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Staff Paper P90-11 May 1990

Incorporating Field Time Risk

Into a Stochastic Programming Model of Farm Production

Jeffrey Apland

Background

Agricultural economists are becoming increasingly concerned with the

implications of various dynamic attributes which characterize agricultural

production problems. In the dynamic setting within which farmers allocate

their scarce resources, relatively little attention has been given to vari-

ability of field time as a source of risk. Field time may be defined as the

amount of time over a given period during which conditions are satisfactory

for completing field operations, such as tillage, planting and harvesting.

The purpose of this paper is to discuss the incorporation of field time risk

into a discrete stochastic sequential programming (DSSP) model of a midwestern

corn and soybean farm. The model is designed to investigate the significance

of field time risk for optimal resource allocation on such farms. Stated more

succinctly, the question to be answered is "Does field time risk matter?"

A few examples appear in the literature of the treatment of field time

as a stochastic variable in farm models. Boisvert and Jensen used chance

constrained programming for a farm planning problem in which field time was

stochastic. Danok, McCarl and White used a combination of mathematical

programming and stochastic dominance to analyze optimal machinery selection.

They used cumulative probability distributions of field time in a mixed

integer programming model to find optimal machinery complements with field

days set at levels associated with various probabilities. The authors point

out that their analysis assumes perfect correlation of field time levels

across all time periods -- an issue critical to the analysis of field time as
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a source of risk. Pfeiffer and Peterson also used cumulative probability

distributions of field time in an analysis of machinery selection. They found

least cost machine sets for farms of given size and given probabilities of

"timely performance of field operations."

The models used in Apland, McCarl and Baker and in Kaiser required the

definition of discrete states of nature to represent field time variability in

stochastic programming models. Apland, McCarl and Baker used a discrete sto-

chastic programming model to analyze the variability of crop residue supply.

Optimal crop residue harvest levels were derived under conditions of stochas-

tic field time during harvest. Kaiser's model was used to analyze the risk

impacts on commodity programs and was structured similarly to the model used

by Apland, McCarl and Baker. In this paper, the stochastic programming

approach to capturing field time risk is extended for a wider range of farm

production problems.

The Use of Field Days in Flow Resource Constraints

For purposes of model building, it is useful to categorize inputs as

stock or flow resources. The use and availability of stock resources may be

accurately measured as physical quantities (for example, pounds of fertilizer

or gallons of diesel fuel). Flow resources are those which are best measured

as flows of services over time. For a farm firm, labor and machinery must

often be treated as flow resources because the timing of field operations has

important effects on the technical and economic efficiency of the firm. To

capture these effects, whole farm models are often constructed with many

intra-year time periods for which production activities and flow resource

constraints are defined. The importance of disaggregating time in the def-

inition of production activities and resource constraints was recognized by
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Heady and Candler, who suggested a criteriON for selecting the appropriate

definition of time periods [p. 208]. Much later, the importance of disaggre-

gating time constraints in order to adequately represent crop mix decisions

was demonstrated by Baker and McCarl.

The use of field time in a linear programming model of farm production

may be illustrated by considering a flow resource constraint in a particular

period. Suppose that the following describes a tractor time constraint in a

particular period, for example, the first week in May:

E ajXij < b i
jEJ

Subscript i identifies the time period and J is the set of all production

activities in period i. Coefficient aj is the per acre tractor time require-

ment for production activity j. Xij is production activity j, in period i,

measured in acres and bi is the amount of tractor time available in period i.

The lefthand side of the constraint is total use of tractor time by produc-

tion activities in period i. The righthand side, hours available, may be

measured as follows:

bi - Hours/Day x Number of Tractors x Number of Field Days

Many sources of risk may be identified for this constraint. Parameter aj may

vary as operating conditions change. In the righthand side of the constraint,

the number of tractors (or, more generally, the number of machines) could vary

as a result of breakdowns.1 However, because of the pervasive impact of

weather, field days would appear to be the major source of risk in such

1 In a long run context, number of machines is a decision variable -- an

investment activity. Similarly, hours per day could be interpreted as a short

run decision variable, suggesting the need for a work/leisure consideration.



4

constraints. While the model to be presented here will accommodate

variability in any or all of the components discussed, variability of field

days will be the source analyzed.

A Simple Example of a Whole Farm Linear Programming Model

The underlying structure of the linear programming models used in this

study is a familiar one to many agricultural production economists. It is

similar to that of the Purdue farm planning model (Model B) [McCarl, et al.],

REPFARM [McCarl], and others [Debertin, et al.; and Schurle and Forster].

Before discussing the empirical models used here, a simple whole farm linear

program (LP) will be presented to illustrate the underlying model structure.

Table 1 shows the LP tableau for the example. Although the model is

simplified and in some ways incomplete, it will serve well for discussion

purposes. Activities in the model include net revenue, tillage, and corn and

soybean production. The net revenue activities represent total revenue minus

total variable cost for each of three price and yield states of nature. 2

Production activities and flow resource constraints are defined for eight time

periods. Plowing may occur in the fall (periods 5 through 8) or in the spring

(periods 1 through 4). Disking takes place in each of the spring periods.

The production activities for corn and soybeans include planting and harvest

operations. A production activity is included for each combination of plant-

ing and harvest period.

The objective function is expected net revenue, which is to be maximized.

Objective function coefficients on the net revenue activities are the proba-

bilities of the associated price/yield state. The net revenue constraints

2 Readers who are familiar with risk programming will recognize that
price and yield risk as captured here could easily be captured in a MOTAD or
EV framework.
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define the corresponding net revenue activities. The net revenue constraint

coefficients on the production activities are minus the corresponding 
per acre

net revenues. Across the net revenue rows for a particular activity, the

coefficients reflect the prevailing price/yield state. Across the production

activities in a particular row, the unit net revenues reflect the effects of

planting and harvest dates on yields and variable costs. The land constraint

limits the sum of the production activities to no more than the total 
acreage

available.

The eight labor constraints, one for each period in this example, will

illustrate the structure of flow resource constraints in general. The

coefficients on the tillage and production activities are the per acre labor

requirements and are placed in the constraint for the period in which the

corresponding operation takes place. The righthand sides are hours of labor

available in each period -- a function of field days.

The production activities shown here are assumed to be for corn and

soybeans in a two year rotation. The rotation constraints require that

acreage of rotated corn not exceed soybean acreage, and visa versa. The

inclusion of continuous corn and continuous soybeans would involve adding

additional sets of production activities without the rotation constraints.

The unit net revenues for continuous soybeans and corn would reflect the

lower yields and/or higher variable costs of the continuous crops relative 
to

the rotated crops. Harvest labor and machine time requirements may also be

reduced because of lower yields.

The last three sets of constraints preserve the essential sequencing of

field operations. The disk/plant constraints insure that for each period in

which both disking and planting may take place, the cumulative acreage disked

through that period must be greater than or equal to the cumulative acreage
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planted.3 The last two sets of constraints insure the proper sequencing of

the harvest and fall plowing operations, and plowing and disking operations,

respectively. Note that the primary tillage operation, plowing, may take

place in the fall or spring prior to disking and planting. This "wrap around"

feature of the model allows the inter-year relationship implied by the cycle

of field operations to be captured endogenously without having (explicitly) a

multi-year model. Because of this structure, linear programs of this type may

be thought of as intermediate run equilibrium models. They are not long run

in -that some resources are fixed (in this case labor and land) and they are

not short run because they are designed to provide an optimal solution to the

crop planning problem which may be repeated year after year.

The Empirical Model With Deterministic Field Days

What will be referred to as the deterministic model in the remainder of

this paper is a more elaborate version of the example LP. This model treats

field days deterministically, but does allow for price and yield variability

as in the example. Activity sets include net revenue, fall and spring disking

and plowing (with a moldboard plow system), planting, cultivation, and harvest

for corn and soybeans. Corn and soybeans may be grown as continuous crops or

in rotation. The activities and labor and machinery constraints are defined

over 14 time periods. The dates of the periods and the calender of field

operations are given in Table 2.

The objective function of the model is expected net revenue which is

maximized. Constraints include those to define net revenue for each price and

yield state of nature. There is a constraint on total crop acreage. Flow

3 If disking and planting did not occur in the same period, sequencing

constraints would not be necessary. Only a constraint requiring the total

planted acreage to be tilled would be needed.



8

Table 2: Calender of Field Operations.

-----. Corn ------ --- Soybeans ----
---- Period ---- Disk la Plow Disk 2b Plant Cult Harvest Plant Harvest

Spring/Summer:

1 06-Apr 25-Apr X X
2 26-Apr 02-May X X X X
3 03-May 09-May X X X X X
4 10-May 16-May X X X X X X
5 17-May 23-May X X X X X X
6 24-May 30-May X X X X
7 31-May 06-Jun X X X
8 07-Jun 26-Jun X

Fall:

1 15-Sep 24-Sep X X
2 25-Sep 08-Oct X X
3 09-Oct 22-Oct X X X X
4 23-Oct 05-Nov X X X
5 06-Nov 19-Nov X X X
6 20-Nov 03-Dec X X

a After corn only.

b Concurrent with planting.
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resource constraints are defined for labor in the 14 periods, and for planter,

harvester and tractor time in periods during which the machines may be used.

Other constraint sets include those for harvest/tillage sequencing, tillage

operation sequencing, and tillage/plant sequencing, and constraints to

properly link planting, cultivation and harvest activities. Rotation

constraints require that rotated corn acreage not exceed rotated soybean

acreage, and visa versa.

The same activity and constraint sets used in the deterministic LP model

are used in the stochastic programming formulation with modifications to allow

for the incorporation of field time risk. The DSSP model builds on the "wrap

around" structure of the deterministic model implied by the operation

sequencing and crop rotation constraints. The specific structure of the

stochastic programming model is presented in the next section.

The Empirical Model With Stochastic Field Days

The activities and constraints in the DSSP model are the same as those in

the deterministic model with certain groups of activities and constraints

duplicated for several discrete field time states of nature. In moving from

the multi-period, deterministic LP to the stochastic programming model with

sequential stages in the decision process, the idea of defining the 14

production periods as decision stages is appealing. However, because of the

profound effect of the number of decision stages on the overall model size,

such an approach would be impractical [Rae]. 4 Instead, a more modest three

4 The effect of the number of decision stages on the size of the
programming matrix is much less severe than Rae's discussion of the general
stochastic programming model would suggest. This is because not all
production activities occur in all production periods. Even so, the number of
stages must be limited.
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decision stages were used. Figure 1 illustrates the decision stages and

states of nature. For purposes of clarity, the decision tree in Figure 1

shows three states of nature in each stage -- the empirical model included

four states in each of the first two stages and eight in stage three.

Complete knowledge of the past and present is the assumed information

structure [Rae]. Complete knowledge of the past and present implies here that

when spring and summer production activities are selected, the stage one field

time state of nature is known. However, only probabilistic information is

available about future (stage two and stage three) states.5 Stage one covers

spring and summer production periods during which spring tillage, planting and

cultivation take place. Stage two covers fall production periods and harvest

and fall tillage activities. The calender of operations is the same as that

for the deterministic model (see Table 2). During stages one and two,

variability in field days per period is the source of risk. In stage three,

grain yield and price states are realized and crop sales decisions are made.

Spring and summer flow resource constraints appear in the DSSP model for

each stage one state with the righthand side values reflecting the prevailing

field day state of nature. Because an information structure of complete

knowledge of the past and present is assumed, spring tillage, planting and

cultivation activity sets are replicated for each stage one state.

Constraints sets other than those for flow resources, such as land, rotation

and sequencing constraints, must also be replicated for each state. Fall

activities and constraints are similarly replicated for each joint spring and

fall field day state of nature. Corn and soybean sales are incorporated in

net revenue constraints defined for each joint stage one field day, stage two

5 Complete knowledge of the past and present was selected rather than
complete knowledge of the past so as to understate rather than over state the
impact of field time risk.
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Figure 1: Tree Diagram of the Stochastic Field Time Model
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Planting Fall Tillage
Cultivation
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field day and stage three price/yield state.

The stochastic field time model borrows the "wrap around" structure of

the deterministic model which is implied by the sequencing and rotation

constraints. But because the levels of fall tillage activities vary by state,

it is necessary to establish which quantity of fall-tilled acreage will be

made available in the spring. To facilitate this inter-year relationship, the

expected value of fall-tilled acreage for each crop was carried over into

spring. This was accomplished by setting the sequencing constraint

coefficients on fall tillage activities equal to minus the probability of the

corresponding joint stage one and stage two states of nature. The implied

assumption is that cropping decisions are following an average year or, stated

differently, that the implicit demand for fall tilled acreage is that for an

average year.6 A similar approach was taken for the rotation constraints.

Because corn has a longer growing season than soybeans, shifts from

soybeans to corn tend to imply increased need for field time. Or, shifts from

corn to soybeans will tend to ease field time restrictions. To allow for crop

mix adjustments to be made as field time availability may suggest, the crop

rotation constraints were structured so as to limit the acreage of rotated

corn in each state to no more than the expected value of rotated soybean

acreage over all states and visa versa.

The Empirical Data

Per acre variable costs, field rates and average per acre yields were

taken from Kaiser and from Apland et al. In both the deterministic model and

the stochastic model, yields for the price/yield states were defined based on

actual farm records for eight years: 1975 through 1983. Price states were

6 Again, this approach will understate the impacts of field time risk.
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defined by applying the 1975 through 1983 deviations from a price trend line

to published farm planning prices [Center for Farm Financial Management].

Four field time states of nature were defined for decision stages one and two.

The righthand sides of the labor and machinery constraints were calculated

using the field days observations shown in Table 3 as states. 7

For the deterministic model, field days were set to the four year mean

values. The actual observations were used as field days states of nature in

the stochastic model. By defining states in this way, the correlations

between field days in each period of a particular stage are implicitly

captured. The observations were treated as a random sample so the probability

of each was 1/4. Fall field time states were assumed to be independent of

spring/summer states so the probabilities of each joint stage one and stage

two states was set to l/(4x4) or 0.0625. Independence was also assumed

between field time and price/yield states, so the implied probability of each

joint event was l/(4x4x8) or 0.0078125.8 The deterministic model had 132 rows

and 130 columns -- the stochastic model had 1305 rows and 1501 columns.

In the next section, solutions to the deterministic and stochastic models

are compared. Because machine capacity is a central issue in establishing the

significance of field time risk, sensitivity analyses with respect to farm

size were performed.

7 These data are derived from daily observations taken at the Agricul-
tural Experiment Station in Lamberton, Minnesota.

8 The DSSP model does not require the simplifying assumption of
independence. However, sufficient data was not available to accurately
account for all covariability. The approach used here does account for
covariability of stochastic parameters within a particular stage -- field time
.across periods, and prices and yields across crops.
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Table 3: Field Days Data.a

Field Days by Observation Pet of Coef of

----- Period ----- Days 1980 1981 1982 1983 Mean Total Variation

1 06-Apr 25-Apr 20 5 8 0 0 3.25 16.3% 105.2%

2 26-Apr 02-May 7 7 3 6 1 4.25 60.7% 56.1%

3 03-May 09-May 7 7 3 3 1 3.50 50.0% 62.3%

4 10-May 16-May 7 3 5 0 6 3.50 50.0% 65.5%

5 17-May 23-May 7 4 5 1 4 3.50 50.0% 42.9%

6 24-May 30-May 7 3 5 2 5 3.75 53.6% 34.6%

7 31-May 06-Jun 7 0 4 4 3 2.75 39.3% 59.6%

8 07-Jun 26-Jun 20 13 10 8 9 10.00 50.0% 18.7%

Stage 1 Totals ---- 82 42 43 24 29 34.50 42.1% 23.8%

1 15-Sep 24-Sep 10 6 9 5 4 6.00 60.0% 31.2%

2 25-Sep 08-Oct 14 11 6 4 10 7.75 55.4% 36.9%

3 09-Oct 22-Oct 14 9 5 4 5 5.75 41.1% 33.4%

4 23-Oct 05-Nov 14 11 14 11 13 12.25 87.5% 10.6%

5 06-Nov 19-Nov 14 12 13 4 7 9.00 64.3% 40.8%

6 20-Nov 03-Dec 14 10 0 0 0 2.50 17.9% 173.2%

Stage 2 Totals ---- 80 59 47 28 39 43.25 54.1% 26.2%

Totals, Both Stages 162 101 90 52 68 77.75 48.0% 24.5%

a Unpublished field days data form the Southwestern Experiment Station,

Lamberton Minnesota [Kaiser].
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Results

Each model was solved with total crop production constrained to no more

than 600 acres. Then maximum acreage was increased in increments of 100 acres

until slack occurred in the land constraint(s). In the case of deterministic

field time, crop production peaked at 1134 acres when constrained to no more

than 1200. When field time was stochastic, slack occurred in the land

constraint under two states of nature when maximum acreage was set at 1100--

average acres planted over all field day states was 1077. Table 4 summarizes

the optimal solutions to the deterministic and stochastic models for maximum

acreages of 600 to 1200. For each of the models, the table shows the optimal

objective function value (expected net revenue), the variance of net revenue

and acres produced. In the case of the stochastic field time model, acres

produced is the mean over stage one states of nature.9 Figure 2 shows the

optimal values of the objective functions, expected net revenues, as functions

of acres produced and Figure 3 shows the variances of net revenue as functions

of acres produced.

In the case of deterministic field time, net revenue increases steadily

from 104.6 thousand at 600 acres to 181.6 thousand at 1134 acres. Variance of

net revenue increases from 632.4 thousand to 2,085.7 thousand.10 Expected net

revenue in the stochastic case increases from 102.9 thousand with a variance

of 625.6 thousand at 600 acres to 154.1 thousand with a variance of 2581.6

thousand at 1077 acres. Expected net revenue and variance of net revenue for

the deterministic and stochastic models are quite similar at farm sizes of

9 Only when acreage was constrained to no more than 1100 did acres
produced in any state of nature fall below the total available.

10 Recall that the objective function is expected net revenue. Thus, the
variance of net revenue is an attribute of the solution but does not affect
the optimal solution.
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Table 4: Summary of Optimal Solutions by Acreage.

---------------- Maximum Crop Acreage ----------------

600 700 800 900 1000 1100 1200

Deterministic Model:

Expected Net Revenue 104.6 120.6 136.6 151.9 166.8 179.7 181.6

Variance of Net Revenue 632.4 850.7 1100.9 1375.6 1676.1 1983.4 2085.7

Acres Produced 600 700 800 900 1000 1100 1134

Stochastic Model:

Expected Net Revenue 102.9 119.1 133.6 142.0 149.5 154.1

Variance of Net Revenue 625.6 847.0 1086.9 1447.1 2057.2 2581.6

Mean Acres Produceda 600 700 800 900 1000 1077

a Mean of acres produced over all states of nature.

Table 5: Marginal Value of Land.

---------------- Maximum Crop Acreage ----------------

600 700 800 900 1000 1100 1200

Deterministic Model 160.33 160.33 157.97 150.6 146.94 91.2 0.0

Stochastic Model: State 1 41.5 41.1 26.5 27.5 27.5 19.7

State 2 43.0 38.3 25.1 22.5 18.4 17.9

State 3 41.5 41.1 16.4 10.5 2.3 0.0

State 4 36.3 41.1 22.8 17.2 15.1 0.0

Sum Over All States 162.3 161.6 90.8 77.7 63.4 37.6
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Figure 2: Expected Net Revenue as a Function of Acreage
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600, 700 and 800 acres. Above 800 acres, as acreage is increases, expected

net revenue increases relatively slowly in the stochastic model while variance

increases relatively quickly. The differences in expected net revenue and

variance between the deterministic and stochastic models is attributable to

differences in the timing of production activities.

As acreage is increased in the stochastic model, field operations become

more scattered across production periods as dictated by the availability of

field time. The timing of planting and harvest operations influence yields

and grain moisture levels and thus per acre net revenues. The variability in

the timing of these activities may be attributed directly to changes in the

distribution of available field time over planting and harvest periods. Also,

variability in the scheduling of tillage activities influences the timing of

planting and harvest due to the essential sequencing of operations. For the

700 acre farm, the average planting date for the deterministic model was May

4th -- in the stochastic model the average was May 6th. For the deterministic

model, planting took place in three of the six week-long planting periods.

Four of the periods were used in the stochastic model. The differences in the

solutions to the two models were slightly more pronounced as the farm size was

increased. At 1100 acres, the average planting date was May 9th and May 12th

for the deterministic and stochastic cases, respectively. Four of the six

planting periods were used with field time fixed, while all six planting

periods were used under various field time states in the stochastic model.

A notable difference in the two sets of solutions has to do with the

marginal value of land. The optimal values of the land constraint dual

variables are reported in Table 5 and are shown graphically in Figure 4.

Recall that in the stochastic model, a land constraint is imposed on

production under each of the four stage one states of nature. Table 5 also
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Figure 4: The Dual Value of Land as a Function of Acreage

170

160

150

140

130

120

110

100

o 90 - - Deterministic

3 ^ ^ ~~~- _ \

80
70

4) 60 ||

403 40 - Stochastic

30

20 -

10

0.6 0.8 1 1.2
(Thousands)

Maximum Acres Planted



20

gives the sum of the land constraint duals for the stochastic model. This sum

may be interpreted as the overall marginal value of land and is therefore

comparable to the dual of the land constraint in the deterministic model. In

both the deterministic and stochastic models, the marginal value of land

begins at just over $160 at 600 acres and remains so at 700 acres. The

marginal value of land remains fairly constant in the deterministic case up to

1000 acres, when the dual falls to $147. But when acreage is increased to

1100 and 1200, the marginal value of land falls to $91 and $0, respectively.

In contrast, the marginal value of land falls steadily in the stochastic model

from $262 at 600 acres to $0 at 1200 acres. The difference in the marginal

value functions for land is illustrated clearly in Figure 4 which shown the

dual values as functions of acres.11 These results imply that when field time

variability is ignored, optimal land use for a given labor and machine

endowment tends to be rather constant. In this example, at rents between

about $150 and $75 per acre, optimal land use would be between 1000 and 1100

acres. However when field time variability is considered, optimal land use

appears to be much more responsive to price.

Summary and Conclusions

Many modeling issues pertaining to field time risk remain. One involves

the appropriate definition of field time states of nature. Annual

observations on field days were used as states in this analysis. This

approach is appealing in its simplicity and allows the covariability of field

days across periods in a particular stage to be captured. However, it may be

11 The relationship between the marginal value of land and acres

available in linear programming models is, of course, a step function. Figure

4 simply characterizes the relationship using representative points on the

underlying step functions.
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useful to base the definition of states on estimates of field day probability

distributions, also. Direct observations of field time are often kept on

experiment station farms. However, stochastic simulation might be effectively

used to develop field days estimates which are current, location-specific and

adaptable to a variety of crop production technologies.

The results here suggest that field time variability has important

implications for the economic decisions of farm managers, because of its

influence on both average income and income variability. The results are of

particular concern when analyses focus on the fixed resource decisions of

farm firms, such as machinery and land investment, and labor use. The

significance of timeliness in crop production operations is central to the

findings here and is central to the choice of optimal crop mixes. As such, it

may be important to consider field time risk in many studies which focus on

selection of an optimal product combination. While the discrete stochastic

programming model developed for this study is large and complex relative to

its deterministic counterpart, the use of the "wrap-around" structure found in

many annual, whole-farm planning models makes the inclusion of field time risk

relatively manageable. Further research could examine the categories of

problems for which modeling of field time risk is critical. Also, models such

as the one developed in this study could be used to evaluate alternative ways

of accounting for field time risk which are computationally simpler.
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