

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Production Distortions and Implications for U.S. Row Crop Acreage and Price

Nick Piggott
Dept of Agricultural \& Resource Economics
North Carolina State University

Email: nick piggott@ncsu.edu

Presentation to:
IATRC: Subsidized Crop and Revenue Insurance: Implications for Agriculture in the WTO

December 11th, 2012
San Diego, California

Brief Outline

- My remarks will focus on the impacts on acreage, price levels, and price volatility of two distinct agricultural policies on the two major U.S. row crops corn and soybeans:

1. Renewable Fuel Standards Program

- RFS1 created under the Energy Policy Act (EPAct) of 2005 required 7.5 billion gallons of renewable- fuel to be blended into gasoline by 2012.
- RFS2 created under Energy Independence and Security Act (EISA) of 2007 increased the volume of renewable fuel to be blended into gasoline from 9 billion gallons in 2008 to 36 billion gallons by 2022

2. U.S. Crop Insurance Program

- Subsidies are paid as \% of premium so in rising-price markets means bigger cost to taxpayers. The largest plan is revenue protection that insures expected revenues and, with recent high prices, significant increase in cost to taxpayers
- In 2011, $\$ 114$ billion in liability, $\$ 12$ billion in premium, with $\$ 7.4$ billion in premium subsidies.
- New Farmbill likely to make crop insurance the major policy tool

US Major Row Crop Acreage 1975-2012 (million acres)

US Major Row Crop Acreage 1975-2012

 (million acres)

EISA of 2007: increased the volume of renewable fuel required to be blended into
transportation fuel from 9
billion gallons in 2008 to 36 billion gallons by 2022

Net Cash Income in 2012F Maintains Near Record Levels

Income Statement U.S. Farm Sector 2007-2012F

	2008	2009	2010	201	12F	$\begin{gathered} 2009 \\ \text { v. } \\ 2008 \end{gathered}$	$\begin{gathered} 2010 \\ \text { v. } \\ 2009 \end{gathered}$	$\begin{gathered} 2011 \\ \text { v. } \\ 2010 \end{gathered}$	$\begin{array}{\|c} 2012 F \\ \text { v. } \\ 2011 \\ \hline \end{array}$
Cash Receipts	316.4	289.1	321.1	374.3	385.5	-8.6\%	11.1\%	16.5\%	3.0\%
Crops	174.8	168.9	179.6	208.3	216.6	-3.4\%	6.4\%	16.0\%	4.0\%
Livestock	141.6	120.3	141.6	166.0	169.0	-15.1\%	17.7\%	17.3\%	1.8\%
Direct Govt. Pay	12.2	12.2	12.4	10.4	10.9	-0.5\%	1.8\%	-15.9\%	4.2\%
Gross Cash Income	350.1	323.3	351.8	410.8	431.3	-7.7\%	8.8\%	16.8\%	5.0\%
Cash Expenses	261.1	247.6	252.4	276.1	298.5	-5.2\%	\%		
NET CASH INCOME	89.0	75.6	99.4	134.7	132.8	-15.0	31.5\%	35.5\%	

Source: http://ers.usda.gov/data-products/farm-income-and-wealth-statistics.aspx\#27405

US Net Farm Income 2008-2012F

U.S. Farm Sector Cash Receipts 2008-2012F by Crop

U.S. Farm Sector Cash R Crop Receipts	2008-2	12F by	Crop 2010	2011	2012F		\%	
			\$ billion			$\begin{gathered} 2010 \\ \text { v. } \\ 2009 \\ \hline \end{gathered}$	$\begin{gathered} 2011 \\ \text { v. } \\ 2010 \end{gathered}$	$\begin{gathered} 2012 \mathrm{~F} \\ \mathrm{v} . \\ 2011 \end{gathered}$
Corn	48.4	42.5	47.2	63.9	65.8	11.0\%	35.4\%	3.1\%
Soybeans	26.4	33.7	34.5	37.6	41.9	2.3\%	9.0\%	11.5\%
Wheat	15.4	11.7	11.1	14.6	15.9	-5.6\%	32.6\%	8.7\%
Cotton	5.2	4.0	7.6	8.3	7.7	88.6\%	10.3\%	-7.7\%
Sub-total	95.5	91.9	100.3	124.4	131.4	9.1\%	24.1\%	5.6\%
Cattle and Calves	48.5	43.8	51.5	62.9	65.7	17.5\%	22.2\%	4.3\%
Hogs	16.1	14.7	18.0	21.7	21.3	22.4\%	20.7\%	-1.9\%
Poultry and Eggs	36.8	32.5	35.5	36.4	39.0	9.3\%	2.8\%	7.1\%
Dairy	34.8	24.3	31.4	39.5	37.0	28.9\%	26.0\%	-6.5\%
Sub-total	136.2	115.3	136.3	160.6	162.9	18.2\%	17.8\%	1.5\%
Total Crops	174.8	168.9	179.6	208.3	216.6	6.4\%	16.0\%	4.0\%
Total Livestock	141.6	120.3	141.6	166.0	169.0	17.7\%	17.3\%	1.8\%
Total Receipts	316.4	289.1	321.1	374.3	385.5	11.1\%	16.5\%	3.0\%

U.S. Farm Policy: 2012F \& 2008 reveals that Direct Govt. Paymts. are around 10\%-12\% of Net Farm Income

U.S. Farm Policy Less Formally....

Daily Nearby Futures Prices for US Corn,

 Soybeans, and Wheat 7/1/1959-9/12/2012

Average Annual Historical Volatilities for Nearby Corn, Soybeans, Wheat, and Cotton Futures for Various Periods 1990-2011

Increased Price Fluctuation in Corn for Feed Market Due to Ethanol Production?

Increased Price Fluctuation in Corn for Feed Market Due to Ethanol Production...

US Planted Acres of Major Row Crops 1995-2012

						2010 vs.	2012 vs.	2012 vs.
Crop	1995	2000	2005	2010	2012	2005	2010	1995
Millions of Acres								
corn	71.5	79.6	81.8	87.9	96.9	6.1	9.0	25.4
soybean	62.5	74.3	72.0	77.4	77.2	5.4	-0.2	14.7
wheat	69.1	62.6	57.2	53.6	55.7	-3.6	2.1	-13.4
cotton	16.7	15.5	14.3	11.0	12.4	-3.3	1.4	-4.4
combined	219.8	232.0	225.3	229.8	242.2	4.6	12.3	22.3

Comparison of New Crop Futures
Soybean/Corn Price 2005-2011

New Crop 2012 Soybean v. Corn $(3 / 9 / 2012)=\$ 12.99 / \$ 5.60=2.30$

IMPACTS OF EQUAL SUPPLY SHOCKS WHEN STOCKS ARE LOW VS WHEN THEY ARE HIGH

Figure 3: The Role of Stocks in Buffering Shocks

- Aggregate demand for a commodity consists of demand for current consumption and demand for stocks to be put into storage in expectation of future price rises.
- At low prices there tends to be stock build up on the expectation of price rises
- Adding the demand for stocks to demand for current consumption makes the total demand much more elastic compared to highprice periods in which the demand for stocks disappears
- The price impacts of a given supply shock are accordingly much less when prices are relatively low. - "In 1972/73, a decline in world wheat production of less than 2 percent at a time when stocks were low caused the annual price to more than double."

US Corn Ending Stocks 1975-2012

 ननननतनननतनननतनननतनननतननतनNतNNNNNNNNNN

U.S. Corn Stocks/Use and Average Farm Price 1975-2012

US Soybeans Ending Stocks 1968-2012

U.S. Soybean Stocks/Use and Average Farm Price 1970-2012

U.S. Total Corn Use by Types 1995/96-2012/13

EDM to Evaluate Question of Interest

\square Developed an EDM of the corn and soybean complex. This EDM takes account of the following salient features of the markets:

- soybeans are crushed into meal and oil and exported
> Exports of meal and oil
- corns major use is no longer feed but is processed into ethanol and DDGs and is exported
> Exports of DDG's
- Supply-side: corn and soybeans compete for acreage
- Demand-side: DDGs compete with soybean meal in the feed market
\square The EDM comprises 29 equations and endogenous variables that can be used to simulate the impacts of a variety of different exogenous shifts on any of the endogenous variables
- 8 domestic demand elasticities (6 own \& 2 cross)
- 6 export demand elasticities
- 4 supply elasticities (2 own \& 2 cross)
- 4 acreage response elasticities
- 8 domestic market shares

Parameterizing EDM \& Simulations

\square Parameters

- Use a baseline of average of the past 3 years 2010/11, 2011/12, 2012/13
- Attempts to econometrically estimate demand, export, supply, and acreage elasticities over the period 1996-2012 were unsuccessful
- 17 observations insufficient to capture economic relationships
- Increasing sample size requires going back before 1996 which represents a different regime (see Cooper, Goodwin, Piggott 2012 AAEA meetings paper)
- Assigned economically plausible values reflecting tight supplies and inelastic demands
\square Simulations
a. What if crop insurance premium subsidies were reduced in new Farmbill? Represent this change as a commensurate reduction in corn and soybean supplies of 10%, respectively.
b. What if a waiver of the RFS was implemented to allow corn supplies to replenish. Represent this as a commensurate reduction in ethanol demand of 50%.
c. Simulation a. \& b. jointly.

Simulation Results

			a. Reduction in Crop Insurance Subsidy (10\% decrease in supply of corn \& soybeans)			b. Waiver of the RFS (50% decrease in demand for ethanol)			a. \& b.		
	Name \& Units	Baseline	\% Δ	Δ	New	\% Δ	Δ	New	\% Δ	Δ	New
B	total quantity of soybeans produced (mil. Bu)	3,131	-10.6	-333	2,798	2.7	84	3,216	-10.2	-320	2,812
BD	quantity of soybeans sold in domestic (U.S.) market (mil. Bu)	3,118	-8.1	-252	2,867	0.9	30	3,148	-6.5	-203	2,915
BX	quantity of soybeans exported (mil. Bu)	1,376	-16.4	-226	1,150	6.7	92	1,468	-18.6	-256	1,120
C	total quantity of corn produced (mil. Bu)	11,843	-8.4	-993	10,850	-3.9	-462	11,381	-8.9	-1,048	10,795
CF	quantity of corn feed in domestic (U.S.) market (mil. Bu)	4,497	-3.3	-146	4,351	5.4	242	4,739	-2.8	-127	4,370
CFS	quantity of corn food \& seed in domestic (U.S.) market (mil. Bu)	1,400	-3.3	-46	1,354	5.4	75	1,475	-2.8	-40	1,360
CDE	quantity of corn converted to ethanol \& DDG's in U.S. market (mil. Bu)	4,843	-7.1	-345	4,498	-33.2	-1,608	3,236	-10.1	-490	4,353
CX	quantity of corn exported (mil. Bu)	1,509	-32.5	-491	1,018	53.8	812	2,321	-28.3	-427	1,082
PM	price of soybean meal (\$/s.t.)	\$403.02	3.9	\$15.71	\$418.72	-2.9	-\$11.56	\$391.46	5.8	\$23.56	\$426.57
PO	price of soybean oil (c / lb)	\$52.70	6.8	\$3.60	\$56.30	-0.8	-\$0.42	\$52.28	5.5	\$2.91	\$55.61
PB	farm price of soybeans (\$/bu)	\$12.90	3.3	\$0.42	\$13.32	-1.3	-\$0.17	\$12.73	3.7	\$0.48	\$13.38
PD	price of DDG's (\$/ton)	\$223.84	4.0	\$9.04	\$232.88	13.2	\$29.46	\$253.30	-12.0	-\$26.82	\$197.01
PE	price of ethanol (\$/gal)	\$2.49	4.7	\$0.12	\$2.61	-11.2	-\$0.28	\$2.21	6.7	\$0.17	\$2.66
PC	farm price of corn (\$/bu)	\$6.33	6.5	\$0.41	\$6.75	-10.8	-\$0.68	\$5.65	5.7	\$0.36	\$6.69
AB	planted acres of soybeans (mil. Acres)	76.5	-0.9	-0.7	75.8	4.4	3.4	79.9	-0.2	-0.2	76.4
AC	planted acres of corn (mil. Acres)	92.3	2.9	2.7	95.0	-6.9	-6.3	86.0	2.1	1.9	94.3
AT	total planted acres of corn and soybeans (mil. Acres)	168.9	1.2	2.0	170.8	-1.7	-2.9	165.9	1.0	1.8	170.6

Final Remarks

\square Reduction in crop insurance premium subsidy (simulated as 10\% reduction in supply of corn and soybeans) will lead to further increases in corn (6.5\%) and soybean (3.3\%) prices

- \$6.75/bu corn \& \$13.32/bu soybeans
\square Reduction in RFS (simulated as 50% reduction in ethanol demand will lead to some price relief with corn (-10.8\%) and soybean (1.3%) price declines with some additional corn supplied for feed to livestock producers with 242 mil. bu increase
- \$5.65 corn \& \$12.73 soybeans
\square The two scenarios combined, confirms even if a. \& b. occurred jointly we are in a new regime of higher corn prices (5.7\%) and soybean prices (3.7\%), and with more total acres (1\%).
- \$5.69 corn \& \$13.38 soybeans
- 76.4 \& 94.3 ($=170.6$) mil acres of corn \& soybeans, respectively
\square The toll of the aggressive biofuels policy is evident on corn prices which impacts a multitude of food products. Furthermore, a reduction of crop insurance subsidies on premiums only worsens this inflationary impact \& presumably the volatility as well.

Appendix

```
Endogenous Variables (29 total)
1. B = total quantity of soybeans produced
2. }\mp@subsup{B}{}{D}=\mathrm{ quantity of soybeans sold in domestic (U.S.) market
3. }\mp@subsup{B}{}{X}=\mathrm{ quantity of soybeans exported
4. O = quantity of soybean oil produced
5. }\mp@subsup{O}{}{D}=\mathrm{ quantity of soybean oil sold in domestic (U.S.) market
6. }\mp@subsup{O}{}{X}=\mathrm{ quantity of soybean oil exported
7. }M=\mathrm{ quantity of soybean meal produced
8. }\mp@subsup{M}{}{D}=\mathrm{ quantity of soybean meal sold in domestic (U.S.) market
9. }\mp@subsup{M}{}{X}=\mathrm{ quantity of soybean meal exported
10. C = total quantity of corn produced
11. }\mp@subsup{C}{}{F}=\mathrm{ quantity of corn feed in domestic (U.S.) market
12. C}\mp@subsup{C}{}{FS}=\mathrm{ quantity of corn food & seed in domestic (U.S.) market
13. }\mp@subsup{C}{}{DE}=\mathrm{ quantity of corn converted to ethanol & DDG's in U.S. market
14. }\mp@subsup{C}{}{X}=\mathrm{ quantity of corn exported
15. D = quantity of DDG's produced
16. }\mp@subsup{D}{}{D}=\mathrm{ quantity of DDG's sold in domestic (U.S.) market
17. }\mp@subsup{D}{}{X}=\mathrm{ quantity of DDG's exported
18. }E=\mathrm{ quantity of ethanol produced
19. }\mp@subsup{E}{}{D}=\mathrm{ quantity of ethanol sold in domestic (U.S.) market
20. }\mp@subsup{E}{}{X}=\mathrm{ quantity of ethanol exported
21. }\mp@subsup{P}{M}{}=\mathrm{ price of soybean meal
22. }\mp@subsup{P}{o}{}=\mathrm{ price of soybean oil
23. }\mp@subsup{P}{B}{}=\mathrm{ farm price of soybeans
24. }\mp@subsup{P}{D}{}=\mathrm{ price of DDG's
25. }\mp@subsup{P}{E}{}=\mathrm{ price of ethanol
26. }\mp@subsup{P}{C}{}=\mathrm{ farm price of corn
27. }\mp@subsup{A}{}{B}=\mathrm{ planted acres of soybeans
28. }\mp@subsup{A}{}{C}=\mathrm{ planted acres of corn
29. }\mp@subsup{A}{}{T}=\mathrm{ total planted acres of corn and soybeans
m
m
```

[^0] DDG's):

Appendix....

$$
\begin{aligned}
& M^{D}=\mathrm{M}\left(P_{M}, P_{D}, t_{M^{D}}\right) \\
& O^{D}=\mathrm{O}\left(P_{o}, t_{O^{D}}\right) \\
& M=\alpha_{\mathrm{M}}\left(t_{\alpha M}\right) B^{D} \\
& O=\alpha_{\mathrm{O}}\left(t_{\alpha O}\right) B^{D} \\
& P_{B}=\mathrm{P}_{\mathrm{B}}\left(P_{M}, P_{O}, \alpha_{M}\left(t_{\alpha M}\right), \alpha_{O}\left(t_{\alpha O}\right), m^{B}\left(t_{m^{B}}\right)\right) \text { [Crush demand for soybeans] } \\
& M^{X}=\mathrm{M}\left(P_{M}, t_{M^{X}}\right) \\
& O^{X}=\mathrm{O}\left(P_{o}, t_{o^{x}}\right) \\
& B^{X}=\mathrm{B}^{X}\left(P_{B}, t_{B^{X}}\right) \\
& M=M^{D}+M^{X} \\
& O=O^{D}+O^{X} \\
& B=B^{D}+B^{X} \\
& B=\mathrm{B}\left(P_{B}, P_{C}, t_{B}\right) \\
& D^{D}=\mathrm{D}\left(P_{D}, P_{M}, t_{D^{D}}\right) \\
& E^{D}=\mathrm{E}\left(P_{E}, t_{E^{D}}\right) \\
& E=\beta_{\mathrm{E}}\left(t_{\beta E}\right) C^{D E} \\
& D=\beta_{\mathrm{D}}\left(t_{\beta D}\right) C^{D E} \\
& P_{C}=\mathrm{P}_{\mathrm{C}}\left(P_{D}, P_{E}, \beta_{\mathrm{D}}\left(t_{\beta D}\right), \beta_{\mathrm{E}}\left(t_{\beta E}\right), m^{C}\left(t_{\beta}\right)\right) \\
& D^{X}=\left(D_{D}, t_{D^{X}}\right) \\
& E^{X}=E\left(P_{E}, t_{E^{x}}\right) \\
& C^{F}=\mathrm{C}^{\mathrm{F}}\left(P_{C}\right) \\
& C^{F S}=\mathrm{C}^{\mathrm{FS}}\left(P_{C}\right) \\
& C^{X}=\mathrm{C}^{\mathrm{X}}\left(P_{C}, t_{C^{x}}\right) \\
& D=D^{D}+D^{X} \\
& E=E^{D}+E^{X} \\
& C=C^{F}+C^{F S}+C^{D E}+C^{X} \\
& C=C\left(P_{C}, P_{B}, t_{C}\right) \\
& A^{B}=\mathrm{A}^{\mathrm{B}}\left(P_{B}, P_{C}\right) \\
& A^{C}=\mathrm{A}^{\mathrm{C}}\left(P_{C}, P_{B}\right) \\
& A^{T}=A^{B}+A^{C} \\
& \text { [Domestic Demand for soybean meal] } \\
& \text { [Domestic Demand for soybean oil] } \\
& \text { [Production of soybean meal] } \\
& \text { [Production of soybean oil] } \\
& \text { [Export Demand for soybean meal] } \\
& \text { [Export Demand for soybean oil] } \\
& \text { [Export demand for soybeans] } \\
& \text { [Total demand for soybean meal] } \\
& \text { [Total demand for soybean oil] } \\
& \text { [Total demand for soybeans] } \\
& \text { [Supply of soybeans] } \\
& \text { [Domestic Demand for DDG's] } \\
& \text { [Domestic Demand for ethanol] } \\
& \text { [Production of ethanol] } \\
& \text { [Production of DDG's] } \\
& \text { [Processing demand for corn] } \\
& \text { [Export Demand for DDG's] } \\
& \text { [Export Demand for soybean oil] } \\
& \text { [Domestic Demand for corn feed] } \\
& \text { [Domestic Demand for corn food \& seed] } \\
& \text { [Export demand for corn] } \\
& \text { [Total demand for DDG's] } \\
& \text { [Total demand for ethanol] } \\
& \text { [Total demand for corn] } \\
& \text { [Supply of corn] } \\
& \text { [Soybean Acreage] } \\
& \text { [Corn Acreage] } \\
& \text { [Total Acreage] }
\end{aligned}
$$

Appendix....

$$
\begin{aligned}
& M^{D}=\mathrm{M}\left(P_{M}, P_{D}, t_{M^{D}}\right) \\
& O^{D}=\mathrm{O}\left(P_{o}, t_{O^{D}}\right) \\
& M=\alpha_{\mathrm{M}}\left(t_{\alpha M}\right) B^{D} \\
& O=\alpha_{\mathrm{O}}\left(t_{\alpha O}\right) B^{D} \\
& P_{B}=\mathrm{P}_{\mathrm{B}}\left(P_{M}, P_{O}, \alpha_{M}\left(t_{\alpha M}\right), \alpha_{O}\left(t_{\alpha O}\right), m^{B}\left(t_{m^{B}}\right)\right) \text { [Crush demand for soybeans] } \\
& M^{X}=\mathrm{M}\left(P_{M}, t_{M^{X}}\right) \\
& O^{X}=\mathrm{O}\left(P_{o}, t_{o^{x}}\right) \\
& B^{X}=\mathrm{B}^{X}\left(P_{B}, t_{B^{X}}\right) \\
& M=M^{D}+M^{X} \\
& O=O^{D}+O^{X} \\
& B=B^{D}+B^{X} \\
& B=\mathrm{B}\left(P_{B}, P_{C}, t_{B}\right) \\
& D^{D}=\mathrm{D}\left(P_{D}, P_{M}, t_{D^{D}}\right) \\
& E^{D}=\mathrm{E}\left(P_{E}, t_{E^{D}}\right) \\
& E=\beta_{\mathrm{E}}\left(t_{\beta E}\right) C^{D E} \\
& D=\beta_{\mathrm{D}}\left(t_{\beta D}\right) C^{D E} \\
& P_{C}=\mathrm{P}_{\mathrm{C}}\left(P_{D}, P_{E}, \beta_{\mathrm{D}}\left(t_{\beta D}\right), \beta_{\mathrm{E}}\left(t_{\beta E}\right), m^{C}\left(t_{\beta}\right)\right) \\
& D^{X}=\left(D_{D}, t_{D^{X}}\right) \\
& E^{X}=E\left(P_{E}, t_{E^{x}}\right) \\
& C^{F}=\mathrm{C}^{\mathrm{F}}\left(P_{C}\right) \\
& C^{F S}=\mathrm{C}^{\mathrm{FS}}\left(P_{C}\right) \\
& C^{X}=\mathrm{C}^{\mathrm{X}}\left(P_{C}, t_{C^{x}}\right) \\
& D=D^{D}+D^{X} \\
& E=E^{D}+E^{X} \\
& C=C^{F}+C^{F S}+C^{D E}+C^{X} \\
& C=C\left(P_{C}, P_{B}, t_{C}\right) \\
& A^{B}=\mathrm{A}^{\mathrm{B}}\left(P_{B}, P_{C}\right) \\
& A^{C}=\mathrm{A}^{\mathrm{C}}\left(P_{C}, P_{B}\right) \\
& A^{T}=A^{B}+A^{C} \\
& \text { [Domestic Demand for soybean meal] } \\
& \text { [Domestic Demand for soybean oil] } \\
& \text { [Production of soybean meal] } \\
& \text { [Production of soybean oil] } \\
& \text { [Export Demand for soybean meal] } \\
& \text { [Export Demand for soybean oil] } \\
& \text { [Export demand for soybeans] } \\
& \text { [Total demand for soybean meal] } \\
& \text { [Total demand for soybean oil] } \\
& \text { [Total demand for soybeans] } \\
& \text { [Supply of soybeans] } \\
& \text { [Domestic Demand for DDG's] } \\
& \text { [Domestic Demand for ethanol] } \\
& \text { [Production of ethanol] } \\
& \text { [Production of DDG's] } \\
& \text { [Processing demand for corn] } \\
& \text { [Export Demand for DDG's] } \\
& \text { [Export Demand for soybean oil] } \\
& \text { [Domestic Demand for corn feed] } \\
& \text { [Domestic Demand for corn food \& seed] } \\
& \text { [Export demand for corn] } \\
& \text { [Total demand for DDG's] } \\
& \text { [Total demand for ethanol] } \\
& \text { [Total demand for corn] } \\
& \text { [Supply of corn] } \\
& \text { [Soybean Acreage] } \\
& \text { [Corn Acreage] } \\
& \text { [Total Acreage] }
\end{aligned}
$$

Appendix....

```
\(\tilde{M}^{D}-\eta_{M M} \tilde{P}_{M}-\eta_{M D} \tilde{P}_{D}=\varphi_{M^{D} t_{M^{D}}} \tilde{t}_{M^{D}}\)
\(\tilde{O}^{D}-\eta_{o o} \tilde{P}_{o}=\varphi_{o^{D_{t}}{ }_{t^{D}}} \tilde{t}_{o^{D}}\)
\(\tilde{M}-\tilde{B}^{D}=\varphi_{\alpha_{u^{\prime}}, t_{\alpha}} \tilde{t}_{\alpha}\)
\(\tilde{O}-\tilde{B}^{D}=\varphi_{\alpha_{\alpha_{0}}} \tilde{t}_{\alpha}\)
\(\tilde{P}_{B}-\left(\frac{P_{M} M}{P_{B} B^{D}}\right) \tilde{P}_{M}-\left(\frac{P_{o} O}{P_{B} B^{D}}\right) \tilde{P}_{O}=\varphi_{\alpha_{N^{\prime} t_{a M}}} \tilde{t}_{\alpha M}+\varphi_{\alpha_{o} t_{o o}} \tilde{t}_{\alpha O}+\varphi_{\text {mm }}\)
\(\tilde{M}^{x}-\mu_{M M} \tilde{P}_{M}=\varphi_{M^{x} M^{x}} \tilde{T}_{M^{x}}\)
\(\tilde{O}^{x}-\mu_{o o} \tilde{P}_{o}=\varphi_{o^{x} o^{x}} \tilde{t}_{O^{x}}\)
\(\tilde{B}^{X}-\mu_{B B} \tilde{P}_{B}=\varphi_{B^{X} B^{x}} \tilde{\tilde{T}}_{B^{x}}\)
\(\tilde{M}-k_{M} \tilde{M}^{D}-\left(1-k_{M}\right) \tilde{M}^{X}=0\)
\(\tilde{O}-k_{o} \tilde{O}^{D}-\left(1-k_{o}\right) \tilde{O}^{x}=0\)
\(\tilde{B}-k_{B} \tilde{B}^{D}-\left(1-k_{B}\right) \tilde{B}^{X}=0\)
\(\tilde{B}-\varepsilon_{B B} \tilde{P}_{B}-\varepsilon_{B C} \tilde{P}_{C}=\varphi_{B_{B}} \tilde{t}_{B}\)
\(\tilde{D}^{D}-\eta_{D D} \tilde{P}_{D}-\eta_{D M} \tilde{P}_{M}=\varphi_{D^{D_{t_{D}}}} \tilde{t}_{D^{D}}\)
\(\tilde{E}^{D}-\eta_{E E} \tilde{P}_{E}=\varphi_{E^{D} t_{t^{D}}} \tilde{T}_{E^{D}}\)
\(\tilde{D}-\tilde{C}^{D E}=\varphi_{\alpha_{0} t_{\beta}} \tilde{\tau}_{\beta}\)
\(\tilde{E}-\tilde{C}^{D E}=\varphi_{\alpha_{E_{\beta}} t_{\beta}} \tilde{\tau}_{\beta}\)
\(\tilde{P}_{C}-\left(\frac{P_{D} D}{P_{C} C^{D E}}\right) \tilde{P}_{D}-\left(\frac{P_{E} E}{P_{C} C^{D E}}\right) \tilde{P}_{E}=\varphi_{\beta_{D} t_{D}} \tilde{\beta}_{\beta D}+\varphi_{\beta_{E} t_{B}} \tilde{\beta}_{\beta E}+\varphi_{m m}\)
\(\tilde{D}^{X}-\mu_{D D} \tilde{P}_{D}=\varphi_{D^{x} x^{x}} \tilde{t}_{D^{x}}\)
\(\tilde{E}^{X}-\mu_{E E} \tilde{P}_{E}=\varphi_{E^{x}} \tilde{E}^{x} \tilde{E}_{E^{x}}\)
\(\tilde{C}^{F}-\eta_{C^{F} P_{C}} \tilde{P}_{C}=0\)
\(\tilde{C}^{E S}-\eta_{c^{r s p_{C}}} \tilde{P}_{C}=0\)
\(\tilde{C}^{x}-\mu_{C C} \tilde{P}_{C}=\varphi_{C^{x} t_{x}} \tilde{t}_{C^{x}}\)
\(\tilde{D}-k_{D} \tilde{D}^{D}-\left(1-k_{D}\right) \tilde{D}^{X}=0\)
\(\tilde{E}-k_{E} \tilde{E}^{D}-\left(1-k_{E}\right) \tilde{E}^{X}=0\)
\(\tilde{C}-k_{C^{C}} \tilde{E}^{F}-k_{C^{F S}} \tilde{C}^{F S}-k_{C^{D E}} \tilde{C}^{D}-k_{C^{X}} \tilde{C}^{X}=0\)
\(\tilde{C}-\varepsilon_{C C} \tilde{P}_{C}-\varepsilon_{C B} \tilde{P}_{B}=\varphi_{C_{C}} \tilde{t}_{C}\)
\(\tilde{A}^{B}-\pi_{B B} \tilde{P}_{B}-\pi_{B C} \tilde{P}_{C}=0\)
\(\tilde{A}^{c}-\pi_{C C} \tilde{P}_{C}-\pi_{C B} \tilde{P}_{B}=0\)
```


Appendix....

Endogenous Variable	Name \& Units	2010/11	2011/12	2012/13	Baseline
	total quantity of soybeans produced (mil. Bu)	3,329	3,094	2,971	3,131
BD	quantity of soybeans sold in domestic (U.S.) market (mil. Bu)	3,280	3,155	2,920	3,118
BX	quantity of soybeans exported (mil. Bu)	1,501	1,362	1,265	1,376
\bigcirc	quantity of soybean oil produced (mil. lbs)	18,888	19,740	17,830	18,819
OD	quantity of soybean oil sold in domestic (U.S.) market (mil. lbs)	20,028	19,774	19,200	19,667
ox	quantity of soybean oil exported (mil. I lbs)	3,233	1,464	1,200	1,966
M	quantity of soybean meal produced (000 's s.t.)	39,251	41,025	37,150	39,142
MD	quantity of soybean meal sold in domestic (U.S.) market (000's s.t.)	30,301	31,550	29,500	30,450
MX	quantity of soybean meal exported (000's s.t.)	9,081	9,741	7,900	8,907
C	total quantity of corn produced (mil. Bu)	12,447	12,358	10,725	11,843
CF	quantity of corn feed in domestic (U.S.) market (mil. Bu)	4,795	4,547	4,150	4,497
CFS	quantity of corn food \& seed in domestic (U.S.) market (mil. Bu)	1,406	1,426	1,367	1,400
CDE	quantity of corn converted to ethanol \& DDG's in U.S. market (mil. Bu)	5,019	5,011	4,500	4,843
CX	quantity of corn exported (mil. Bu)	1,834	1,543	1,150	1,509
D	quantity of DDG's produced (mil. Metric. tons)	35.40	35.40	31.60	34.13
DD	quantity of DDG's sold in domestic (U.S.) market (mil. Metric. tons)	28.4	29.2	25.5	27.7
DX	quantity of DDG's exported (mil. Metric. tons)	8.3	7.5	7.5	7.8
E	quantity of ethanol produced (mil gals)	13,811	13,790		13,801
ED	quantity of ethanol sold in domestic (U.S.) market (mil. gals)	14,590	14,879		14,735
EX	quantity of ethanol exported (mil. gals)	0	0		0
PM	price of soybean meal (\$/s.t.)	345.52	393.53	470.00	403.02
PO	price of soybean oil (c/lb)	53.20	51.90	53.00	52.70
PB	farm price of soybeans (\$/bu)	11.30	12.50	14.90	12.90
PD	price of DDG's (\$/ton)	178.08	216.83	276.60	224
PE	price of ethanol (\$/gal)	2.56	2.46	2.46	2.49
PC	farm price of corn (\$/bu)	5.18	6.22	7.60	6.33
AB	planted acres of soybeans (mil. Acres)	77.4	75.0	77.2	76.5
AC	planted acres of corn (mil. Acres)	88.2	91.9	96.9	92.3
AT	total planted acres of corn and soybeans (mil. Acres)	165.6	166.9	174.1	168.9

Appendix....

Exogenous Variables					
mb	crushing margin for soybeans (\$/bu)	2.15	1.87	1.27	1.76
mc	crushing margin for corn (\$/bu)	3.50	2.51	1.64	2.55
$\alpha \mathrm{M}$	proportion of meal produced per unit of soybean	0.733	0.733	0.733	0.733
∞	proportion of oil produced per unit of soybean	0.183	0.183	0.183	0.183
$\beta \mathrm{E}$	proportion of ethanol produced per unit of corn	0.696	0.696	0.696	0.696
$\beta \mathrm{D}$	proportion of DDG produced per unit of corn	0.304	0.304	0.304	0.304
	November 2012 (WASDE)				
	DDG's S \&				
	Ethanols \& D				
	Price of DDG's				
	Price of ethanol				
Domestic Demand Elasticities		Guestimates	Estimated	Used in M	
7 mm	the own-price elasticity of demand for soybean meal	-0.80		-0.80	
7 MD	the cross-price elasticity of demand for soybean meal with respect to changes in DDG prices	0.40		0.40	
η oo	the own-price elasticity of demand for soybean oil	-0.80		-0.80	
$\eta_{\text {Do }}$	the own-price elasticity of demand for DDG's	-1.50		-1.50	
η DM	the cross-price elasticity of demand for DDG's with respect to changes in soybean meal prices	0.40		0.40	
$\eta_{\text {EE }}$	the own-price elasticity of demand for ethanol	-1.50		-1.50	
$\eta_{\text {FC }}$	the elasticity of the demand for feed corn with respect to the price of corn	-0.50		-0.50	
$\eta_{s c}$	the elasticity of the demand for food and seed with respect to the price of corn	-0.50		-0.50	
Export Demand Elasticities					
$\mu_{M M}$	the own-price elasticity of export demand for soybean meal	-5.00		-5.00	
μ_{00}	the own-price elasticity of export demand for soybean oil	-5.00		-5.00	
$\mu_{B B}$	the own-price elasticity of export demand for soybeans	-5.00		-5.00	
$\mu_{D D}$	the own-price elasticity of export demand for DDG's	-5.00		-5.00	
$\mu_{E E}$	the own-price elasticity of export demand for ethanol	-5.00		-5.00	
$\mu_{c c}$	the own-price elasticity of export demand for corn	-5.00		-5.00	
Supply Elasticities					
$\varepsilon_{\text {BB }}$	the own-price elasticity of supply for soybeans	0.40		0.40	
$\varepsilon_{B C}$	the cross-price elasticity of supply for soybeans with respect to the price of corn	-0.30		-0.30	
$\varepsilon_{c c}$	the own-price elasticity of supply for corn	0.40		0.40	
$\varepsilon_{C B}$	the cross-price elasticity of supply for corn with respect to the price of soybeans	-0.30		-0.30	
Acreage Response Elasticities					
$\pi_{B B}$	the own-price acreage response to the price of soybeans	0.70		0.70	
$\pi_{B C}$	the cross-price elasticity of acreage response for soybeans with respect to the price of corn	-0.50		-0.50	
$\pi_{c c}$	the own-price elasticity of acreage response for corn	0.70		0.70	
$\pi_{\text {cB }}$	the cross-price elasticity of acreage response for corn with respect to the price of soybeans	-0.50		-0.50	
	Best guestimate				
k_{M}	share of meal used in domestic market				0.774
k_{0}	share of oil used in domestic market				0.909
k_{B}	share of beans used in domestic market				0.694
k_{F}	share of corn feed in domestic market				0.367
$\mathrm{k}_{\text {FS }}$	share of corn used in food and seed in domestic market				0.114
k_{DE}	share of corn converted to ethanol and DDG's in domestic market				0.395
k_{x}	share of corn exported				0.123
k_{D}	share of DDG's used in domestic market				0.781
k_{E}	share of ethanol used in domestic market				1.000
$\mathrm{k}_{\text {AB }}$	share of ethanol used in domestic market				0.453
k_{Ac}	share of ethanol used in domestic market				0.547

[^0]: When a bushel of soybeans weighing 60 pounds is crushed, it produces 44 lbs of 48% protein soybean meal, 11 lbs of soybean oil, 4
 ounds of hulls, and 1 pound of waste:
 Soybean Crush=Price soybean meal (\$/ton)*0.022 (=44/2000) + Price soybean oil in $\$ / \mathrm{cwt}$ (cents/lbs)*11 - Price of soybeans ($\$ / \mathrm{bu}$) When a bushel of corn weighing 56 pounds is processed for ethanol it yields 2.8 gallons of ethanol and 17 pounds of Distillers Dry Grains

