
the resulting dataset.

. set seed 123456

. forvalues k=1/9 {
2. gen y�k� = cond(runiform()<0.0�k�, ., x�k�)
3. }

(2 missing values generated)
(2 missing values generated)
(8 missing values generated)
(18 missing values generated)
(21 missing values generated)
(14 missing values generated)
(17 missing values generated)
(28 missing values generated)
(33 missing values generated)

By default, confa will perform listwise deletion:

(Continued on next page)
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. confa (vis: y1 y2 y3) (text: y4 y5 y6) (math: y7 y8 y9), from(bb) nolog

log likelihood = -2349.8705 Number of obs = 188

Coef. Std. Err. z P>|z| [95% Conf. Interval]

(output omitted )
Loadings

vis
y1 1 . . . . .
y2 .5961873 .1403271 4.25 0.000 .3211512 .8712234
y3 .7673835 .1403096 5.47 0.000 .4923818 1.042385

text
y4 1 . . . . .
y5 1.170694 .0912381 12.83 0.000 .991871 1.349518
y6 .9482258 .0787462 12.04 0.000 .793886 1.102566

math
y7 1 . . . . .
y8 1.108808 .1974696 5.62 0.000 .7217751 1.495842
y9 1.101076 .2707746 4.07 0.000 .5703674 1.631784

Factor cov.
vis-vis .8740227 .1947933 4.49 0.000 .4922347 1.255811

text-text .9052388 .1378389 6.57 0.000 .6350794 1.175398
vis-text .4241773 .1020139 4.16 0.000 .2242338 .6241209
math-math .369443 .1210115 3.05 0.002 .1322648 .6066213
text-math .1909222 .0617196 3.09 0.002 .0699539 .3118904
vis-math .2244777 .068616 3.27 0.001 .0899928 .3589626

Var[error]
y1 .5456968 .1511219 3.61 0.000 .2495033 .8418903
y2 1.1373 .1376886 8.26 0.000 .8674351 1.407165
y3 .7342031 .114935 6.39 0.000 .5089346 .9594717
y4 .4184883 .063913 6.55 0.000 .2932212 .5437554
y5 .4209509 .0772258 5.45 0.000 .269591 .5723107
y6 .4113066 .0606663 6.78 0.000 .2924029 .5302104
y7 .8200653 .1178993 6.96 0.000 .5889869 1.051144
y8 .5880029 .1172023 5.02 0.000 .3582907 .8177151
y9 .5367541 .1186252 4.52 0.000 .304253 .7692552

(output omitted )

Goodness of fit test: LR = 61.405 ; Prob[chi2(24) > LR] = 0.0000
Test vs independence: LR = 503.076 ; Prob[chi2(36) > LR] = 0.0000

A more sophisticated analysis is available with the missing option:
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. confa (vis: y1 y2 y3) (text: y4 y5 y6) (math: y7 y8 y9), from(iv) missing
> difficult

Note: 29 patterns of missing data found

initial: log likelihood = -3579.9111
rescale: log likelihood = -3579.9111
rescale eq: log likelihood = -3525.1169
Iteration 0: log likelihood = -3525.1169

(output omitted )
Iteration 5: log likelihood = -3493.7822

log likelihood = -3493.7822 Number of obs = 301

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Means
y1 4.868664 .0643479 75.66 0.000 4.742544 4.994784
y2 5.882944 .0659704 89.18 0.000 5.753645 6.012244
y3 2.168227 .0707049 30.67 0.000 2.029648 2.306806
y4 3.076254 .0608798 50.53 0.000 2.956932 3.195577
y5 4.41519 .0704952 62.63 0.000 4.277022 4.553358
y6 2.170605 .0643098 33.75 0.000 2.044561 2.29665
y7 4.165661 .0661282 62.99 0.000 4.036052 4.295269
y8 5.502241 .063663 86.43 0.000 5.377463 5.627018
y9 5.388172 .0603112 89.34 0.000 5.269964 5.50638

Loadings
vis
y1 1 . . . . .
y2 .7196496 .0968129 7.43 0.000 .5298999 .9093994
y3 .9898674 .1114766 8.88 0.000 .7713774 1.208358

text
y4 1 . . . . .
y5 1.249689 .0845489 14.78 0.000 1.083977 1.415402
y6 1.08037 .0781354 13.83 0.000 .9272272 1.233512

math
y7 1 . . . . .
y8 1.239025 .1565318 7.92 0.000 .9322288 1.545822
y9 1.0219 .1579594 6.47 0.000 .7123056 1.331495

Factor cov.
vis-vis .8300679 .1255225 6.61 0.000 .5840484 1.076087

text-text .6923659 .0896611 7.72 0.000 .5166333 .8680984
vis-text .2878234 .0663537 4.34 0.000 .1577725 .4178743
math-math .4502683 .0988643 4.55 0.000 .2564979 .6440387
text-math .180085 .0462256 3.90 0.000 .0894844 .2706855
vis-math .261571 .0546761 4.78 0.000 .1544078 .3687341

Var[error]
y1 .4115598 .0872224 4.72 0.000 .2406071 .5825125
y2 .8734908 .0871599 10.02 0.000 .7026606 1.044321
y3 .6667882 .0965589 6.91 0.000 .4775363 .8560401
y4 .389792 .046189 8.44 0.000 .2992632 .4803209
y5 .3682757 .060919 6.05 0.000 .2488767 .4876747
y6 .4094993 .0531293 7.71 0.000 .3053679 .5136308
y7 .8087322 .0883255 9.16 0.000 .6356174 .9818471
y8 .4544227 .0961848 4.72 0.000 .2659039 .6429415
y9 .5391701 .0829834 6.50 0.000 .3765257 .7018146

Goodness of fit test: LR = . ; Prob[chi2( .) > LR] = .
Test vs independence: LR = . ; Prob[chi2( .) > LR] = .
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In this analysis, both variance–covariance matrices of the coefficient estimates (vce
or e(V)) for the complete-data analysis (with x* variables) and missing-data analysis
(with y* variables and the missing option) are smaller than the variance–covariance
matrix in the analysis of y* variables without the missing option. Comparison between
the former two is inconclusive.

A word of caution: It appears that this treatment of missing data leads to highly
unstable results. Table 1, below, shows the maximization results with different start-
ing values and different maximization techniques. The top value in each cell is the
log likelihood at maximum, and the bottom value is the elapsed maximization time.
None of the 20 resulting maximums coincided! This behavior was not observed in the
complete-data analysis where the same maximum has been consistently found with all
starting values and maximization parameters. It is possible that the global maximum
of the procedure was not found, and it is unclear which of the local maximums would
correspond to consistent estimates.

Table 1. Multiple maximums in missing-data problems

Starting technique(nr) technique(dfp)

values difficult: off difficult: on difficult: off difficult: on

Complete −3454.222 −3487.593 −3504.6316 −3697.2417
analysis 89.05 s 87.75 s 60.63 s 67.61 s
Näıve −3532.2684 −3511.787 −3678.0145 −3548.1309
missing 98.61 s 110.59 s 62.69 s 59.08 s
iv −3508.6958 −3563.8789 −3484.9064 −3570.5609

98.38 s 154.69 s 98.37 s 154.69 s
smart −3533.009 −3550.5144 −3601.0655 −3556.5871

131.09 s 160.49 s 90.80 s 234.11 s
ones −3594.406 −3452.5826 −3645.4862 −3569.1392

127.70 s 157.88 s 68.67 s 66.39 s

4 Example 2: Modeling the structure of correlated mea-

surement errors

An interesting class of the CFA models is that of multiple traits and multiple methods
(MTMM). In those models, the observed variables are explained by two unrelated sets
of factors: traits, or the factors of primary interest, and methods, or auxiliary factors,
often modeling relations between measurement errors δ.

Bollen (1993) analyzes two dimensions of liberal democracy, political liberties and
democratic rule, using three sources of data4 (indicators developed by three liberal

4. The complete dataset, codebooks, and data description are available at
http://www.icpsr.umich.edu/cocoon/ICPSR/STUDY/02532.xml.
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democracy researchers: A. Banks, R. D. Gastil, and L. R. Sussman; see references in
Bollen [1993]). Political liberties are measured by freedom of group opposition and party
formation, freedom of the broadcast media, and freedom of print media and civil liber-
ties. Democratic rule is measured by effectiveness of the elected legislative body, political
rights, competitiveness of nomination process, and chief executive election. The mea-
surement errors are believed to be correlated, with correlations coming from variables
that have been produced by the three aforementioned researchers. In MTMM terms, the
two substantive dimensions are the traits, and the data sources are the methods. While
the general MTMM models may have identification problems (Marsh, Byrne, and Craven
1992; Byrne and Goffin 1993; Grayson and Marsh 1994) due to highly structured co-
variance matrices, this model does not load every method to every factor and has been
shown by Bollen (1993) to be identified. The structure of the model is represented in
figure 2. The individual error terms are omitted to reduce the clutter.
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Figure 2. Structure of the MTMM model of Bollen (1993)

Building up a complex CFA model

The default initial values logic with one of from(iv), from(ones), or from(smart)
does not apply well in this situation, because each variable has a factor complexity of
two. The model fails to converge when any of those options is submitted as starting
values. Thus we first fit the traits and the methods models separately, using the residuals
from the first model as the data for the second model. The estimates are combined to
form the starting values for the full model.

(Continued on next page)
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. *traits model

. use libdem80, clear
(Cross-National Indicators of Liberal Democracy, 1950-1990)

. confa (pollib: party broad print civlb) (demrul: leg80 polrt compet effec),
> vce(sbentler) from(smart) difficult usenames

initial: log likelihood = -3483.2656
rescale: log likelihood = -3483.2656
rescale eq: log likelihood = -3294.09
Iteration 0: log likelihood = -3294.09 (not concave)
Iteration 1: log likelihood = -3232.2538 (not concave)

(output omitted )
Iteration 14: log likelihood = -2672.5848

(output omitted )

. matrix b_t = e(b)

. preserve

. *methods model: obtain the data by replacing the variables with their residuals

. predict f1 f2, bartlett

. foreach x of varlist party80 broad80 print80 civlb80 {
2. qui replace �x� = �x� - [lambda_�x�_pollib]_cons*f1
3. }

. foreach x of varlist leg80 polrt80 compet80 effec80 {
2. qui replace �x� = �x� - [lambda_�x�_demrul]_cons*f2
3. }

. confa (sussman: broad print) (gastil: civlb polrt)
> (banks: leg80 party compet effec), difficult from(smart) usenames iter(20)

initial: log likelihood = -2072.5146
rescale: log likelihood = -2072.5146
rescale eq: log likelihood = -1944.4457
Iteration 0: log likelihood = -1944.4457 (not concave)
Iteration 1: log likelihood = -1888.2893 (not concave)

(output omitted )
Iteration 20: log likelihood = -1463.6925 (not concave)
convergence not achieved

(output omitted )

. matrix b_res = e(b)

. restore

Next let us fit the full model. First, we define the constraints, specifying that
the traits and methods are uncorrelated. Second, we specify the starting values as a
combination of the loadings and factor covariances from the two runs. The matrix b t

contains the following preliminary estimates: the means of the observed variables, the
loadings of the traits (dimensions of political democracy), the covariances of the trait
factors, and the residual variances from the first model. The matrix b res contains the
following preliminary estimates: the means of the observed variables, the loadings of
the methods (sources of data), the covariances of the method factors, and the residual
variances from the second model. The matrix bb2 updates the traits model results with
the “new” results from the residual model (the loadings and factor covariances of the
methods, and error variances). The range of indices can be identified from output of
matrix list b t and matrix list b res. While the parameters are not in the correct
order in matrix bb2, the combination of from(. . ., skip) and usenames ensures that
parameters are copied by names rather than by position in the initial values vector.
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. constraint define 201 [phi_pollib_sussman]_cons = 0

. constraint define 202 [phi_pollib_gastil]_cons = 0

. constraint define 203 [phi_pollib_banks]_cons = 0

. constraint define 204 [phi_demrul_sussman]_cons = 0

. constraint define 205 [phi_demrul_gastil]_cons = 0

. constraint define 206 [phi_demrul_banks]_cons = 0

. * initial values: combine the previous results

. matrix bb2 = (b_t[1,1..19], b_res[1,9..30] )

. confa (pollib: party broad print civlb) (demrul: leg80 polrt compet effec)
> (sussman: broad print) (gastil: civlb polrt) (banks: leg80 party compet effec),
> constr(201 202 203 204 205 206) from(bb2) usenames difficult vce(sbentler)

initial: log likelihood = -2639.5682
rescale: log likelihood = -2639.5682
rescale eq: log likelihood = -2592.2313
Iteration 0: log likelihood = -2595.7894 (not concave)

(output omitted )
Iteration 10: log likelihood = -2568.1962

log likelihood = -2568.1962 Number of obs = 153

Satorra-Bentler
Coef. Std. Err. z P>|z| [95% Conf. Interval]

Means
party80 3.616557 .344394 10.50 0.000 2.941557 4.291557
broad80 3.398693 .3385019 10.04 0.000 2.735241 4.062144
print80 4.575163 .3517822 13.01 0.000 3.885683 5.264644
civlb80 4.422659 .259731 17.03 0.000 3.913596 4.931723

leg80 4.934636 .2885947 17.10 0.000 4.369001 5.500271
polrt80 4.379082 .2918081 15.01 0.000 3.807149 4.951016

compet80 6.24183 .300571 20.77 0.000 5.652722 6.830938
effec80 4.575163 .2921247 15.66 0.000 4.00261 5.147717

Loadings
pollib
party80 1 . . . . .
broad80 .8605268 .0653934 13.16 0.000 .732358 .9886955
print80 .9250379 .0579294 15.97 0.000 .8114983 1.038577
civlb80 .7187934 .043395 16.56 0.000 .6337408 .8038461
demrul
leg80 1 . . . . .

polrt80 1.078044 .0659108 16.36 0.000 .9488608 1.207227
compet80 .9393674 .0597369 15.73 0.000 .8222852 1.05645
effec80 .4380042 .0780376 5.61 0.000 .2850532 .5909551
sussman
broad80 1 . . . . .
print80 1.191159 .2313778 5.15 0.000 .7376668 1.644651
gastil
civlb80 1 . . . . .
polrt80 .6327867 .1780188 3.55 0.000 .2838763 .981697

banks
party80 -.1835592 .6226701 -0.29 0.768 -1.40397 1.036852

leg80 1 . . . . .
compet80 2.710965 .7441043 3.64 0.000 1.252547 4.169382
effec80 1.936548 .6181943 3.13 0.002 .7249093 3.148187
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Factor cov.
pollib-pol~b 16.03 1.382935 11.59 0.000 13.3195 18.7405
demrul-dem~l 10.4853 1.120171 9.36 0.000 8.28981 12.6808
pollib-dem~l 12.85938 1.113003 11.55 0.000 10.67793 15.04082
sussman-su~n 2.568807 1.111159 2.31 0.021 .3909752 4.746638
demrul-sus~n (omitted)
pollib-sus~n (omitted)
gastil-gas~l 1.432488 .4740313 3.02 0.003 .5034042 2.361573
sussman-ga~l 1.472053 .6605832 2.23 0.026 .1773339 2.766772
demrul-gas~l (omitted)
pollib-gas~l (omitted)
banks-banks .6788023 .4804045 1.41 0.158 -.2627733 1.620378

gastil-banks -.3427659 .2509348 -1.37 0.172 -.8345891 .1490573
sussman-ba~s -.2801559 .309342 -0.91 0.365 -.8864551 .3261433
demrul-banks (omitted)
pollib-banks (omitted)
Var[error]

party80 2.094032 .8899954 2.35 0.019 .3496733 3.838391
broad80 3.092162 .4884588 6.33 0.000 2.134801 4.049524
print80 1.572295 .5140105 3.06 0.002 .5648532 2.579737
civlb80 .6067974 .1927103 3.15 0.002 .2290921 .9845027

leg80 1.57879 .2679765 5.89 0.000 1.053566 2.104014
polrt80 .26886 .3682653 0.73 0.465 -.4529267 .9906467

compet80 -.4186224 .8945279 -0.47 0.640 -2.171865 1.33462
effec80 8.499297 1.068135 7.96 0.000 6.405792 10.5928

R2
party80 0.8788
broad80 0.8181
print80 0.9108
civlb80 0.9348

leg80 0.8705
polrt80 0.9727

compet80 1.0239
effec80 0.3468

Goodness of fit test: LR = 9.206 ; Prob[chi2( 8) > LR] = 0.3253
Test vs independence: LR = 1603.033 ; Prob[chi2(28) > LR] = 0.0000

Satorra-Bentler Tsc = 8.848 ; Prob[chi2( 8) > Tsc ] = 0.3553
Satorra-Bentler Tadj = 8.185 ; Prob[chi2( 7.4) > Tadj] = 0.3558
Yuan-Bentler T2 = 8.683 ; Prob[chi2( 8) > T2 ] = 0.3697

The use of the difficult option helped to bring down the number of iterations from
43 to 13. Goodness-of-fit measures are identical to those reported in Bollen (1993), so
estimation procedures converged to the same maximums as in Bollen (1993).

A mild Heywood case was produced for the compet80 variable: the reported esti-
mated error variance is negative, and the corresponding R2 is greater than 1. However,
the CI for this parameter covers zero. Thus the interpretation can be offered that the
population variance might be a small positive quantity. The error variance of exactly
zero is as suspicious as a negative estimate: it means that we have a perfect measure of
democratic rule, but we know that it is affected by the measurement error associated
with the Banks factor (i.e., this variable came from Banks’ dataset). Heywood cases are
sometimes indicative of model misspecification. If that is the case, only vce(robust)

standard errors are asymptotically valid. Here we used vce(sbentler) to produce a
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range of additional test statistics correcting for multivariate kurtosis expected with this
dataset because many variables are ordinal with few categories (3 to 5).

From the substantive perspective, it might be interesting to note that the variance
of the Banks factor appears to be insignificant. This means that the variables obtained
from Banks and analyzed in the context of the current model are relatively free of the
common influences due to idiosyncrasies of that researcher. This cannot be said about
the variables coming from the other two researchers, Gastil and Sussman, because they
do seem to contain nontrivial amount of common influences. It might be puzzling,
however, that the loadings from the Banks factor to its observed compet80 and effec80

variables are well identified.

5 Technical notes

5.1 Methods and formulas

confa estimates (2) by maximum likelihood. The observed yi variables are described
by

yi = µ + Λξi + δi

where (
δi

ξi

)
∼ N

{
0,

(
Φ 0
0 Θ

)}

Hence,
yi ∼ N(µ,ΛΦΛ′ + Θ)

and the log likelihood for observation i, lnLi = li, is

li = −p

2
ln 2π − 1

2
ln |Σ | − 1

2
(yi − µ)′Σ−1(yi − µ) (8)

where Σ = Σ(θ) = ΛΦΛ′ + Θ is a p × p matrix, and the parameters θ of the model are
the means µ, the free elements of Λ, nonredundant elements of Φ, and the free elements
of Θ. The latter are usually the diagonal elements only, but if the correlated() option
is specified, off-diagonal elements can be estimated, as well. Because the means part of
the model is saturated, the number of covariance structure parameters dim θ = t must
be no greater than the number of the nonredundant moments of the covariance matrix
p∗ = p(p + 1)/2.

When some components of yi are missing and the missing option is specified, the
vector of means, µ, and the parametric covariance matrix, Σ, are restricted to the
nonmissing components in computation of the likelihood (8).

The conventional standard errors are available as the inverse of the observed informa-
tion matrix (vce(oim) method). Other analytic estimators (vce(opg), vce(robust),
and vce(cluster clustvar)) are supported, but resampling estimators need to be spec-
ified explicitly via a bootstrap or a jackknife prefix to the confa command; see
[R] vce option, [R] bootstrap, and [R] jackknife.
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The proportions of the observed-variable variance explained by the model, similar
to R2 in regression and variable communality in EFA, are computed and reported. For
variable j,

R2
j =

σjj(θ) − V (δj)

s2
j

where s2
j is the sample variance of yj .

Two likelihood-ratio tests are computed by default. The first one is a test against a
saturated model:

H0 : Σ = Σ(θ) versus H1 : Σ is unstructured

It has a likelihood-ratio test statistic

Tu = −2

{
l(θ̂) −

(
−pN

2
ln 2π − N

2
ln |S | − pN

2

)}

where subindex u stands for “unstructured”. It has an asymptotic χ2 distribution with
the residual degrees of freedom dfu = p∗ − t.

The second likelihood-ratio test is the test against an “independence” model:

H0 : Σ = Σ0 = diag(σ2
1 , . . . , σ2

p) versus H1 : Σ = Σ(θ)

It has a likelihood-ratio test statistic

Ti = −2

{(
−pN

2
ln 2π − N

2
ln |S0 | −

N

2
tr S0

)
− l(θ̂)

}

where S0 = diag(s2
1, . . . , s

2
p) and subindex i stands for “independent”. The test statistic

has an asymptotic χ2 distribution with degrees of freedom dfi = t − p.

The postestimation command estat fitindices computes and reports several fit
indices that are used to complement the general χ2 goodness-of-fit test.

CFI (Bentler 1990b) is

CFI = 1 − max(Tu − dfu, 0)

max(Tu − dfu, Ti − dfi, 0)
(9)

TLI (Tucker and Lewis 1973) is

TLI =
( Ti

dfi
− Tu

dfu

)/( Ti

dfi
− 1

)
(10)

RMSR (Jöreskog and Sörbom 1986) is

RMSR =





1

p∗

∑

1≤i≤j≤p

(sij − σ̂ij)
2





1/2

(11)
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RMSEA (Steiger 1990; Browne and Cudeck 1993) is

ǫ̂a =

√
max

{
Tu

(N − 1)dfu
, 0

}
(12)

Let G(x;λ, d) be the cumulative distribution function of the noncentral χ2 with non-

centrality parameter λ and d degrees of freedom. If G(Tu | 0, d) ≥ 0.95, find λ̂L as the
solution of

G(Tu; λ̂L,dfu) = 0.95

Otherwise, set λ̂L = 0. Likewise, if G(Tu | 0, d) ≥ 0.05, find λ̂U as the solution of

G(Tu; λ̂U ,dfu) = 0.05

Otherwise, set λ̂U = 0. Finally, set the 90% CI for RMSEA as




√
λ̂L

(N − 1)dfu
,

√
λ̂U

(N − 1)dfu





If sandwich standard errors are requested, the data are implicitly assumed not to
be independent and identically distributed (or violating the model assumptions other-
wise), no test statistics or R2 is reported, and no fit indices are produced by estat

fitindices.

An additional variance estimator (Satorra and Bentler 1994) is available with the
vce(sbentler) nonstandard option. Let s = vech S, σ = vech Σ, where vech is vec-
torization operator suppressing redundant elements (Magnus and Neudecker 1999), and
dependence of Σ and σ on θ is implied. Suppose the model has a correct structural spec-
ification but an incorrect distributional specification. That is, the number of factors and
their relations to observed variables are the true ones, but the distribution of the data is
not multivariate normal. Then, under some regularity conditions, the sample moments
are asymptotically normal: √

N(s − σ) → N(0,Γ)

The simplest estimator of Γ is based on the fourth-order moments of data,

Γ̂N =
1

N − 1

∑

i

(bi − b)(bi − b)′ (13)

where bi = (yi − y)(yi − y)′. Introduce the normal theory weight matrix,

VN =
1

2
D′(Σ ⊗ Σ)D (14)

where D is the duplication matrix (Magnus and Neudecker 1999), and the Jacobian
matrix,

∆̂ =
∂σ

∂θ

∣∣∣∣
θ=bθ

(15)
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Then the Satorra–Bentler variance estimator is

âcov(θ̂) = (N − 1)−1
(
∆̂′VN ∆̂

)−1
∆̂′VNΓNVN∆̂

(
∆̂′VN∆̂

)−1
(16)

When the observed variables come from a nonnormal distribution, the
(quasi-)likelihood-ratio test statistic becomes a mixture of χ2

Tu
d→

dfu∑

j=1

αjXj , Xj ∼ i.i.d. χ2
1

and αj are eigenvalues of the matrix UΓ with

U = V − V ∆(∆′V ∆)−1∆′V (17)

Satorra and Bentler (1994) proposed to use the scaled statistic

Tsc =
T

ĉ
, ĉ =

1

dfu
tr(Û Γ̂N ) (18)

which has an approximate χ2
dfu

distribution, where Û is U evaluated at θ, and the
adjusted statistic

Tadj =
d̂

ĉ
T, d̂ =

{
tr(Û Γ̂N )

}2

tr
{

(Û Ω̂N )2
} (19)

which has an approximate χ2
bd

distribution, where the degrees of freedom d̂ might be a
noninteger number.

Another correction to the T statistic proposed by Yuan and Bentler (1997) is

T2 = T/(1 + T/N) (20)

which has an approximate χ2 distribution with dfu degrees of freedom.

5.2 Implementation details

The confa package consists of the following ado-files: confa (the main estimation
engine), confa estat (postestimation commands), confa lfm (likelihood evaluator),
confa p (prediction), and bollenstine (Bollen–Stine bootstrap). The Mata functions
for confa are available in the lconfa.mlib library. The likelihood maximization is im-
plemented through the ml lf mechanism (observation-by-observation likelihoods with
numerical derivatives). There are approximately 43 KB of ado-code (about 1,400 lines)
and 13 KB of Mata code (about 450 lines).

The ado-code uses the listutil package by N. J. Cox. Its presence is checked, and
if the package is not found, an attempt is made to install it from the Statistical Software
Components archive.
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The memory requirements of confa are likely to be mild. To compute the sandwich
standard errors (with the robust or cluster options or with svy settings), confa will
generate # parameters scores, which would require at least 4 × (# parameters) × (#
observations) bytes of memory. Even for sizeable models with, say, 20 variables (and
thus about 50 or so parameters) and 10,000 observations, this is 2 MB.

5.3 Parameter names and saved results

The nomenclature of the parameter names is as follows.

By default, the parameters are labeled with numeric indices. The observed variables
and factors are numbered in the order of their appearance in factorspec statements. The
estimated means of the observed variables are referred to as [mean j] cons, with j =
1, . . . , p indexing the observed variables. The factor loadings are [lambda j k] cons.
The factor variances and covariances are [phi k l] cons, 1 ≤ k ≤ l ≤ m. The error
variances are [theta j] cons, and error covariances, if specified, are [theta j h] cons.

If the usenames option is specified, all the variable and factor indices are replaced
with their names in the dataset and factor specifications.

Thus, for instance, the model

. confa (f: x1 x2 x3 x4)

will have the lambda 1 1, lambda 2 1, lambda 3 1, lambda 4 1, phi 1 1, theta 1,
theta 2, theta 3, and theta 4 parameters with default settings; and the lambda x1 f,
lambda x2 f, lambda x3 f, lambda x4 f, phi f f, theta x1, theta x2, theta x3, and
theta x4 parameters when the usenames option is specified. Specifying the usenames

option will make the low-level output (such as matrix list e(b)) produce very long
and sparse listings. On the other hand, it is extremely handy when comparing mod-
els using the estimates table command or when transferring starting values between
commands, as shown in one of the examples above.

The saved results include the standard outcomes from ml, such as e(N) and e(ll).
Additional saved results are as follows:

(Continued on next page)
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Scalars
e(pstar) total degrees of freedom
e(df m) model degrees of freedom
e(df u) residual degrees of freedom

e(ll 0) log likelihood of the unrestricted model, bΣ = S
e(ll) log likelihood at the maximum
e(ll indep) log likelihood of “independence” model
e(lr u) likelihood-ratio statistic against unrestricted model; same as e(chi2)
e(p u) p-value against unrestricted model; same as e(p)
e(lr indep) likelihood ratio against “independence” model
e(df indep) model degrees of freedom of “independence” model
e(p indep) p-value against “independence” model

Macros
e(factors) list of factors
e(observed) list of observed variables
e(factork) unabbreviated factor statements, k = 1, . . . , m
e(correlated) unabbreviated correlated errors statements
e(unitvar) the list of factors identified by unit variances
e(missing) indicates that missing option was specified

Matrices
e(S) sample covariance e(Sigma) implied covariance

e(Lambda) estimated loadings, bΛ e(Theta) estimated error variances, bΘ

e(Phi) estimated factor covariances, bΦ e(CONFA Struc)model structure description

Additional saved results posted when the vce(sbentler) option is used are the
following:

Scalars
e(SBc) scaling correction bc in (18) e(Tsc) scaled statistic, Tsc, in (18)

e(SBd) scaling correction bd in (19) e(p Tsc) p-value associated with Tsc

e(T2) T2 statistic in (20) e(Tadj) adjusted statistic, Tadj, in (19)
e(p T2) p-value associated with T2 e(p Tsc) p-value associated with Tadj

Matrices

e(SBU) matrix U in (17) e(SBDelta) matrix b∆ in (15)

e(SBV) matrix V in (14) e(SBGamma) matrix bΓn in (13)

Additional saved results posted by bollenstine are the following:

Scalars
e(B BS) number of replications e(T BS 05) 5th bootstrap percentile
e(p u BS) bootstrap p-value e(T BS 95) 95th bootstrap percentile

Values returned by estat fit are the following:

Scalars
r(AIC) AIC r(RMSEA) root mean squared error of
r(BIC) BIC approximation (12)
r(CFI) CFI (9) r(RMSEA05) 5% lower limit for RMSEA
r(TLI) TLI (10) r(RMSEA95) 95% upper limit for RMSEA
r(RMSR) root mean squared residual (11)
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5.4 Computational complexity

A small simulation was conducted to establish the computational complexity of confa,
i.e., the approximate functional dependence of computational time on the number of
observations, size, and structure of the model. Sample size varied from 100 to 1,000,
the number of factors varied from 1 to 5, and the number of indicators per factor varied
from 2 to 6.

Table 2. Computational complexity simulation results

(1) (2) (3) (4) (5) (6)
# observations 0.680 0.680 0.680 0.680 0.680 0.680
# factors 2.283 2.469 0.341
# observed variables 2.368 2.128 1.245
# indicators per factor 2.128
# parameters 2.207 1.059

AIC 984.48 −226.93 −415.16 −415.16 −201.37 −382.49
BIC 996.51 −214.89 −399.12 −399.12 −189.34 −366.45
R2 0.7541 0.9874 0.9921 0.9921 0.9866 0.9914

The results are summarized in table 2. The entries are coefficients in the regression,
where the dependent variable is the log of elapsed time and explanatory variables are
the logs of the quantities in the first column. The dependence on the sample size is of
the order O(n0.68) (the sample size is orthogonal to the size and model structure, in
the sense of ANOVA factor orthogonality). The dependence on the model complexity is
of the order O(k2.4), where model complexity k can be understood as the number of
parameters t, the number of observed variables p, or the number of factors m.

Those dependencies are within expectations. The only dependence on the sample
size is due to the summation of the likelihood terms, and sublinear growth indicates
good memory management and speed optimization of array arithmetics by Stata. The
growth rate of computational time in model complexity between quadratic and cubic
is indicative of the matrix manipulation complexity, because the algorithms of k ×
k matrix inversion achieve complexity between O(k3) for simple algorithms down to
approximately O(k2.4) for the fastest ones. The matrix inversion operations involved
are inversion of p× p matrix Σ(θ) and inversion of t× t Hessian matrix in the Newton–
Raphson optimization method.

5.5 Verification and certification

Verification (Gould 2001) of confa estimation results was conducted using some pub-
lished results (Yuan and Bentler 2007; Bollen 1993) as well as other software packages
for Holzinger–Swineford data. confa reproduced the point estimates and standard er-
rors reported by Mplus 3.1 (Muthén and Muthén 2004). However, both sets of results
disagreed in the third decimal place with the published results of Yuan and Bentler
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(2007). Both Mplus output and Yuan and Bentler (2007) were given to three decimal
places. confa agreed with gllamm (running with adaptive quadrature and 12 integration
points per factor) to at least two decimal places in point estimates, OIM standard errors,
and robust standard errors (see [R] vce option) for all parameters except the error vari-
ances V [δ]. The discrepancies in the latter are likely due to a different implementation
of the error variance parameters in gllamm via a nonlinear transformation.

5.6 Distribution

The package is maintained and updated by the author, Stanislav Kolenikov. To check
for the most recent update, in Stata type

. net from http://web.missouri.edu/~kolenikovs/stata/

The version of the package at the time of publication is 2.0. Please send comments
and bug reports to the email address given on the title page.
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