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Introduction 

The U.S. nursery industry has progressed substantially in the last two decades, becoming one 

of the fastest growing industries in U.S. agriculture (Hall, Hodges, and Palma, 2011). Nursery 

products include trees/shrubs, vines, bedding plants, foliage and other plants.  According to the 2009 

National Nursery Survey, the largest regions and states in terms of total annual sales were the Pacific 

and Southeast regions (led by California and Florida, respectively), which accounted for about 49% 

of the total sales in 2008. The whole nursery industry was influenced by many factors such as the 

quality of agricultural land, weather conditions, production and management practices, marketing 

practices, and regional trade, to name only a few (Hall et al., 2011). Numerous studies have been 

conducted to investigate trade dynamics, marketing practices and financial and economic factors that 

contribute to the U.S. nursery industry sales. For instance, Johnson and Jensen (1992) identified and 

measured the effects of economic indicators on the U.S nursery products sales by geographical and 

statistical methods. Guo, Yue, and Hall (2011) used gravity models to investigate how distance, 

economic conditions and business characteristics affected the trades in the U.S. national nursery 

industry.  Palma et al. (2011) examined the effectiveness of nursery firms’ promotion and 

advertising expenditures on sales. Campbell, Hall and Combs (2009) found that marketing and 

advertising expenses played an impartment role in the total nursery sales from 1988-2003.  

Recently, due to the increasing chemical costs, pest chemical resistance issues, and 

environmental impacts in the production of nursery plants, Integrated Pest Management (IPM) 

practices, which include mechanical control, biological control, pesticide control, and other controls, 

have become an essential part of the nursery production systems (Sellmer et al. 2004). Fulcher and 

White (2012) defined IPM as a “sustainable approach to managing pests by combining biological, 

cultural, and chemical tools in a way that minimizes economic, aesthetic, health, and environmental 
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risks.” Results from empirical literature showed that a systematic use of IPM practices can benefit 

greenhouse and nursery growers by producing healthy nursery plants while reducing the amount of 

water pollutions (Fulcher and White, 2012; Fernandez-Cornejo and Ferraioli, 1999; Raupp and 

Cornell, 1988). Some studies have focused on IPM technology adoptions and especially their 

intensities in the agriculture through count data models (Fernandez-Cornejo and Ferraioli, 1999; 

Mishra and Park, 2005; Pandit, Paudel, and Hinson, 2012; Paxton et al., 2011).  

However, few studies investigated the relationship between IPM practices and nursery sales 

revenue. Although Hodges et.al. (2008) reported that production practices and technology use in the 

U.S. nursery industry differ across regions in terms of economic returns and environmental impacts, 

yet no theoretical and applied econometric methods were developed to provide evidence for spatial 

heterogeneity in economic and environmental impacts. Understanding the sources and extent of 

geographic heterogeneity is important for accurately modeling and forecasting economic growth. By 

appropriately modeling heterogeneity, insight about connections to wider economies and specific 

solutions to region-wide resource allocation problems is possible.  

Economic geographies are normally characterized by spatial heterogeneity (Anselin, 1988). 

Heterogeneity may be caused by different production functions, systematically varying parameters, 

or heteroskedasticity associated with spatial regimes (Anselin, 1988). For instance, commodity price 

transmission may be region-specific (Vitale and Bessler, 2006), skilled labor may be concentrated in 

certain locations (Davis and Schluter, 2005), or industry information spillovers may be realized more 

frequently in agglomeration economies (Cohen and Paul, 2005). In general, geographic 

heterogeneity typically implies structural breaks across space (Ertur, LeGallo, and Baumont, 2003). 

Heteroskedasticity (or non-constant variance between spatial units) and may also be caused by 

spatial regimes (Anselin, 1988). Different geographical scales may account for heterogeneity, which 



 

3 

 

in turn affects the magnitude of spatial spillover effects (Magrini, 2004). Measurement error or 

misspecification of spatial units may cause heteroskedasticity, which in turn may be a source of 

spatial autocorrelation (Kelejian and Robinson, 2004). Spatial heterogeneity may also be associated 

with spatially varying parameters generated by spatially dependent functional forms (Pace et al., 

2004). 

 For the reasons discussed above, this paper applies a relatively new class of spatial 

regression models – the Smooth Transition Autoregressive (STAR) models – which allow for 

endogenous sorting of spatial units into different regimes. The approach is especially useful for 

modeling for the effects of advertising expenditures on nursery sales as a data-driven process. Based 

on national nursery survey data collected in 2009, we investigated the primary factors which 

influenced U.S. nursery sales. Twenty two IPM practices were combined into seven major categories, 

which were used in an econometric model to measure the extent to which IPM groups were 

associated with nursery sales, controlling for selected production, management, and marketing 

practices related variables. Some IPM groups may have positively contributed to the annual sales 

through their backward and forward linkages. But in other areas, different IPM groups may have no 

effect, or even a negative impact, on annual sales. Identifying specific IPM groups that contributed 

to annual sales may provide practical insight about strategies to reduce production costs and 

increasing overall economic viability. The hypothesis that nursery industry sales are geographically 

heterogeneous by IPM groups was tested using Smooth Transition Spatial Process models. This class 

of models exhibiting regime switching behavior is useful for identifying the adoption of IPM 

practices, providing another tool for exploring relationships between geographical determinants and 

total sales. 
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Data and Baseline Model 

Data for this research was obtained from the 2009 U.S. National Nursery Survey, which was 

conducted by the Green Industry Research Consortium, consisting of a group of agricultural 

economists and horticulturalists. Since its inception in 1989, the 2009 survey is the fifth effort to 

collecting comprehensive data about greenhouse and nursery product types, production and 

management practices, marketing practices, and regional trade in nursery products. In 2009, a total 

of 3,044 firms responded from a randomly selected sample of 17,019 firms in all 50 states, with an 

18% response rate (Hall et al., 2011).   

Twenty-two Integrated Pest Management (IPM) practices with their percentage of 

respondents were listed and calculated from this survey (Table 1). According to its similar 

characteristics and natures, we categorized those 22 IPM practices into 8 different groups: Biological 

Control (BC), Fertilization Rate (FR), Monitoring (M), Mechanical Control (MC), Pesticide Control 

(PC), Preventive Practices (PP), Water Rate (WR), and others (Table 1). After excluding missing, 

and/or incomplete observations from the sample, a total number of observations were reduced to 809.  

The response variable is the log of annual sales in 2008. Predictors hypothesized to influence 

national nursery industry annul sales include the number of years in operation, firm sizes, use of 

computer technology in nursery operations which is scored from 0 to 100, 8 IPM groups (others is 

the reference group) , percentage of wholesale sales, and percentage of advertising budget (internet, 

printed materials, mass media and others). The baseline log-linear model can be presented by the 

following equation: 

(1) lnsales=  +                                                      

                               ∑           u, k = 1 to 7 Variable names 

and descriptive statistics are summarized in Table 2. 
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Models for Spatial Dependence and Heterogeneity 

Spatial Process Models 

The issue of heterogeneity across space and the potential for spatial regime “switching” 

behavior is further complicated when changes in the IPM groups in one nursery firm are a function 

of changes in neighboring nursery firms, or when unobserved factors are correlated across spatial 

units. In this paper, the hypothesis is that annual total nursery sales may be simultaneously 

determined by sales in neighboring firms. For example, ∑      
 
       , where W denotes spatial 

connectivity (i.e., spatial weights). Feedback between spatial units may be significant, meaning that 

sales in one firm is dependent on or explained by sales in surrounding firms. Significant interaction 

suggests information spillovers, thick labor markets, or forward-backward linkages to other spatial 

units (Anselin, 2002; Moreno et al., 2004). 

Spatial dependence is usually captured by a spatial autoregressive (SAR) lag model in which 

an endogenous variable is used to specify interactions between spatial units (Anselin and Florax, 

1995; Whittle, 1954). The SAR model with autoregressive disturbances of order (1,1) (ARAR) 

includes a spatially lagged endogenous variable (Wy) and spatial autoregressive disturbances: y = 

ρWy + Xβ + ε, ε = λWε + u, u is independently and identically distributed with mean zero and 

covariance Ω, and W is a matrix defining relationships between spatial units (Anselin and Florax, 

1995). The reduced form of the ARAR model is y = A
-1

Xβ + A
-1

B
-1

u, where A = I – ρW and B = (I – 

λW) are lag autoregressive and error autocorrelation spatial filters respectively. The inverted matrices 

A
-1

 and B
-1

 are spatial multipliers which relay feedback/feed-forward effects of shocks between 

locations (Fingleton, 2008), distinguishing this class of models from other econometric models. 

When the weights are contiguity matrices or groups of observations bounded by some metric, local 

shocks are transmitted to all other locations, with the intensity of the shocks decaying over space. 

Because of the spatial multipliers, the marginal effects of the spatial process models in particular 
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with SAR and ARAR models are more complicated than other econometric models. LeSage and 

Pace (2009) suggested a variety of approaches whereby the marginal effects can be calculated. In 

this research, the influence of the lag multiplier is approximated as a geometric series. For example, 

the “total effect” of a covariate k is the global impact of that variable on a given spatial unit; A
-1

(In ◦ 

βk) =[In + ρW + ρ
2
W

2
 + ρ

3
W

3
 + ρ

4
W

4
+ ρ

5
W

5
 +… ρ

q
W

q
]βk, where the order q refers to the impact of its 

neighbors. In the limit,     tends to        , so the “total” marginal effect can be written as 

  
                 The “indirect effect” is the difference between the total and direct effect (βk), 

or the impact neighboring locations (on average) have on a given spatial unit given an incremental 

change in the covariate at that location;   
         

 

   
  . Provided a consistent covariance 

estimator, standard errors of the total and indirect effects can be estimated using the delta method 

(Greene, 2000).  

Smooth Transition Autoregressive Models 

Smooth Transition Autoregressive models are well-developed in the time series literature 

(Terasvirta and Anderson, 1992; Holt and Craig, 2006; Van Dijk and Franses, 2000) and biological 

sciences (Schabenberger and Pierce, 2002). This class of nonlinear regression models that exhibit 

endogenous switching across spatial units is less familiar to the spatial econometric literature, with 

some exceptions. A spatial analogue of the STAR model was presented by Gress (2004), Basile and 

Gress (2005) and Basile (2008). Recently, Dorfman et al. (2009) developed a model that is quite 

similar to the STAR approach but from a Bayesian perspective. Their approach also modeled 

hierarchical rather than contagious autoregressive processes. Pede, Florax, and Holt (2009) and Pede 

(2010) modified Lebreton’s (2005) spatial version of the time series STAR model by including a 

spatially lagged variable in the transition function. The approach applied here is parametric and 

extends their work.  
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Let G (v; γ, c) be an autocatalytic function (Schabenberger and Pierce, 2002), such as the 

logistic function; [1 + exp(–γ[v – c]/σv)]
-1

, with slope and location parameters γ and c, respectively, 

and a transition variable v. G (v; γ, c) be a potentially smooth, real-valued transition function 

bounded between zero and one. The parameters are approximately scale-neutral when they are 

normalized by the standard deviation of the transition variable (σv). The model with regime-

switching potential is, 

(2 Y= G ◦ Zβ1 + (1 – G) ◦ Zβ2 + u, 

where “◦” is the Hadamard product operator, Z is a matrix of covariates, and (β1, β2) are coefficients 

corresponding with regimes 1 and 2. Equation 2 can be rearranged accordingly (Madalla, 1983); 

(3) Y = Zβ2 + G ◦ Z(β2 – β1) + u,  Y = Zβ + G ◦ Zδ + u, 

with the interaction between the transition function and the exogenous variables (Z) permitting 

nonlinear parameter variation between spatial units. As γ increases, spatial units are sorted into more 

distinct groups. Intermediate values of γ identify spatial units along a continuum are “in transition”, 

and vary according to the transition variable, v (for example, Figure 1). The parameter c is a location 

parameter that determines the inflection point on the regime splitting curve according to the 

transition variable. For larger values of γ (typically >100), observations are separated into two 

distinct regimes with the coefficients of the interaction terms (δ) the difference from the reference 

group mean response to local determinants (the β1) and the alternative regime. Thus, rejection of the 

null hypothesis δ = 0 suggests a nonlinear relationship between local covariates and nursery sales. 

For large values of γ, the regression model of (2) behaves similarly to what one would expect if a set 

of firms were identified using a dummy variable (e.g. large or small firms), and then interacted with 

all other explanatory variables. There are no regimes when δ = 0 and the effects of the covariates are 

geographically invariant. Thus, with regimes, the location-specific marginal effects (ME) of the 

STAR model are    =     . 
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Like the Geographically Weighted Regression (GWR) and Spatial Adaptive Filters (SAF) 

models, estimates of the STAR model can assume different values at different locations. However, 

the advantage of the STAR model is that the incidental parameter problem posed by methods 

including GWR or SAF is circumvented and the usual robust covariance estimators can be applied to 

make inferential statements based on STAR results. Unlike the SAF or GWR models, nonlinear 

relationships across space are modeled using “autocatalytic” (or endogenous) switching functions 

under the STAR specification. To the extent that the STAR’s autocatalytic function sorts spatial 

units along a continuous hierarchy, the smooth transition model also lends itself to identifying 

endogenous break points across space resulting from (for example) differential trade costs; access 

advantage to urban economies (Fujita and Thisse, 2002). This empirical perspective provides insight 

and an approach towards understanding the role various IPM groups have on national nursery sales 

and how they are geographically dependent with each other. 

However, the smooth transition model is more complex when local spillovers between 

nursery firms and regime splitting potential are admitted. For example, combining the STAR with 

the ARAR spatial process model suggests the following reduced form specification; 

(4) ARAR-STAR: Δy = A
-1

Zβ + A
-1

G∙Zδ + A
-1

B
-1

u  Δy = ρWΔy + Zβ + G∙Zδ + B
-1

u. 

 

The hypotheses about spatial nonlinearity, lag, error, ARAR processes and their combinations (H1 – 

H8, listed below) were tested by calculating Wald statistics based on the robust covariance matrix 

This specification suggests the following hypotheses with respect to a baseline a-spatial that could be 

estimated using Ordinary Least Squares (OLS), and the usual spatial error (SEM) and spatial lag 

(SAR) process models: 

(5) H1: ρ = 0, λ = 0, δ = 0 (a-spatial model, suggesting estimation with OLS), 

(6) H2: ρ = 0, λ = 0, δ ≠ 0 (STAR), 

(7) H3: ρ = 0, λ ≠ 0, δ ≠ 0 (error process model with nonlinear parameters, SEM-STAR), 
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(8) H4: ρ ≠ 0, λ = 0, δ ≠ 0 (lag process model with nonlinear parameters, SAR-STAR), 

(9) H5: ρ ≠ 0, λ ≠ 0, δ ≠ 0 (lag-error process model with nonlinear parameters, ARAR-STAR), 

(10)  H6: ρ ≠ 0, λ ≠ 0, δ = 0 (lag-error process model, ARAR), 

(11)  H7: ρ ≠ 0, λ = 0, δ = 0 (spatial lag process model, SAR), 

(12)  H8: ρ = 0, λ ≠ 0, δ = 0 (spatial error process model, SEM). 

 

Estimation by General Method of Moments   

Pede (2010) and Pede et al. (2010) outline the estimation of the spatial STAR models using 

maximum likelihood (ML). To relax the distributional assumption of normality maintained under 

ML, a general method of moments (GMM) estimator suggested by Kelejian and Prucha (2010) and 

Arraiz et.al. (2010) is proposed for the STAR versions of the SAR, SEM, and ARAR models. 

Nonlinear least squares is used to estimate the basic a-spatial STAR model. Determining 

good starting values is critical for convergence. To calibrate the optimization procedure, a grid 

search over the shape and location parameters of each transition function with the objective of 

minimizing the concentrated sum of squared errors (SSE) is used, 

(13)                ∑    
 
                

2
.  

Conditional on the shape and location parameters, the closed-form solution for the parameters is 

           ̃  ̃    ̃  , where  ̃= [     . Note that concentrating the objective in (13) reduces the 

problem of finding reasonable starting values to a grid search (Holt and Craig, 2006). The expected 

value of each     > 0, so the outer grid domain ranged from 0 to 100 in increments of 0.5. The grid 

domain for each location parameter (c) was based on the 5
th

 percentile of the transition variable 

distribution. The shape and location parameters that minimized the SSE objective were used as 

starting values in a nonlinear optimization routine to estimate the STAR and its spatial process 

variants. 
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For estimations of spatial process models, Anselin (2006) surveyed a variety of instruments 

that could be used to generate predicted values of the endogenous, spatially lagged dependent 

variable;   ̂   ̃   where  ̃ is symmetric, positive definite, and idempotent projection matrix. 

Replacing Wy with its predicted value, the outcome variable is regressed on  ̃       ̂ , yielding 

the SAR-IV which is equal to the 2SLS estimator:      ̃  ̃    ̃  . Standard errors for the 

estimator are adjusted for the “first stage” regression such that             

    
   ̃  ̃   (assuming homoskedastic errors) with variance    

  
 

 
∑       

    
  

   , where Z 

includes the original data (Greene, 2000). A heteroskedastic-robust version could be estimated as,  

(14)               (
 

   
)   ̃  ̃    ̃   ̃  ̃  ̃   , 

with   the diagonal matrix of the squared residuals, and the sample size divided by the degrees of 

freedom a small sample correction factor. Examples of IV’s for Wy typically used in the applied 

literature include Q0 = [X, WX, W
2
X] (e.g., Kelejian and Prucha, 1999). An alternative set of 

instruments, which is adopted here, includes Lee’s (2003) “best” set of IV’s, such that       

        ̂0W)
-1

X ̂0 , with   ̂   ̂   obtained from a first round IV regression with instruments Q0. 

Modification of the SAR–IV to the SAR–STAR IV estimator is straightforward:  

1. Replace Wy by its predicted value in the design matrix Z (as above).  

2. Find good starting values of the shape ( ) and location (c) parameters of transition function, 

G(     ) using a grid search.  

3. Given reasonable starting values, use a constrained nonlinear optimization routine minimize 

the objective: 

          (      ̃ 
  ̃     ̃ 

 ) , 

where    =[X,     Wy], and  ̃ =[ X,      ̂].  
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4. Estimate standard errors using a heteroskedastic-robust covariance matrix (e.g., equation 14).  

Similar steps may be applied to estimate the ARAR–STAR with the instruments defined above 

following Kelejian and Prucha (2010) (K&P) general moments procedure, with some minor 

modifications. For instance, an iterative procedure is applied to estimate a heteroskedastic–robust 

version of the error autoregressive parameter (λ). The algorithm used in this application to estimate 

that ARAR-STAR version follows: 

1. Estimate the STAR model with double transitions, yielding G 

2. Given G, construct a residual vector with the IV estimator based on ZG and GZ . 

3. Find the error autoregressive parameter following K&P’s procedure for estimating the 

ARAR process model with autoregressive and heteroskedastic disturbances. 

4. Detrend the outcome and design matrix variables with the Cochran–Orcutt transformation as 

y
*
 = y – λWy and *

G G GZ Z WZ  .  

5. Update the STAR parameters (   ) given (y
*
, *

GZ ).  

6. Return to step 1, and iterate until convergence (e.g., 0.000001, in this application). 

Standard errors of the ARAR–STAR parameters are estimated using the asymptotic covariance 

matrix suggested by K&P (p. 60). 

The step-wise iterative procedure used for the ARAR–STAR may be extended to cases 

where only error autocorrelation and spatial nonlinearities are considered, as in the case of the spatial 

error autoregressive model (SEM) with endogenous regimes (SEM–STAR). In this case, the IV 

matrix is an identity and Wy is omitted from the design matrix (Z). Standard errors may be estimated 

using an appropriate heteroskedastic–robust covariance matrix as above. 
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Results 

Model Specification Results 

In what follows, we discuss the econometric results on (1) model specification, (2) the spatial 

patterns of the transition function G, and (3) the total marginal effects of the predictors. Discussion 

centers on the covariates that were significantly correlated with nursery industry annual sales at the 

5% significance level. 

Using the Wald test, the null hypothesis of no spatial error correlation was rejected at 5% 

level (Table 3, Wald statistics=5.694). However, the null hypothesis that nursery industry annual 

sales in neighboring firms was uncorrelated with own-firm annual sales could not be rejected at 5% 

level (Wald statistics=1.536). Therefore, the model was estimated as a SEM–STAR model. The 

squared correlation coefficient was r
2
 = 0.77, suggesting that about 77% of the variation in the data 

was explained by the model (Table 4). The transition function parameter was γ =3.2 (shape 

parameter) and c=14.4% (the location parameter, in percentage). The relationship between predictors 

was nonlinear, suggesting sorting of firms into different regions.  

STAR-SEM Model Results 

On average, the effects of the covariates on nursery annual sales are gradually different 

moving past the 14.4% marker, which is the threshold of percent of total sales spent on advertising 

in 2008. The firms in the top percentile of the transition function G (i.e., firms with G = 1) are 

generally associated with firms spent more on advertising. Firms in the bottom part of the transition 

function (e.g., firms with G = 0) are associated with firms which spent less on advertising. There are 

a few firms appeared to be “in transition” with respect to nursery annual sales. Majority of the firms 

spend less than 14.4% of their total sales revenue on advertising. The spatial distribution of the 

transition “probabilities” generated by the G function was mapped (Figure 2).  



 

13 

 

In Table 4, the column titled “Regime 1” represents results for firms which spent less on 

advertising; while the coefficients in the column titled “Regime 2” are associated with firms which 

spent more on advertising. Discussion of the important covariates and associated heterogeneity 

follows two criterions. First, the main effect coefficients (the β’s) had to be significant at the 5% 

level. Second, the coefficient associated with the transition function (the δ’s) had to be significantly 

different from the reference coefficient at the 5% level. Significance of the δ’s suggests that the 

relationship between a covariate and the total annual sales are heterogeneous across the space. 

Keeping the rest of the explanatory variables constant, the importance of firm age was clearly 

separated into two regimes. For firms with less than 14.4% expenditures on advertising, a one year 

increase in firm age would multiply the nursery annual sales by exp (0.008)=1.008 times. While for 

firms with more than 14.4% expenditures on advertising, the relationship was a bit stronger, with the 

net marginal effect of firm age on nursery annual sales exp (0.008+0.038)=1.047 times. The number 

of trade shows firms attended also exhibited heterogeneity with respect to the nursery annual sales. 

For firms with low advertising expenditures, a 1%increase in trade show attended corresponded with 

a exp (-0.013)=0.987 times increase. As the firms advertising expenditures exceed 14.4% (that is, 

when G (AD; γ, c) = 1), firms moved to the upper tier of the regime, and the net marginal effect of 

tradeshow on annual sales became exp (-0.013+0.205)=1.212 times.  

For firms with low expenditures on advertising, nursery industry annual sales in firms for 

which adopted IPM group of Mechanical Control (MC) was increased by exp (-0.858)=0.424 times , 

compared to not adopting MC. The relationship was nonlinear, with the association becoming much 

stronger beyond the 14.4% threshold. For firms with high expenditures on advertising, adopting the 

IPM group of Mechanical Control (MC) will increase the total sales by exp (-0.858+3.064)=9.079 

times. It is interesting to note that the association between nursery annual sales and the adoption of  
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IPM group of Biological Control (BC) was significant for firms with low expenditures on 

advertising (Adoption of BC was correlated with a exp (-0.214)=0.807 times increase in total sales), 

but not for firms with high expenditures on advertising. Similar finding was found for predictors of 

Monitoring (M), Fertilization Rate (FR), and Preventive Practices (PP). 

Conclusions 

This exploratory analysis examined the relationship between IPM groups and national 

nursery industry sales. Nursery annual sales in 2008 were regressed on seven major Integrated Pest 

Management (IPM) groups controlling for selected production, management, and marketing 

practices. The hypothesis that the relationship between IPM groups on nursery sales was 

geographically heterogeneous was tested using a relatively new spatial econometric approach, a 

Smooth Transition Autoregressive (STAR) model. Evidence suggests the relationship between many 

of the predictors and the total sales was nonlinear across the region, and the association between 

certain groups and the nursery sales would be characterized into two distinct regimes. Estimation of 

the STAR model was extended to a nonlinear general method of moments approach. The procedure 

is flexible, and suggests a relatively straightforward approach towards model specification in terms 

of a “general-to-specific” search strategy.   

Future research comparing estimation approaches applicable to the STAR process models 

will be useful to test findings in this study. While the advantages and disadvantages of ML and 

GMM estimation are well-know, the performance of the STAR model and its spatial process variants 

under different experimental parameters needs more investigation. Secondly, the performance of 

diagnostics used to specify STAR-class models should be investigated in a greater detail. In this 

application, a “general-to-specific” approach was taken to specify the regression model. How this 

specification search compares to a “specific-to-general” approach could provide information 
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regarding which types of tests should be used under different assumptions; e.g., Lagrange Multiplier 

tests, assuming a normal distribution compared to Wald tests in which the distributional assumptions 

are relaxed. 
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Table 1:  List of IPM Practices and Group Coding 

IMP Practice Used 
Percent of  

Respondents 

Total  

Count 

IPM 

Group 

A. Remove infested plants 74.1% 2256 MC 

D. Use cultivation, hand weeding 66.0% 2009 MC 

N. Spot treatment with pesticides 62.3% 1897 PC 

B. Alternate pesticides to avoid chemical resistance 51.5% 1567 PC 

L. Inspect incoming stock 49.5% 1508 M 

C. Elevate or space plants for air circulation 48.2% 1466 MC 

O. Ventilate greenhouses 34.4% 1046 MC 

J. Use mulches to suppress weeds 33.4% 1018 O 

M. Manage irrigation to reduce pests 31.5% 960 WR 

R. Adjust fertilization rates 31.0% 945 FR 

I. Adjust pesticide application to protect beneficial insects 30.7% 934 PC 

V. Use pest resistant varieties 29.9% 910 PP 

E. Disinfect benches/ground cover 28.9% 880 O 
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K. Beneficial insect identification 24.1% 734 BC 

H. Monitor pest population with tarp/sticky boards 20.8% 634 M 

Q. Keep pest activity records 17.7% 540 PC 

T. Use bio pesticides / lower toxicity 15.5% 473 PC 

P. Use of beneficial insects 14.7% 447 BC 

G. Soil solarization/sterilization 8.7% 265 O 

S. Use screening/barriers to exclude pests 8.3% 253 MC 

U. Treat retention pond water 3.8% 117 WR 

F. Use sanitized water foot baths 2.2% 68 WR 

 

Table 2: Variable Description and Summary Statistics 

Variable Description Mean Std. Dev. 

lnsales log of annual sales in 2008 11.93 2.175 

age Firm age in terms of 2008 23.54 21.218 

class Firm size index based on annual sales (1-14) 2.366 2.4107 

comscore Computer technology usage  28.91 20.335 

wholesale Percent of 2008 sales to wholesale 49.94 42.738 

tradeshow Number of trade shows attended in 2008 1.382 4.058 

AD Percent of total sales spent on advertising in 2008 5.896 10.739 

internet Percent of advertising budget spent on internet websites 15.52 28.711 

printed Percent of advertising budget spent on printed materials 35.91 39.662 

mass Percent of advertising budget spent on mass media 16.4 29.302 

MC IPM group of Mechanical Control 0.941 0.236 

PC IPM group of Pesticide Control 0.862 0.346 

WR IPM group of Water Rate  0.399 0.49 

M IPM group of Monitoring 0.666 0.472 

BC IPM group of Biological Control 0.304 0.46 

FR IPM group of Fertilization Rate 0.366 0.482 

PP IPM group of Preventive Practices 0.382 0.486 

 

Table 3: STAR-SEM Model Specification  

 Hypotheses Wald Statistic P-value 

  Spatial lag AR, H0:       1.536 0.215 

  Spatial error AR, H0:      5.694 0.017 

  Joint lag/error, H0:         6.569 0.038 

  Spatial nonlinearity, H0:      86.906 <0.0001 

  Joint nonlinearity/lag/error,  H0:            92.819 <0.0001 
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Table 4: STAR-SEM Model Result 

 Variable Description 
Regime 1   Regime 2 

Coeff. P-Value 

 

Coeff. P-Value 

   Intercept 10.026 0.000 

 

-4.803 0.000 

   Firm age 0.008 0.000 

 

0.038 0.009 

   Firm size 0.618 0.000 

 

0.152 0.137 

   Computer tech. usage  0.007 0.003 

 

-0.013 0.406 
 

Marketing Practices      

   Wholesale 0.006 0.000 

 

-0.003 0.588 

   Tradeshow -0.013 0.005 

 

0.205 0.011 

   Internet 0.000 0.827 

 

-0.011 0.190 

   Printed media 0.005 0.000 

 

-0.001 0.846 

   Mass media 0.006 0.000 

 

-0.006 0.461 
 

IPM Practices      

   Mechanical Control (MC) -0.858 0.000 

 

3.064 0.000 

   Pesticide Control (PC) 0.190 0.205 

 

1.506 0.040 

   Water Rate (WR) 0.097 0.285 

 

-0.409 0.293 

   Monitoring (M) 0.426 0.000 

 

-0.659 0.145 

   Biological Control (BC) -0.214 0.016 

 

0.522 0.303 

   Fertilization Rate (FR) 0.195 0.040 

 

-0.580 0.265 

   Preventive Practices (PP) -0.190 0.043 

 

0.017 0.974 
 

Spatial Parameters and Model Fit 

     0.149 0.021 

        3.155 0.000 

      c 14.411 0.000 

     Sq. Corr. 0.770         
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Figure 1: Example of the transition function and different levels of the smoothing parameter. 

Comment: Note that two distinct 

regimes emerge when γ = 100, 

whereas there are no regimes 

identified when γ = 0. The 

parameter c functions as a location 

parameter; the inflection of the 

transition function is centered on c. 

 

 

 

 

 

 

 

Figure 2:  Transition function of the regime splitting variable 
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