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1 Introduction

Over the last several decades, technological developments in computer science have al-
lowed the accumulation and storage of vast amounts of information. Many government
agencies and research institutions around the world are continuously collecting data that
are, more often than not, made publicly available. Examples include the Penn World Ta-
bles and the Open Data Services of the World Bank, which contain several time series
variables for multiple countries. The emergence of this rich data environment creates the
need for statistical methodologies that can summarize large databases into a few composite
indicators which can be easily used and understood by policy makers.

Methods involving estimation of latent variables have been gaining increasing attention
in various fields of research, with factor analysis being one of the most important. Until the
late 1970s, the estimation of factor analytic models was limited to cross sectional datasets
ignoring any dynamic analysis. Geweke (1977) along with Sargent and Sims (1977) were
the first to propose a new class of dynamic factor models (DFMs). Stock and Watson
(1989) built on that contribution by estimating unobserved coincident and leading eco-
nomic indices for the US economy, where the estimation of the leading index is conducted
conditional on the estimate of the unobserved coincident index. However, the model of
Stock and Watson was limited by the fact that it could not handle panel data, that is, multi-
ple variables for multiple individuals spanning several years. Forni et al. (2000) extended
DFMs by allowing for panel data estimation. They developed a generalized dynamic factor
model that estimated one unobserved index for all individuals for every time period in their
dataset.

The extension of factor analysis to a longitudinal setting greatly expanded the method’s
applicability. Apart from summarizing a large number of variables into a few coincident
indicators, forecasts were also made possible. A large body of literature has focused on
the macroeconomic applications of such models (Stock and Watson, 2002, Forni et al.,
2001). Bernanke and Boivin (2003) suggested that the model of Stock and Watson (2002)
can assist the U.S. Federal Reserve in constructing macroeconomic indices using a larger
number of indicators, compared to the relatively limited amount of information that the Fed
has traditionally used, adding to the informative and predictive power of these indicators.
Bai (2003) contributes to this literature, by providing the inferential theory for DFMs of
large dimensions. He discusses the convergence rates of factors and factor loadings and
finds that stronger results are achieved when the errors of the idiosyncratic components are
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serially uncorrelated. Boivin and Ng (2006) suggest that when more data are used to extract
factors and the idiosyncratic errors are correlated the forecasting power of the model can
be reduced. In light of those findings, they question whether using a large set of variables
increases the validity of the model.

Doz et al. (2011) address the issue of the use of principle components in DFMs of
large dimensions. They argue that, even though the principle components approach has
been used extensively in the literature, maximum likelihood estimation can lead to greater
efficiency gains, even when the DFM is misspecified. Jungbacker et al. (2011) use a similar
maximum likelihood approach for DFMs and extend it to account for missing data.

Our work contributes to this literature by developing a generalized dynamic factor
model for panel data. We develop a novel iterative estimation process, which we call
“Two-Cycle Conditional Expectation-Maximization” (2CCEM) algorithm. Initially, the
unobserved index is estimated and then the dynamic component of the index is incorporated
into the estimation process. Our estimation strategy can account for multiple individuals,
making it flexible enough to be applicable to different types of datasets. Therefore, contrary
to the model developed by Stock and Watson (1989), our model can be applied to a panel
dataset. In addition, while Forni et al. (2000) estimate a single unobserved index, common
for all individuals in their sample, we estimate one latent index for every individual.

The paper is organized as follows. In section 2, we present the theoretical framework,
examine the correlation structure between the observed data and the unobserved index and
discuss conditions for identifiability of the model. In addition, we illustrate various param-
eter formulations. Section 3 presents the 2CCEM algorithm and illustrates the estimation
process for each of the two cycles. In section 4, we describe the data where we apply the
model and discuss how we obtain initial values for the parameters. The section concludes
with estimation results, diagnostic checking and simulations. In the final section, we draw
conclusions based on the estimation results and discuss future extensions of our work.

2 A generalized dynamic factor model for panel data

The main contribution of our work lies in the development of the generalized dynamic
factor model that accounts for cross correlations between individuals and is applicable to
a panel data setting. In this section we present the theoretical foundation of our model,
describe each of its components, address identifiability and illustrate various parameter
formulations. We begin by presenting the notation that will be used throughout the paper.
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2.1 Notation

Denoting vectors with bold letters, we let yi j,t be the ith indicator of the jth individual at
time t with:

• i = 1, ..., p denoting the number of observed variables (indicators) in the model;

• j = 1, ...,θ denoting the number of individuals;

• t = 1, ...,n denoting the time point of an observation;

To ease formulation of our model, we collect the observed data in vector form. Let:

• Yi j be an n×1 vector with elements, yi j,t , for i, j fixed and t = 1, ...,n;

• Yt be a θ p×1 vector with elements, yi j,t , for t fixed with i = 1, ..., p and j = 1, ...,θ ;

• Y be a nθ p×1 vector of all p indicators for all θ individuals over all n years.

2.2 The theoretical framework of the model

State space models have been used extensively, particularly in the early literature of DFMs,
since they allow the study of unobserved factors over time through the use of the observed
data (Stock and Watson, 2010). We formulate our model using a state space approach,
letting Ut denote the vector of θ unobserved factors at time t. We assume that the dynamic
properties of Ut can be captured by a Markov process. Thus, we form the following linear
Gaussian state space model:

Yt = BUt + et , et ∼ N(0,D), (1)

Ut+1 = TUt +ηηη t , ηηη t ∼ N(0,Q), (2)

where B is the matrix of factor loadings with dimensions θ p× θ , Ut is the θ × 1 unob-
served state vector, Yt is a θ p× 1 vector of observed variables, T is a θ × θ transition
matrix that describes the Markovian nature of the unobserved state vector, and et and ηηη t

are error terms (Koopman, 1993; Durbin and Koopman, 2001, p. 65). Equation (1) is
known as the observation equation (or measurement equation) and equation (2) is called
the state equation (or transition equation) and represents the first order autoregressive na-
ture of the model (Harvey, 1991. p. 100). The state space formulation described in (1)
and (2) models the behavior of the unobserved state vector Ut over time using the observed
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values Y1, ...,Yn. The state vector Ut is assumed to be independent of the error terms et and
ηηη t for all t = 1, ...,n. In addition, the error terms et and ηηη t are assumed to be independent,
identically distributed (i.i.d.) and mutually uncorrelated (deJong, 1991; Kohn and Ansley,
1989).

2.3 Correlation structure

Since the state vector Ut is unobserved, all the information in our model is contained in
Y. The covariance matrix of Y, denoted by ΩΩΩ, is a nθ p× nθ p matrix with the following
structure:

Var(Y) = ΩΩΩ
nθ p×nθ p

=


Var(Y1) Cov(Y1Y2) ... Cov(YnY1)

Cov(Y2Y1) Var(Y2) ... ...

... ... ... ...

Cov(Y1Yn) ... ... Var(Yn)

 , (3)

where Cov(Yt , Yt∗), with t, t∗ = 1, ...,n and t 6= t∗, is a θ p× θ p matrix. For ease of
presentation, and without loss of generality, we assume that E(Yt) = 0. The unconditional
covariance matrix of Yt , that is, the covariance matrix of all indicators for all individuals at
a given time period t, is denoted by ΣΣΣ and has the following structure:

Var(Yt) = ΣΣΣ
θ p×θ p

=


Var(Y1,t) E(Y1,tY2,t) ... E(Y1,tYθ ,t)

E(Y2,tY1,t) Var(Y2,t) ... ...

... ... ... ...

E(Yθ ,tY1,t) ... ... Var(Yθ ,t)

 , (4)

where Var(Y j,t) is a p× p covariance matrix of all p indicators of the jth individual at time
period t. It follows from (1) that:

ΣΣΣ = Var(Yt) = E(YtY′t) = E([BUt + et ] [BUt + et ]
′) = BVar(Ut)B′+D. (5)

The matrix ΣΣΣ can be decomposed in two parts: 1) BVar(Ut)BT , known as the communality
of the indicators, represents the variance of Yt shared by all indicators via the unobserved
state vector Ut and 2) D is the specific or unique variance and relates to the variability of Yt

that is not shared with other indicators (Everitt and Dunn, 1998). D is a θ p×θ p diagonal
covariance matrix of the following form:
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D = diag(σ2
11, ...,σ

2
pθ ). (6)

Note that the diagonality of D is an important assumption of factor analysis. Given the
unobserved state vector, the observed variables are independent (Rubin and Thayer, 1982;
Ghahramani and Hinton, 1997), that is:

Cov(yi j,t , yi∗ j,t |Ut) = 0 and Var(Yt |Ut) = D,

where i, i∗= 1, ..., p and i 6= i∗. In other words, in a factor analysis framework no correlation
exists between the idiosyncratic errors et . Any correlation between indicators is part of the
unobserved common factor.

The off-diagonal elements of ΩΩΩ capture the covariance of Yt across time. It follows
from (1) and (2) that:

E(Yt+1Y′t) = E([BUt+1 + et+1] [BUt + et ]
′) =

= E([B(TUt +ηηη t)+ et+1] [BUt + et ]
′) =

= BTVar(Ut)B′, (7)

where (7) can be generalized as follows:

E(Yt+hY′t) = BThVar(Ut)B′, for h≥ 1.

In addition, the variance of the state variable Ut is given by:

E(UtU′t) = E
[
(TUt−1 +ηηη t−1)(TUt−1 +ηηη t−1)

′]=
= TVar(Ut−1)T′+Q. (8)

Finally, E(YtUt) is:

E(YtU′t) = E
[
(BUt + et)U′t

]
= BVar(Ut). (9)

From (5), (8) and (9) we determine the moments of the joint multivariate normal vector
(YT

t ,UT
t )

T with mean:
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(
0
0

)
,

and a covariance matrix that can be calculated recursively, using the following equations:

E(YtY′t) = BVar(Ut)B′+D,

E(UtU′t) = TVar(Ut−1)T′+Q,

E(YtU′t) = BVar(Ut). (10)

2.4 Identifiability

A central issue in the literature of unobserved component models is identifiability. Two
parameters points (or structures) are observationally equivalent if they have the same joint
density function. A structure is identifiable if there is no other structure which is obser-
vationally equivalent. A model, on the other hand, is identifiable if all its structures are
identifiable (Rothenberg, 1971; Harvey, 1991, p. 205). Rather than invoking this general
result it is preferable to explore identifiability directly using the order condition. The lat-
ter suggests that the number of parameters in an equation must be at least as great as the
number of explanatory variables (Hamilton, 1994, p. 244). Hotta (1989) provides the order
conditions for identifiability of a structural time series model. We follow a similar approach
to derive the conditions for identifiability in the model specified in (1) and (2). In order to
achieve that, we derive general formulas for the autocovariance function of our model.

Let φφφ d = vec [diag(T)] and φφφ (•) be an operator that multiplies the jth element of the
vector φφφ d with every element in rows [( j−1) p+1] to [ jp] of a matrix where j = 1, ...,θ .
For example:

φφφ (•)Yt =


φ1Yt[1:p][ ]

φ2Yt[p+1:2p][ ]
...

φθ Yt[(θ−1)p+1:θ p][ ]

=



φ1y11,t
...

φ1yp1,t
...

φθ y1θ ,t
...

φθ ypθ ,t


.
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Similarly:

φφφ (•)Ut =


φ1u1,t

φ2u2,t
...

φθ uθ ,t

 . (11)

Furthermore, letting ip be a vector of ones with p denoting the row dimension, we define
φφφ (•)(L) as:

φφφ (•)(L) = ip−φφφ (•)L,

where L is the lag operator. Applying φφφ (•)(L) to Yt we have:

φφφ (•)(L)Yt =
(

iθ p−φφφ (•)L
)

Yt = Yt−φφφ (•)LYt = Yt−φφφ (•)Yt−1.

Similarly:
φφφ (•)(L)Ut = Ut−φφφ (•)LUt = Ut−φφφ (•)Ut−1.

In addition we define:
T∗ = T−diag{T} , (12)

where T∗ is a square matrix with the off-diagonal elements of T and zeros along the diag-
onal. Using φφφ (•), φφφ (•)(L) and T∗, we rewrite the state equation in (2) as:

Ut = φφφ (•)Ut−1 +T∗Ut−1 +ηηη t

Ut−φφφ (•)Ut−1 = T∗Ut−1 +ηηη t

φφφ (•)(L)Ut = T∗Ut−1 +ηηη t . (13)

Furthermore, applying the φφφ (•)(L) operator to the observation equation in (1) yields:

φφφ (•)(L)Yt = Bφφφ (•)(L)Ut +φφφ (•)(L)et . (14)

Replacing (13) into (14) we have:

φφφ (•)(L)Yt = BT∗Ut−1 +Bηηη t +φφφ (•)(L)et

Yt = φφφ (•)Yt−1 +BT∗Ut−1 +Bηηη t + et−φφφ (•)et−1. (15)
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Our next step is to calculate the covariances of the unobserved state vector Ut . Assuming
stationarity of the state vector such that:

Var(Ut) = Var(Ut−1) = ΓΓΓU(0), (16)

the variance of Ut , becomes:

ΓΓΓU(0) = TΓΓΓU(0)T′+Q. (17)

Furthermore, ΓΓΓU(1) is determined as follows:

ΓΓΓU(1) = E [(TUt−1 +ηηη t)Ut−1]

= TΓΓΓU(0), (18)

with the general form of the autocovariance function of Ut being:

ΓΓΓU(h) = TΓΓΓU(h−1), for h≥ 1. (19)

A closed form solution for (17) can be obtained with the use of the vec operator as shown
by Hamilton (1994; p. 265):

vec [ΓΓΓU(0)] = vec
[
TΓΓΓU(0)T′+Q

]
= (T⊗T)vec [ΓΓΓ(0)]+vec(Q)

= [I−T⊗T]−1 vec(Q). (20)

The autocovariance function of (15) has the following form:

ΓΓΓY(0) = φφφ (•)ΓΓΓY(1)+BT∗Cov(Ut−1, Y′t)+BQB′+D+φφφ
2
(•)D, (21)

ΓΓΓY(1) = φφφ (•)ΓΓΓY(0)+BT∗Cov(Ut−1, Y′t−1)B
′+φφφ

2
(•)D, (22)

ΓΓΓY(2) = φφφ (•)ΓΓΓY(1)+BT∗Cov(Ut−1, Y′t−2), (23)
...

ΓΓΓY(h) = φφφ (•)ΓΓΓY(h−1)+BT∗Cov(Ut−1, Y′t−h). (24)
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One of the components of the autocovariance function of (15) is the cross-covariance be-
tween Ut−1 and Yt−h, which is given by:

Cov(Ut−1Y′t) = Cov
[
Ut−1, (BUt + et)

′]= ΓΓΓU(1)B′, (25)

Cov(Ut−1Y′t−1) = Cov
[
Ut−1, (BUt−1 + et−1)

′]= ΓΓΓU(0)B′, (26)
...

...

Cov(Ut−1Y′t−h) = Cov
[
Ut−1, (BUt−h + et−h)

′]= ΓΓΓU(h−1)B′, (27)

for h≥ 1. Using the result in (19) and replacing (25)-(27) in (21)-(24) we have:

ΓΓΓY(0) = φφφ (•)ΓΓΓY(1)+BT∗TΓΓΓU(0)B′+BQB′+D+φφφ
2
(•)D, (28)

ΓΓΓY(1) = φφφ (•)ΓΓΓY(0)+BT∗ΓΓΓU(0)B′−φφφ (•)D, (29)

ΓΓΓY(2) = φφφ (•)ΓΓΓY(1)+BT∗TΓΓΓU(0)B′, (30)
...

ΓΓΓY(h) = φφφ (•)ΓΓΓY(h−1)+BT∗ΓΓΓU(h−1)B′, (31)

where h≥ 2. Our final task is to calculate the closed form solution for (28)-(31). We derive
the following results:

vec [ΓΓΓY(0)] ={[iθ 2−T⊗T]−1 vec(Q)
[
φφφ (•) (B⊗BT∗)+(B⊗BT∗T)

]
+(B⊗B)vec(Q)+vec(D)}

(
iθ p−φφφ

2
(•)iθ p

)−1
, (32)

vec [ΓΓΓY(1)] ={[iθ 2−T⊗T]−1 vec(Q)
[
φφφ (•) (B⊗BT∗T)+(B⊗BT∗)

]
+φφφ (•)vec

(
BQB′

)
+φφφ

3
(•)vec(D)}

(
iθ p−φφφ

2
(•)iθ p

)−1
. (33)

A detailed calculation of (32) and (33) is provided in section 6.1 of the Appendix. Equa-
tions (32) and (33) can be used to derive the restrictions necessary for the identifiability
of a specific formulation of our generalized dynamic factor model. To illustrate this, we
consider the case of one individual with multiple indicators in the following section.
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2.4.1 The case of one individual with multiple indicators

In this formulation of our model, equations (32) and (33) have the following form:

ΓΓΓY(0) =
(
σ

2
ηBB′+D

)(
ip−φ

2ip
)−1

, (34)

ΓΓΓY(1) =
(
φσ

2
ηBB′+φ

3D
)(

ip−φ
2ip
)−1

. (35)

Note that all elements of (32) and (33) that involve T∗ are absent from (34) and (35). The
off-diagonal elements of (34) and (35) are represented as follows:

ΓΓΓY[ii∗](0) = σ
2
ηbibi∗

(
1−φ

2)−1
, (36)

ΓΓΓY[ii∗](1) = φσ
2
ηbibi∗

(
1−φ

2)−1
. (37)

Due to symmetry of ΓΓΓY(0) and ΓΓΓY(1) each of those two matrices has p(p+1)
2 elements.

Therefore (34) and (35) form a system of p2+ p equations with 2p+2 unknown parameters
(p parameters in each of the two matrices B and D as well as parameters φ and σ2

η ). In
order for this system to be fully identifiable we select the following restriction that makes
the system linear in its parameters:

σ
2
η = 1−φ

2. (38)

From (17), and assuming that Var(ut) = Var(ut−1), we determine that the variance of ut is:

Var(ut) = φ
2Var(ut−1)+σ

2
η ⇒ Var(ut) =

σ2
η

1−φ 2 , (39)

and replacing (38) into (39) we have:

Var(ut) = 1. (40)

Moving to a more general case where multiple individuals are considered, while assuming
no correlation among individuals, such that T∗ = 0, restriction (38) affects the moments of
the joint multivariate normal vector (YT

t ,UT
t )

T which are now:(
BBT +D B

BT I

)
. (41)
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McLachlan and Peel (2000, p. 243) use the same covariance matrix when discussing the
case of a factor analytic model without a time dimension. Note that (41) is a simplified
version of the covariance structure illustrated in (10).

When solving the system defined by ΓΓΓY(0) and ΓΓΓY(1) the elements of B can have both a
positive and a negative root. We disregard the negative root of B by a simple transformation
which makes all indicators positively correlated to each other.

2.5 Parameter formulation

In this section, we illustrate all possible formulations of the parameters of the model,
namely B, D, T andQ. The general form of the matrix of factor loadings B can be written
as follows:

B
θ p×θ

=


b11 b12 b13 ... b1θ

b21 b22 b23 ... b2θ

b31 b32 b33 ... b3θ

... ... ... ... ..

bθ1 bθ2 bθ3 ... bθθ

 ,

where each b j j ( j = 1, ...,θ ) along the diagonal of B is a p×1 vector of the factor loadings
for the jth individual and each b j j∗ ( j, j∗ = 1, ...,θ and j 6= j∗) on the off-diagonal of B is
also a p× 1 vector representing the loadings of the indicators of individual j to the factor
of individual j∗. For example, b11 contains the factor loadings of the first individual, while
b12 loads the indicators of the first individual to the factor of the second individual. We
distinguish four combinations for the diagonal and off-diagonal vectors of B, illustrated in
table 1:

Off-diagonal vectors

b j j∗ = 0 b j j∗ 6= 0

Notation Parameters Notation Parameters

Diagonal b j j = c B1 θ B2 θ p× [θ −1]+1

vectors b j j 6= c B3 θ p B4 θ p×θ

Table 1: Possible formulations of B.

Formulations B1 and B2 represent the case where the factor loadings are the same for
every individual. The difference between B1 and B2 lies in the assumptions regarding
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the off-diagonal vectors. In B1 the indicators of individual j do not load on the factor
of individual j∗ since all the off-diagonal vectors are equal to zero. In case B2, b j j∗ is
unconstrained. B3 also requires zero off-diagonal elements for B, only this time, vectors
b j j are allowed to vary, hence every individual has a unique set of factor loadings. Finally,
the most complex case is B4 where there are no constraints on the elements of B. Following
the classification in Rubin and Thayer (1982) cases B1 and B3 fall under the category of
confirmatory factor analysis, where the researcher has a priori assumptions regarding the
factor loadings, while B4 is considered an example of exploratory factor analysis, where
no prior specification regarding the factor loadings is made (Kim and Mueller, 1978). Case
B2 could be considered a hybrid.

Next, we consider the variance of the idiosyncratic errors in D. The general form of D
is:

D
θ p×θ p

= diag(d j),

where d j ( j = 1, ...,θ ) is a p× p diagonal matrix representing the variance of the error term
for every individual. As discussed in section 2.3, that diagonality of D is required due to
the factor analytic nature of (1). The matrix form of each d j is:

d j
p×p

= diag(σ2
i j),

where σ2
i j is the variance of the error term of a specific individual. The following two cases,

illustrated in table 2, are applicable for D:

Notation Parameters

Diagonal d j = c D1 p

elements d j 6= c D2 θ p

Table 2: Possible formulations of D.

Formulation D1 suggests that the variance of the error term is the same for every indi-
vidual. On the other hand, D2 allows σ2

i j to vary for each individual.
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The general form of T is illustrated as follows:

T
θ×θ

=


φ11 φ12 φ13 ... φ1θ

φ21 φ22 φ23 ... φ2θ

φ31 φ32 φ33 ... φ3θ

... ... ... ... ..

φθ1 φθ2 φθ3 ... φθθ

 ,

where φ j j is the autoregressive parameter that determines the effect through time of an
individual’s own state variable. The off-diagonal elements φ j j∗ (where j, j∗ = 1, ...,θ and
j 6= j∗), capture the correlation of the state variable between individuals across time. Note
that we may have φ j j∗ 6= φ j∗ j. That is, the effect of u j to previous movements of u j∗ , could
be different from the effect of u j∗ to previous movements of u j. We distinguish between
six cases for T, illustrated in table 3:

Off-diagonal elements

φ j j∗ = 0 φ j j∗ 6= 0 Spatial correlation

Notation Parameters Notation Parameters Notation Parameters

Diagonal φ j j = c T1 1 T2 θ [θ −1]+1 T5 θ [θ −1]+1

elements φ j j 6= c T3 θ T4 θ 2 T6 θ 2

Table 3: Possible formulations of T.

Formulation T1 suggests that there is no correlation between the values of the state
variable of different individuals across time. Additionally, all individuals share the same
autoregressive parameter. T3 retains the same assumption regarding the off-diagonal el-
ements of T. However, in this case the autoregressive parameter is allowed to vary by
individual. Formulations T2 and T4 have unconstrained φ j j∗ , hence accounting for cross-
temporal correlations between the state variables of different individuals. This correlation
is further expanded in formulations T5 and T6 where spatial effects are considered. Under
those two cases T will have the following form:
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T
θ×θ

=


φ11 φ12(s1,s2) φ13(s1,s3) ... φ1θ (s1,sθ )

φ21(s2,s1) φ22 φ23(s2,s3) ... φ2θ (s2,sθ )

φ31(s3,s1) φ32(s3,s2) φ33 ... φ3θ (s3,sθ )

... ... ... ... ..

φθ1(sθ ,s1) φθ2(sθ ,s2) φθ3(sθ ,s3) ... φθθ

 ,

where φ j j∗(s j,s j∗) (with j, j∗ = 1, ...,θ and j 6= j∗) denotes the cross-temporal correlation
of the state variable between individuals which is a function of locations s j and s j∗ of
individuals j and j∗. Alternatively, we could think of parameter φ j j∗(s j,s j∗) as a spatial
component determined by the distance between s j and s j∗ . The closer two individuals are,
the higher the value of their spatial correlation is.

Finally, we focus on Q , the covariance matrix of the error term in the state equation.
The general form of the matrix is the following:

Q
θ×θ

=


σ2

1 E(η1η2) E(η1η3) ... E(η1ηθ )

E(η2η1) σ2
2 E(η2η3) ... E(η2ηθ )

E(η3η1) E(η3η2) σ2
3 ... E(η3ηθ )

... ... ... ... ..

E(ηθ η1) E(ηθ η2) E(ηθ η3) ... σ2
θ

 ,

where the diagonal elements σ2
j are the variances of error term of the state equation. The

off-diagonal elements E(η jη j∗) (where j, j∗ = 1, ...,θ and j 6= j∗) represent covariances,
with E(η jη j∗) = E(η j∗η j) by symmetry of Q. There are several alternatives for the formu-
lation of Q presented in Table 4:

Off-diagonal elements

E(η jη j∗) = 0 E(η jη j∗) 6= 0 Spatial correlation

Notation Parameters Notation Parameters Notation Parameters

Diagonal σ2
j = c Q1 1 Q2

θ(θ+1)
2 − (θ −1) Q5

θ(θ+1)
2 − (θ −1)

elements σ2
j 6= c Q3 θ Q4

θ(θ+1)
2 Q6

θ(θ+1)
2

Table 4: Possible formulations of Q.

The difference between non-zero E(η jη j∗) and φ j j∗ is that the former captures the effect
of a contemporaneous shock, as opposed to the latter which pertains to the effect of a
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relationship that persists through time. Consider the case of a group of water utilities
affected by a severe drought at one particular time period. The effect of that drought would
enter the model through the off-diagonal elements of Q. However, if two neighboring
utilities are competing over the same water resources, a conflict that is likely to persist
through time, then this spatial correlation would affect their performance every year and
hence would enter the model through the off-diagonal elements of T in formulations T5 or
T6.

3 The 2CCEM algorithm

Another contribution of our work is the development of the 2CCEM algorithm which is
a novel approach to the estimation of dynamic factor models. Section 3.1 explains the
need for the development of the algorithm. Each of the two cycles is analyzed in detail in
sections 3.2 and 3.3.

3.1 Challenges and a new approach

The high dimensionality of the data vector Yt makes estimation of our model rather prob-
lematic. Usual Newton-type gradient methods do not work in this situation creating the
need for a novel estimation approach. The likelihood function of the model described in
(1) and (2) is:

L(B, D, T, Q;Y1, ...,Yn) =
n

∏
t=2

f (Y1) fY(Yt ; [B, D, T, Q] |Ỹt−1), (42)

where Ỹt−1 represents the set of past observations Y1, ...,Yt−1 and the model parameters to
be estimated are B, D, T and Q. We introduce the 2CCEM algorithm that makes estimation
of the model specified in (1) and (2) feasible through an iterative two-cycle process.

The 2CCEM algorithm is an extension of the EM algorithm developed by Dempster
et al. (1977). The EM algorithm has been widely used in cases where maximization of the
likelihood function cannot occur because of missing or unobserved data. The algorithm
is comprised of an Expectation and a Maximization step, referred to as E-step and M-step
respectively. The former replaces the unobserved quantities with their expected values
while the latter maximizes the likelihood conditional on those expectations (McLachlan
and Krishnan, 1996, p. 13). Shumway and Stoffer (1982) were the first to use the EM
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algorithm to estimate state space models, similar to the one specified in (1) and (2).
We let the complete-data log likelihood function of ΨΨΨ, if Yt and Ut were fully observ-

able, be:
logLc(ΨΨΨ) = log fc(Yt , Ut ;ΨΨΨ), (43)

where the subscript c denotes the complete-data likelihood. In a conventional Maximum
Likelihood Estimation (MLE) setting, maximization of (43) would occur by differentiating
the function with respect to its parameters and setting the derivative equal to zero:

∂ log fc(Yt , Ut ;ΨΨΨ)

∂ΨΨΨ
= 0.

However, since we only observed Yt and as a result the observed data are incomplete
such a maximization cannot be performed. At this point, a traditional EM algorithm pro-
ceeds by replacing the complete-data log likelihood with the conditional expectation of the
incomplete-data given Y.

3.2 First cycle of the 2CCEM

The 2CCEM algorithm starts by partitioning the vector of unknown parameters ΨΨΨ into
(ΨΨΨ1,ΨΨΨ2) where ΨΨΨ1 contains the elements of B and D that need to be estimated, while ΨΨΨ2

contains the relevant elements of T and Q. Partitioning the parameter space is a common
practice in the EM algorithm literature (Meng and Van Dyk, 1997; McLachlan and Peel,
2000, p. 245) since it facilitates the maximization process. We let ΨΨΨ

(k−1)
1 and ΨΨΨ

(k−1)
2

denote the initial values of ΨΨΨ where k denotes the number of iterations in the estimation
process with k = 1, ...,m. Following the terminology of Meng and Van Dyk (1997) we use
the term “cycle” as an intermediary between a “step” and an “iteration”. In the case of our
2CCEM algorithm, every iteration is comprised of two cycles. The first cycle includes three
steps (one E-step and two M-steps) and estimates ΨΨΨ1, while the second cycle is composed
of two steps (one E-step and one M-step) and estimates ΨΨΨ2. During the kth iteration of the
first cycle, the E-step of the 2CCEM algorithm requires the following calculation:

ZΨΨΨ1(ΨΨΨ1;ΨΨΨ
(k−1)
1 , ΨΨΨ

(k−1)
2 ) = EΨΨΨ1

{
logLc (ΨΨΨ1) |Y, ΨΨΨ

(k−1)
1 , ΨΨΨ

(k−1)
2

}
. (44)
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The first M-step involves differentiating ZΨΨΨ1(ΨΨΨ1;ΨΨΨ
(k−1)
1 , ΨΨΨ

(k−1)
2 ) with respect to ΨΨΨ1 in

order to obtain ΨΨΨ
(k/2)
1 :

ZΨΨΨ1(ΨΨΨ
(k/2)
1 ;ΨΨΨ

(k−1)
1 , ΨΨΨ

(k−1)
2 )≥ ZΨΨΨ1(ΨΨΨ1;ΨΨΨ

(k−1)
1 , ΨΨΨ

(k−1)
2 ), (45)

The second M-step maximizes ZΨΨΨ1 with respect to B and D using ΨΨΨ
(k/2)
1 as the initial value

of the parameters. Our goal, in this step, is to obtain ΨΨΨ
(k)
1 such that:

ZΨΨΨ1(ΨΨΨ
(k)
1 ;ΨΨΨ

(k−1)
1 , ΨΨΨ

(k−1)
2 )≥ ZΨΨΨ1(ΨΨΨ

(k/2)
1 ;ΨΨΨ

(k−1)
1 , ΨΨΨ

(k−1)
2 ) (46)

3.2.1 Estimation of the first cycle

As mentioned in section 2.3 since the state variable is unobserved, all the information that
is observed is contained in Y. Following the notation presented in McLachlan and Peel
(2000, p. 242) the sample covariance matrix of Y, ΣΣΣ, is denoted by Cyy, where:

Cyy = YY′. (47)

Cyy is the main building block in the E-step of the first cycle of the 2CCEM algorithm
described in (44). Equation (44), also appearing in a traditional EM algorithm, treats the
unobserved state vector Ut as missing data while iteratively maximizing ZΨΨΨ1 assuming
that Ut is observed (Rubin and Thayer, 1982). This first E-step of the 2CCEM algorithm
requires the calculation of the expected value of the sufficient statistics, namely:

E(YYT |Y) = Cyy,

E(YT U|Y) = Cyyγγγ,

E(UT U|Y) = γγγ
T Cyyγγγ +nωωω, (48)

where:
γγγ =

(
BBT +D

)−1 B, (49)

and:
ωωω = I− γγγ

T B. (50)

The distribution of the unobserved state vector Ut , conditional on Yt , is given by:

Ut |Yt ∼ N(γγγT Yt , I− γγγ
T B). (51)
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Note that (48)-(50) constitute the E-step of the first cycle of the 2CCEM algorithm illus-
trated in (44). The subsequent first M-step, illustrated in (45), is identical to the M-step of
the traditional EM algorithm which involves plugging the sufficient statistics (48) into ZΨΨΨ1

and differentiating with respect to ΨΨΨ1. The functional form of ZΨΨΨ1 is:

log Lc(ΨΨΨ1) =
n
2

log
{
|D−1|+ log|Q−1|

}
− 1

2

n

∑
t=1

{
(yt −Bût)

T D−1(yt −Bût)− (ût+1−Tût)
T Q−1 (ût+1−Tût)

}
. (52)

Equating the first derivatives of ZΨΨΨ1 to zero yields:

B(k/2) = Cyyγγγ
{

γγγ
T Cyyγγγ +nωωω

}−1, (53)

and
D(k/2) = n−1diag

{
Cyy−CyyγγγBT} , (54)

where B(k/2) and D(k/2) represent the updated values ΨΨΨ
(k/2)
1 . We introduce a second M-

step, where (52) is maximized, through a Newton-Raphson algorithm, with respect to ΨΨΨ1,
using (53) and (54) as initial values. Upon convergence of this maximization we obtain the
final updated values for ΨΨΨ

(k)
1 .

Our approach builds on the Expectation Conditional Maximization (ECM) algorithm
introduced by Meng and Rubin (1993) which is itself an extension of the EM algorithm
(Dempster et al., 1977). The ECM algorithm uses the same first M-step as we do, but in
the second M-step maximizes the log likelihood with respect to one parameter, holding the
value of the other parameter fixed to the estimate of the first M-step.

3.3 Second cycle of the 2CCEM

In the E-step of the second cycle we estimate ΨΨΨ
(k)
2 . We proceed by calculating:

ZΨΨΨ2(ΨΨΨ2;ΨΨΨ
(k)
1 , ΨΨΨ

(k−1)
2 ) = EΨΨΨ2

{
logLc (ΨΨΨ2) |Y, ΨΨΨ

(k)
1 , ΨΨΨ

(k−1)
2

}
. (55)

In other words, the E-step involves forming the expected complete-data log likelihood by
conditioning ZΨΨΨ2 on the estimates ΨΨΨ

(k)
1 . The subsequent M-step involves differentiating

ZΨΨΨ2(ΨΨΨ2;ΨΨΨ
(k)
1 , ΨΨΨ

(k−1)
2 ) with respect to ΨΨΨ2. We choose ΨΨΨ

(k)
2 such that:

ZΨΨΨ2(ΨΨΨ
(k)
2 ;ΨΨΨ

(k)
1 , ΨΨΨ

(k−1)
2 )≥ ZΨΨΨ2(ΨΨΨ2;ΨΨΨ

(k)
1 , ΨΨΨ

(k−1)
2 ). (56)
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Upon maximization of ZΨΨΨ2 , the estimate ΨΨΨ
(k)
2 is used in the E-step of the first cycle. This

iterative maximization process will continue until convergence of both likelihood functions
ZΨΨΨ1 and ZΨΨΨ2 is achieved.

3.3.1 Estimation of the second cycle

The functional form of ZΨΨΨ2 is:

logLc(ΨΨΨ2) = n− n
2

log2π− 1
2

n

∑
t=1

[
log |Ft |+v′tF

−1
t vt

]
, (57)

where vt is the one step ahead forecast error and Ft is the variance of the one step ahead
forecast error. The log likelihood in (57) is also known as the prediction error decompo-
sition (Harvey, 1991, p. 126). Quantities, vt and Ft can be estimated with the use of the
Kalman filter, which is a set of recursions that allow our knowledge of the system to be up-
dated every time an additional observation Yt is added to the model (Kalman, 1960; Durbin
and Koopman, 2001, p. 11). Let Ỹt−1 be the set of past observations Y1, ...,Yt−1 and as-
sume that Ut |Ỹt−1∼N(Ût ,Pt), where Ût and Pt are to be determined. If we assume that Ût

and Pt are known, then our goal is to calculate Ût+1 and Pt+1 when Yt is introduced. The
set of filtering equations that are required for the calculation of Ût+1 and Pt+1 is illustrated
below:

vt = yt−BÛt, Ft = BPtB′+D,

Kt = TPtB′F−1
t , Lt = T−KtB,

Ût+1 = TÛt +Ktvt , Pt+1 = TPtL′t +Q,

(58)

where Ût is the filtered estimate of the unobserved state vector conditional on Ỹt−1. Note
that step (55) involves plugging the ML estimates B(k) and D(k), obtained in the first cycle
of the 2CCEM algorithm, into the filtering equations (58). Once vt and Ft are calculated,
(57) is maximized with respect to ΨΨΨ2 , as illustrated in (56).

In contrast to the filtering process described above, smoothing considers both prior in-
formation as well as information after time period t. In other words, the smoothed estimate
of Ut incorporates information from the entire sample, Y1, ...,Yn. The set of smoothing
equations for the state vector is:
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rt−1 = B′F−1
t vt +L′rt , Ũt = Ût +Ptrt−1,

Nt−1 = B′F′tB+LtNtLt , Vt = Pt−PtNt−1Pt ,
(59)

where Ũt represents the smoothed estimate of the unobserved index and Vt is the variance
of the smoothed estimate (deJong, 1989; Koopman, 1993).

4 Application

We apply our model to a dataset of water and sanitation utilities (hence forth referred to
as water utilities) in order to estimate a dynamic performance index. Section 4.1 provides
background information regarding the data and explains the role of water utilities in de-
veloping countries. In section 4.2 we present previous relevant work with regards to water
utility index formation and discuss our contributions. Section 4.3 outlines the process of
initialization of the 2CCEM algorithm and presents estimation results. Finally, we conduct
post-estimation tests and simulations that ensure the uniqueness of the estimated smoothed
index.

4.1 Data

Our data are obtained from the International Benchmarking Network (IBNET) of Water
and Wastewater Utilities (IBNET, 2005). IBNET was launched in 1996 with the goal of
facilitating a standardized comparison amongst water utilities with respect to their finan-
cial and operational performance. It is a publicly available on-line database where utility
executives can upload information on various indicators regarding the utility they manage.
The information is available to a variety of stakeholders and policy makers. The IBNET
database includes 105 indicators that can be grouped in financial, operational and quality
of service indicators. The data pertain to utilities from more than 100 countries with the
time dimension spanning from 1994 to 2012 (IBNET, 2005). For illustration purposes we
apply our model to a random sample of eight IBNET utilities (one from Armenia, three
from Moldova and four from Peru), with each utility measured over a period of ten years
(i.e. 1998-2007).

Water utilities in low and middle income countries are organizations that deliver drink-
ing water and sanitation services to the public and are either government owned or managed
by the state. This provides a financial safety net that shields utilities from competitive pres-
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sures. For example, a utility would never be left to go bankrupt given the importance of
the services it delivers. In fact, it is very common for governments to provide “bailout
packages” in order to improve the financial stability of utilities. Moreover, utilities do not
operate as for-profit companies. Their goal is to provide affordable services while main-
taining and operating a large infrastructure network. Those characteristics make water
utilities unique in many ways, one of which is the difficulty in assessing their financial and
operational health. Unlike companies that operate in competitive markets, there exists no
standardized index that measures the performance of water utilities. Nevertheless, there are
individual indicators, such as cost recovery, population coverage, quality of water sold or
tariff structure, that could be considered when assessing a utility’s effectiveness and finan-
cial viability. However, the variety of important indicators that are relevant in this effort
makes the development of a comprehensive performance index rather challenging (van den
Berg and Danilenko, 2010).

4.2 The APGAR score vs. a dynamic smoothed index

A critical issue in constructing indices is the weighting scheme applied to the aggregated
variables. Those weights are often determined based on expert knowledge, which makes
the resulting index rather subjective. In the case of water utilities such a subjective index
was created by van den Berg and Danilenko (2010). The authors develop a static index
whose aim is to assess the health of a utility based on a weighted sum of six indicators.
Van den Berg and Danilenko call that index the “APGAR score” after Virginia Apgar who
in 1953 introduced a similar measure, formed as the weighted sum of several indicators, to
assess the health of newborn babies (Apgar, 1953). The APGAR score developed by van
den Berg and Danilenko considers six continuous indicators, presented in table 5.
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Indicator Formula

Water coverage Population with easy access to water services
Total population under utility’s nominal responsibility ×100

Sewerage coverage Population with sewerage services
Total population under utility’s nominal responsibility ×100

Non revenue water Volume of water produced in m3-Volume of water sold in m3

Length of water distribution network in km
365

×1,000,000

Affordability

Total operating revenue
Exchange rate

GNI per capita×Population with access to water×1,000

Collection period Year end accounts receivable
Total Operating Revenue×365

Operating Cost Coverage Total Operating Revenue
Total Operating Expenses

Table 5: The six APGAR score indicators. Source: van den Berg and Danilenko, 2010.

Our sample of eight utilities from the IBNET database considers the same six indicators
that van den Berg and Danilenko use in their APGAR score. Table 6 presents the descriptive
statistics for our sample.

Indicator Q1 Median Q3

Water Coverage 54% 69% 94%

Sewerage Coverage 37% 47% 73%

Non Revenue Water 18.24 m3/km/day 32.97 m3/km/day 149.82 m3/km/day

Affordability .76% 1.03% 2.25%

Collection period 90 days 198 days 297 days

Operating Cost Coverage ratio 0.81 0.93 1.03

Table 6: Descriptive statistics of indicators for the eight utilities in our sample. Source:
IBNET database.

It is worth noting the disparity between water and sewerage coverage in our sample.
Overall, 69% of the urban population within the jurisdiction of the utilities in the sample
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has access to water. On the other hand, the relevant figure for access to sanitation services
is only 47%. Table 6 suggests that the typical utility loses 33 m3 per kilometer of water net-
work per day either due to physical or commercial reasons. The latter could include theft,
illegal connections and/or inefficiencies in billing (van den Berg and Danilenko, 2010).
Furthermore, median expenditure for water and wastewater services accounts for approxi-
mately 1% of national GNI per capita in the countries included in our sample. Finally, the
two indicators that capture financial sustainability are collection period and operating cost
coverage. The former, with a median value of 198 days, suggests that the typical utility
needs 198 days to collect payments from customers. Operating cost coverage, with a me-
dian of 0.93, illustrates that the typical utility cannot cover its costs through its operating
revenues.

In order to calculate the APGAR score van den Berg and Danilenko (2010) convert
the indicators presented in table 5 into discrete variables using a series of thresholds based
on expert knowledge. Table 11 in the Appendix presents the details of the transformation.
The discrete indicators are then summed to create the final APGAR score of a utility. While
the methodology developed by van den Berg and Danilenko is very important in identifying
utilities that are at risk, the results of their APGAR score are constrained by the subjectivity
of the thresholds used. In addition, the APGAR score is a static index that rates every
utility based on its performance at a specific time period, without considering previous
performance.

Our goal is to extend the APGAR score of van den Berg and Danilenko by estimating
a performance index using the generalized dynamic factor model for panel data presented
in section 2. The advantage of our index is twofold: 1) It is dynamic as performance in
every time period is measured by a smoothed index that includes information from the
entire sample; 2) We do not use subjective weighting schemes for the six components of
the index. Instead the estimated factor loadings are used to rank the components of the
index with regards to their importance.

The development of such a dynamic performance index serves several purposes. It can
be used as a benchmarking tool for utility managers and policy makers since it succinctly
communicates whether the utility has been performing well or not. Furthermore, it allows
managers to compare their company’s effectiveness vis à vis other water providers at the
national, regional or even international level. Finally, the trend of the index can identify
inefficient practices and reinforce successful policies.
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4.3 Initial values

In section 2.5 we specified several scenarios with respect to parameter formulation. In this
application we have chosen to use scenarios B1, D1, T1 and Q1. This parameter formulation
is equivalent to the case illustrated in section 2.4.1, the only difference being that here we
are considering multiple utilities as opposed to just one. Since no correlation exists between
utilities the only restriction required for the identifiability of the model is that presented in
(38). Each of the parameters and their initial values is discussed below.

The choice of B1 suggests that:

1. The factor loadings for every utility are identical. This is a plausible assumption,
since we estimate an index that can be used as a benchmarking tool among utilities.
Having a different set of factor loadings for each utility would not allow comparisons
between utilities.

2. The indicators of utility j do not load on the factors of utility j∗. This assumption is
made to facilitate the interpretation of the factor loadings with regards to their effect
on the performance index.

We specify the following initial value for B, denoted by B0:

B0

(θ×p)×θ

=


b0 0 0 ... 0
0 b0 0 ... 0
0 0 b0 ... 0
... ... ... ... ...

0 0 0 ... b0

 , (60)

where b0 =
(

1
p

)
ip . In section 2.4.1 we discussed the need to consider only the positive

roots of the factor loadings. This restriction will not affect the estimation of the smoothed
index so long as all of the indicators are positively correlated to the unobserved state vector.
We easily accomplish this by multiplying non-revenue water, affordability and collection
period by -1, since those three indicators were negatively correlated to the performance
index. Furthermore, to enable comparisons between the factor loadings, all indicators are
standardized.

For the covariance matrix of the idiosyncratic errors, we choose formulation D1 such
that:

D
(θ×p)×(θ×p)

= diag(d j), (61)
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where each d j matrix is diagonal and identical for all j utilities. This formulation suggests
that the idiosyncratic errors of the indicators are the same for each utility. The initial value
of D denoted by D0 is calculated as follows:

D0 = diag
{

Cyy−
(

B0×
(
B0)T

)}
, (62)

where Cyy will have the following form:

Cyy
(θ×p)×(θ×p)

=


Var(Y1,t) 0 ... 0

0 Var(Y2,t) ... ...
...

... . . . ...
0 ... ... Var(Yθ ,t)

 , (63)

with every element along the diagonal of Cyy, Var(Y j,t), being a p× p covariance matrix.
Note that (62) was determined after solving (5) for D and incorporating the result in (40).
Given the specification of B0 and D0, the first cycle of the 2CCEM algorithm outlined in
(44)-(46) will yield ML estimates of B and D. Note that during the first iteration of the first
cycle of the 2CCEM algorithm we set T = I and Q = 0. In addition, we use formulations
T1 and Q1. The ML estimates of B and D from the first cycle of the 2CCEM algorithm are
used to obtain the initial value of T by running the following Vector Autoregression (VAR):

Ut+1 = TUt +ηηη t . (64)

In order to initialize the Kalman filter we need to make some assumption about the
distribution of U1, the value of the state vector during the first period. deJong (1991)
proposes the use of a diffuse prior density whereby U1 ∼ N(Ŭ1, P1) with Ŭ1 fixed at an
arbitrary value and P1→ ∞. We retain the assumption that P1→ ∞ but substitute Ŭ1 with
the mean of U1|Y1 which, from (51), is equal to γγγT Y1.

4.4 Results

The estimated parameters are presented in Table 7. The transformation discussed in section
4.3, has resulted in positive values for the estimated factor loadings. In addition, the fact
that the indicators are standardized, makes comparisons between factors loadings mean-
ingful. Our results indicate that water coverage, affordability and collection period are the
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Indicator B D

Water Coverage .5779 .8515

Sewerage Coverage .2383 .9747

Non Revenue Water .38447 .9343

Affordability .5372 .8717

Collection period .4835 .89604

Operating Cost Coverage .2376 .9749

T .78415

Table 7: Factor loadings, variance of the error term and AR(1) coefficient estimates.

three indicators that affect the performance index the most.
Water coverage is ranked as the most important indicator, suggesting that providing wa-

ter access to as many people as possible should be the primary focus of a water utility. The
second most important priority should be keeping water provision affordable. Collection
period ranks third, suggesting that being able to promptly collect payments from customers
is a very important indicator for a utility’s performance. The fourth most important indica-
tor is non-revenue water. By minimizing leakages through the network as well as reducing
the amount of water for which it is not getting any compensation a utility can help bolster
its operational performance and increase the value of the smoothed index. Sewerage cov-
erage ranks fifth with a low factor loading suggesting that provision of sanitation services
is not critical in judging a utility’s performance. Operating cost coverage is the least im-
portant out of the six indicators. This result underlines the fact that due to the nature of the
industry, public water utilities can be expected to operate at a loss.

Figure 1 illustrates the smoothed estimate of the performance index for each of the eight
utilities in the sample. The index is denoted by a bold red line while the six standardized
indicators are denoted by the dotted lines. When referring to the smoothed index it is
implied that the estimate includes information from the entire sample. For example, the
performance of utility 1 in the year 2000 is assessed both with respect to how that utility
did on that specific year, but also with respect to its performance before and after 2000.

Figure 2 compares the smoothed index, estimated by our model, to the APGAR score
of van den Berg and Danilenko analyzed in section 4.2. It is clear that the smoothed index
exhibits less variability than the APGAR score. The latter evaluates a utility only on the
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Figure 1: Standardized indicators and smoothed index for the 8 water utilities.
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Figure 2: Smoothed index vis a vis the APGAR score for the 8 water utilities.
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basis of its performance in a specific year and is hence highly volatile. In all panels of
Figure 2 we detect significant jumps in the value of the APGAR score from year to year.
On the other hand, the smoothed index evaluates a utility’s performance using information
from the entire sample. Thus, poor performance in a specific year is not penalized as much.
For example, the APGAR score of utility 1 drops drastically between 2004-2006. However,
the value of the smoothed index does not decrease as much as the APGAR score given the
previous performance of the utility. As a result, the smoothed index is a more effective
planning and assessment tool for utility managers.

Convergence of the 2CCEM algorithm is achieved after 25 iterations. Figure 3 illus-
trates the value of the log-likelihood for both cycles of the 2CCEM algorithm. The top
panel, labeled ZΨΨΨ1 , pertains to equation (52) while the bottom panel, labeled ZΨΨΨ2 , pertains
to equation (57).
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Figure 3: Log Likelihood values of ZΨΨΨ1 and ZΨΨΨ2 .

4.5 Diagnostic checking

One of the main assumptions of our model is that error terms of both the observation
equation and the state equation are normally distributed. This assumption can be verified
by considering the one step ahead forecast errors presented in (58). Durbin and Koopman
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(2001, p. 33) consider the standardized one-step ahead forecast errors ξξξ t given by:

ξξξ t =
vt√
Ft
, where t = 1, ...,n. (65)

The computation of ξξξ t involves calculating the Cholesky decomposition of Ft for every
time period t. The sampling distribution of ξξξ t is presented in figure 4. Normality of the
sampling distribution can be assessed by the skewness and kurtosis statistics, denoted by
√

b1 and b2 respectively (D’Agostino and Pearson, 1973). The statistics are defined as:√
b1 =

m3√
m3

2

, b2 =
m4

m2
2
,

where m2, m3 and m4 are the second, third and forth moments of the standardized forecast
errors. Bowman and Shenton (1975) suggest that the skewness and kurtosis statistics are
asymptotically normally distributed as:

√
b1 ∼ N(0,

6
n
), b2 ∼ N(3,

24
n
).

Furthermore, the two statistics can be combined in an omnibus test using:

X2(
√

b1)+X2(b2),

where X(
√

b1) and X(b2) are standardized values of the skewness and kurtosis statistics
respectively. The statistic of the omnibus test is distributed as a χ2 with two degrees of
freedom (Bowman and Shenton, 1975). The estimated values for the skewness, kurtosis
and omnibus test statistics are presented in table 8. The P-value of b2 suggests that we fail
to reject the null hypothesis of normal kurtosis. In addition, at the 1% level of significance
the omnibus test further supports the normality of ξξξ t . However, the null hypothesis of
normal skewness is rejected.
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Figure 4: Standardized one step ahead forecast errors.

Parameter value P-value

Skewness -0.327 0.005

Kurtosis 3.072 0.761

Omnibus test 7.793 0.020

Table 8: Estimated skewness, kurtosis and omnibus test statistics.

4.6 Confidence Intervals of factor loadings

In order to make any inference regarding the factor loadings, we estimate the asymptotic
variance of those parameters. The asymptotic covariance matrix of the ML estimator can be
computed by evaluating the inverse of the matrix of second derivatives at the ML estimates
(Cramer, 1946, p. 489; Amemiya, 1985, p. 123; Greene, 2008, p. 481). Following this
methodology, we calculate the second derivative of ZΨΨΨ1 with respect to B as follows:

Var(B) =
(
−

∂ 2ZΨΨΨ1(ΨΨΨ1;ΨΨΨ)

∂B∂BT

)−1

=

(
2

n

∑
t=1

ûT
t D−1ût

)−1

.

The complete derivation of the asymptotic variance can be found in section 6.3 of the
Appendix. Table 9, shows the variance of the factor loadings and the corresponding 95%
confidence intervals.
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Indicator B Var(B) 95% Confidence Interval

Lower bound Upper bound

Water Coverage .5779 .00319 0.4679 0.6878

Sewerage Coverage .2383 .00366 0.1206 0.3559

Non Revenue Water .3845 .00352 0.2693 0.499

Affordability .5372 .00327 0.4250 0.648

Collection period .4835 .00337 0.3707 0.596

Operating Cost Coverage .2376 .00366 0.1199 0.3552

Table 9: Confidence intervals of the estimated factor loadings.

4.7 Uniqueness of the smoothed index

To verify uniqueness of the smoothed index we conduct a series of simulations. We create
five thousand bootstrapped samples from our sample of eight utilities. The parameters
of each bootstrapped sample are then estimated using the 2CCEM algorithm and a set of
smoothed indices is obtained from every estimation. Those bootstrapped indices are then
compared, on a utility by utility basis, with the indices estimated from the original sample.
If the parameters of our model are uniquely estimated this would suggest that both the
bootstrapped and the original smoothed indices are equal, or else, their difference is equal
to zero. Figure 5 illustrates the sampling distributions of the difference between each of
the five thousand bootstrapped samples and the original sample. There are ten panels in
Figure 5 each representing the distribution of a particular year. Finally, Table 10 shows the
t-statistics of those differences. At the 5% level of significance we fail to reject the null
hypothesis of zero difference between the bootstrapped and the original smoothed indices.

5 Conclusion

Our paper contributes to the literature of DFMs by introducing a generalized dynamic fac-
tor model for panel data. Traditionally, DFMs have considered multiple attributes over
several time periods for a single individual, firm or economy (Stock and Watson, 1989).
Even when multiple individuals are considered (Forni et al. 2000) only a single unob-
served index, common for all individuals, is estimated for every time period. We develop
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Figure 5: Distributions of the difference between the bootstrapped and the original
smoothed indices.
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1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Utility -0.032 -0.170 -0.377 -0.598 -0.849 -0.861 0.015 0.788 1.581 1.721

1 0.974 0.865 0.706 0.550 0.397 0.390 0.988 0.431 0.115 0.086
Utility 0.014 -0.045 -0.180 -0.466 -0.798 -0.683 0.673 1.029 0.946 0.877

2 0.989 0.965 0.857 0.642 0.425 0.495 0.502 0.304 0.345 0.381
Utility 0.033 0.060 0.079 0.106 -0.121 -0.527 -0.631 -0.264 -0.729 -0.904

3 0.973 0.952 0.937 0.915 0.904 0.599 0.528 0.792 0.466 0.367
Utility 0.031 0.059 0.110 0.092 0.134 0.162 -0.762 -1.288 -1.000 -0.541

4 0.975 0.953 0.913 0.927 0.893 0.871 0.446 0.199 0.318 0.589
Utility 0.038 0.054 0.077 0.093 0.190 -0.175 -0.271 -0.630 -0.834 -1.025

5 0.970 0.957 0.939 0.926 0.849 0.861 0.787 0.529 0.405 0.306
Utility 0.028 0.052 0.187 0.545 0.798 0.027 -0.984 -1.181 -1.244 -1.209

6 0.978 0.958 0.852 0.586 0.426 0.978 0.326 0.238 0.214 0.228
Utility -0.046 -0.207 -0.237 -0.144 -0.150 -0.277 -0.024 1.019 1.497 1.567

7 0.963 0.836 0.813 0.886 0.881 0.782 0.981 0.309 0.135 0.118
Utility 0.040 0.117 0.171 0.173 0.191 -0.106 -0.675 -1.072 -1.174 -1.461

8 0.968 0.907 0.864 0.863 0.849 0.915 0.500 0.284 0.241 0.145

Table 10: T-statistics of differences between original and bootstrapped smoothed indices.
P-values appear in bold.

a model that estimates one index for every individual in every time period. In addition,
we introduce the 2CCEM algorithm which is a novel estimation process that can handle
panels of large dimensions. Previous dynamic factor models have used similar estimation
algorithms that relied on two separate cycles. In the first cycle of those models, the param-
eters are estimated using the EM algorithm. Then, conditional on those results, dynamic
estimates of the parameters are obtained using the Kalman filter (Stock and Watson, 2010).
However, those models achieve, at best, a conditional local maximum. The algorithm that
we propose has the advantage of iteratively searching for an unconditional global maxi-
mum. Within every iteration each cycle is conditioned on the results of the previous cycle.
Each iteration updates the estimated parameters until convergence is achieved. Therefore,
the convergence point of previous estimation processes in the dynamic factor literature is,
in principle, equivalent to the convergence point of only the first iteration of the 2CCEM
algorithm.

In this paper we apply the model on data from the IBNET database and estimate a
performance index for water and sanitation utilities. Future applications, where our model
could be applied, include rankings of public institutions such as hospitals and universities
(Grosskopf and Valdmanis, 1987; Marginson, 2007). In addition, our model can be used
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to estimate dynamic alternatives of existing static indices such as the Human Development
Index (Sen and Anand, 1994) or the Sustainability Index recently developed by the Feder-
azione Eni Enrico Mattei (FEEM, 2011).
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6 Appendix

6.1 Closed form solution for ΓΓΓY(0) and ΓΓΓY(1)

Obtaining a closed form solution for ΓΓΓY(0) requires replacing (25) into (28) which yields:

ΓΓΓY(0) = φφφ
2
(•)ΓΓΓY(0)+φφφ (•)BT∗T2

ΓΓΓU(0)B′−φφφ
2
(•)D+BT∗TΓΓΓU(0)B′+BQB′+D+φφφ

2
(•)D.

(66)
Applying the vec operator to (66) we get:

vec [ΓΓΓY(0)] =vec
[
φφφ

2
(•)ΓΓΓY(0)+φφφ (•)BT∗ΓΓΓU(0)B′+BT∗TΓΓΓU(0)B′+BQB′+D

]
=φφφ

2
(•)vec [ΓΓΓY(0)]+φφφ (•)vec

[
BT∗ΓΓΓU(0)B′

]
+vec

[
BT∗TΓΓΓU(0)B′

]
+vec

(
BQB′

)
+vec(D)

=φφφ
2
(•)vec [ΓΓΓY(0)]+φφφ (•) {(B⊗BT∗)vec [ΓΓΓU(0)]}

+{(B⊗BT∗T)vec [ΓΓΓU(0)]}+(B⊗B)vec(Q)+vec(D) (67)

Replacing (20) into (67) we have:

vec [ΓΓΓY(0)] =φφφ
2
(•)vec [ΓΓΓY(0)]+φφφ (•)

{
(B⊗BT∗) [I−T⊗T]−1 vec(Q)

}
+
{
(B⊗BT∗T) [I−T⊗T]−1 vec(Q)

}
+(B⊗B)vec(Q)+vec(D). (68)

Finally, solving 68 for vec [ΓΓΓY(0)] yields:

vec [ΓΓΓY(0)] ={[I−T⊗T]−1 vec(Q)
[
φφφ (•) (B⊗BT∗)+(B⊗BT∗T)

]
+(B⊗B)vec(Q)+vec(D)}

(
iθ p−φφφ

2
(•)iθ p

)
The closed form of ΓΓΓY(1), obtained in a similar way, is:

vec [ΓΓΓY(1)] ={[I−T⊗T]−1 vec(Q)
[
φφφ (•) (B⊗BT∗T)+(B⊗BT∗)

]
+φφφ (•)vec

(
BQB′

)
+φφφ

3
(•)vec(D)}

(
iθ p−φφφ

2
(•)iθ p

)
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6.2 APGAR thresholds

Table 11 illustrates the thresholds based on which each of the six continuous indicators
are transformed into discrete variables to form the APGAR score of van den Berg and
Danilenko (2010).

Indicator code in IBNET Indicator name Value
0 if ≤ 75%

1.1 Water Coverage 1 if between 75% and 90%
2 if > 90%
0 if ≤ 50%

2.1 Sewerage Coverage 1 if between 50% and 80%
2 if > 80%
0 if ≥ 40

6.2 Non Revenue Water 1 if between 10 and 40
2 if < 10

0 if > 2.5%
19.1 Affordability 1 if between 1% and 2%

2 if < 1%
0 if ≥ 180 days

23.1 Collection period 1 if between 90 and 180 days
2 if < 90 days

0 if < 1
24.1 Operating Cost Coverage 1 if between 1 and 1.4

2 if ≥ 1.4
Critically low ≤ 3.6

Overall APGAR score 3.6 <Fairly low≤ 7.2
Normal > 7.2

Table 11: APGAR score thresholds. Source: van den Berg and Danilenko (2010).
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6.3 Variance of the estimated factor loadings

In this part of the Appendix we present in detail the calculations required to derive the
asymptotic variance of the factor loadings. Our goal is to show that:

Asymptotic Var(B) =
(
−

∂ 2ZΨΨΨ1(ΨΨΨ1;ΨΨΨ)

∂B∂BT

)−1

=

(
2

n

∑
t=1

ûT
t D−1ût

)−1

.

We start by differentiating (52) with respect to B.

∂ZΨΨΨ1(ΨΨΨ1;ΨΨΨ)

∂B
=−

n

∑
t=1
−ûT

t D−1 (Yt−Bût)− (Yt−Bût)
T D−1ût =

=
n

∑
t=1

ûT
t D−1 (Yt−Bût)+(Yt−Bût)

T D−1ût .

The second derivative of (52) with respect to B is:

∂ 2ZΨΨΨ1(ΨΨΨ1;ΨΨΨ)

∂B∂BT =
n

∑
t=1
−ûT

t D−1ût− ûT
t D−1ût =−2

n

∑
t=1

ûT
t D−1ût .

Therefore: (
−

∂ 2ZΨΨΨ1(ΨΨΨ1;ΨΨΨ)

∂B∂BT

)−1

=

(
2

n

∑
t=1

ûT
t D−1ût

)−1

�
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