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Abstract

The economic value of energy storage to meet peak electricity demand is

analyzed with an emphasis on the role of demand uncertainty. The

concept of the stabilization value, which measures that part of the

benefit of the storage project which is due solely to the stochastic

demand components, is defined. The magnitude of the stabilization

value, relative to the overall value of energy storage, is evaluated in

terms of a simple model that accounts for the relevant characteristics

of the electric power utility's production mix. It is found that

neglecting the demand uncertainty can seriously bias the benefit

assessment of the storage project as well as the determination of the

optimal storage capacity.
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Stochastic Energy Demand and the Stabilization Value of Energy Storage

Yacov Tsur and Amos Zemel

1. Introduction

Electric power demand varies within a day, from day to day and between

seasons. Some of these variations follow deterministic trends while other

components are random, due, for example, to fluctuations in weather conditions.

In the absence of demand uncertainty, planning for a cost efficient energy supply

system to meet demand requirements is straightforward. With demand uncertainty

the problem is more involved.

In this paper we study how the uncertainty in electric power demand affects

the design of a cost efficient energy supply system. In particular, we

investigate the role of energy storage as a buffer against demand fluctuations.

Energy can be stored in various mechanical forms, e.g., a water reservoir

attached to a hydroelectric power station, compressed air or flywheel storage

systems. To be concrete, we concentrate here on pumped energy storage, in which

water is lifted (pumped) during off-peak periods and used to produce hydro-

electricity when demand peaks. With the appropriate investment, this form of

energy storage is often feasible. The analysis, however, applies to any form of

energy storage.

Due to economies of scale, investment in power stations (conventional or

nuclear) that provide the base energy supply (henceforth denoted base units) is

indivisible to a large extent. Moreover, operating the base units is inflexible

in that it is expensive to change their output rate. It is desirable, therefore,

to keep the production rate of the base units constant disregarding whether

demand is at a peak or a trough. The supply gap between the base units
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production and peak demand is typically filled with smaller back-up units, which

are cheaper to build but expensive to run, and by stored energy (if available).

In such a supply system, energy storage has a dual function: first, it

increases the supply of electricity during peak demand, thus substituting for

expensive back-up energy; second, it utilizes the surplus in base power during

off-peak periods, thus mitigating the "peak load problem" resulting from the

cyclical nature of energy demand (see Panzar, 1976). These concepts are well

known (see, e.g., Jackson, 1973). What has received less attention is the

observation that the benefits from energy storage are greatly enhanced when

energy demand has a stochastic component. The purpose of this paper is to

investigate the economic value of pumped energy storage which is due to the

stochastic components of energy demand: we call this value the stabilization

value of energy storage.

Why is this concept of interest? Suppose that a pumped energy project can be

implemented at some cost and a decision-maker wishes to evaluate the project

using benefit-cost approach. If the stabilization value is large relative to the

overall value of the project, then assuming that the energy demand is

deterministic and ignoring the random components provides a poor approximation of

the benefits and can seriously bias assessments of the development project. We

demonstrate below that the stabilization value of energy storage can be large.

Our description of the power production system and the associated decision

problem is, evidently, oversimplified. The simplification is manifested in the

schematic way in which the characteristics of the three components of the

production mix are presented. The description of the demand fluctuations is also

crude. Electric power demand varies within a day, between seasons and over the

years. In general, the daily, seasonal and long-run components of the demand all
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contain stochastic elements. In this work, however, we consider only stochastic

(short-run) daily variations, and abstract from the issue of demand management-a

main subject of peak load pricing models-by taking electricity demand to be

determined exogenously and requiring that supply meets demand at all times. In

spite of its crudeness, the model contains all the main ingredients required to

appreciate the role of the stabilization value in policy decisions regarding

energy storage. Extending the analysis to account for more realistic demand

patterns would complicate the presentation at no significant payoff in terms of

conceptual gains or new insights.

Stabilization and buffer concepts appear in almost any strand of economic

literature that involves uncertainty, the underlying idea being that the presence

of uncertainty enhances the economic value associated with stocks. Examples

include commodity markets (Newbery and Stiglitz, 1981), saving/consumption

decisions (Dreze and Modigliani, 1972), energy stockpiling (Devarajan and Weiner,

1989), and water supplies (Tsur, 1989, and Tsur and Graham-Tomasi, 1991). The

present effort extends this concept to the case of energy storage under

stochastic electricity demand.

A related body of literature appears under the heading of "peak load

pricing." Peak load problems occur when the same physical capacity is used to

produce a non-storable good during peak and off-peak demand periods (Panzar,

1976). Peak load pricing schemes are widely used to manage electricity demand

(see the collection of works edited by Aigner, 1984). Stochastic demand has been

studied by Carlton (1977). An extension that allows for storable goods has been

proposed, in the energy context, by Jackson (1973). Indeed, the stabilization

value concept developed here is a result of the presence of both a storable good

(energy) and stochastic demand. The present analysis, however, takes the peak
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load pricing scheme and the resulting demand pattern as given and focuses

attention on the role of demand uncertainty in energy storage policies.

Energy related studies have often considered the capacity credit to be

associated with renewable sources, such as wind or solar energy (Haslett and

Diesendorf 1981, Martin and Diesendorf 1982, Carlin 1983, Nozari, Lalli and

Kumin, 1986). In this context, the main issue is the role of uncertainty in the

production side and the related loss-of-load probability under various scenarios

involving energy storage and the connection to the general grid.

The next section lays out the decision problem. Section 3 presents the

optimal capacity choice of pumped storage under deterministic and stochastic

demand situations. In section 4, the stabilization value of energy storage is

defined and its contribution to the total benefit of the project is found to be

quite significant. Implications of this finding for energy storage policies are

discussed in Section 5.

2. The decision problem

The power supply system consists of base units, back-up units and stored

energy. Base units are large conventional (and nuclear) power stations; they

involve high investment costs but the production cost is relatively low. Back-up

units can come in a smaller scale, involve smaller investment costs but produce

expensive energy. These units are operated only when demand exceeds the base

capacity. Whenever available, stored energy can replace expensive back-up power

production.

Let b denote the capacity of the base units, measured in megawatt (MW).

Because it is expensive to change their production rate, base units produce at

the constant rate b. The variable cost of producing a unit of base energy is
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$WB/MWh.

During a day, power demand cycles between peak and low levels. We

schematically describe this diurnal variation in terms of two periods: a peak

demand period of duration T (hours) and integrated energy demand YH > B = bT, and

a low demand period with a corresponding energy demand YL. The uncertainty in

energy demand is incorporated by assuming that YH contains a random component.

Energy demand during low periods, YL, can also be random, but is assumed to be

sufficiently small so that the surplus base energy is large enough to recharge

the storage unit.

As a supply system is required to meet demand at all times, there must be

some idle capacity during periods of low demand. This is primarily composed of

back-up capacity which is cheaper than base capacity and can be turned off and on

at negligible costs. The unit production cost of back-up electricity is denoted

by $wK/MWh; as base energy is cheaper than back-up energy, WB < wK.

The high cost of producing back-up energy often makes it profitable to

substitute back-up energy with stored energy. Due to inherent inefficiencies in

the storage and discharge processes, the production cost associated with stored

energy, $wp/MWh, is somewhat larger than WB, but is still lower than wK. Of

course, replacing some back-up capacity by storage capacity entails investment

costs. Let C(X) represent the imputed (per day) investment cost associated with

a storage project of capacity X. The (short-run) decision problem consists of

finding the optimal storage capacity X, given B and the production and investment

costs. We study this decision problem, concentrating on the role of uncertainty

in energy demand.
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3. Optimal storage

In this section we compare the optimal choices of the storage capacity under

two scenarios. In subsection 3.1 the case of a stable (non stochastic) peak

demand, YH = M > B is considered. In subsection 3.2 we analyze the case where YH

is a random variable distributed according to a cumulative distribution function

F and the corresponding density f = F', with E{YH} = M and Var{YH} = <2. In both

cases we assume that the production costs wB < Wp < wK and the base energy

capacity B are given. The imputed investment cost function for a storage project

of capacity X is assumed to take the form C(X) = cX + c , where c0 and c are non-

negative constants, representing, respectively, the fixed investment cost and the

additional cost per unit of storage capacity.

3.1. Stable peak demand

Suppose that YH is stable at the mean, i.e., YH = M, and M > B. During

periods of low power demand, the base units can supply the entire demand. At

peak demand, pumped and back-up energy are needed to meet demand requirements,

and the corresponding cost consists of the sum of the costs associated with the

three components of the production mix. Base energy always contributes wBB to

the supply cost. The cost of pumped energy consists of the investment cost

co + cX and the supply cost, which depends on whether M-B s X or M-B > X. In the

former case, M-B units of pumped energy are supplied and contribute wp(M-B) to

energy cost. In the latter case M-B > X and the entire storage capacity X is

supplied at a cost of wpX. Finally, back-up units supply the residual demand

M-(B+X) only when M-B > X, in which case they incur the cost wK[M-(B+X)].

Using the indicator function I( *) that takes the value one when its argument

is true and zero otherwise, the energy supply cost for positive storage capacity
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X can be compactly expressed as

GM(X) = wBB +wp(M-B)I(M-BsX) + wpXI(M-B>X) + WK[M-(B+X)]I(M-B>X)+cX+co (3.1)

When X=O, the investment cost term should be dropped, and GM undergoes a

discontinuity, the jump being equal to co . After some algebraic manipulations,

Eq. (3.1) reduces to

GM(X) = constant + (wK-wp)[M-(B+X)]I(M-B>X) + cX X>O

describing a piecewise linear function with a slope discontinuity at X=M-B, (the

"constant" is independent of X). The optimal storage capacity for stable peak

demand is easily found:

X* M - B if (WK-Wp-C)(M-B) 2 (3.2)

XM 0 otherwise

The cost saving due to the storage project, which we call the storage value for

stable demand and denote by VM, is given by GM(O) - GM(XM). To calculate VM, use

Eqs. (3.1)-(3.2): GM(M-B) = WBB + wp(M-B) + c(M-B) + c o and GM(O) = WBB + WK(M-

B). Hence:

VM = {(wK-wP-c)(M-B) - cO if (WK-Wp-c)(M-B) 2 co ()

(0 otherwise

Note the all-or-nothing character of the solution (3.2) in this case. The

optimal storage capacity obtains the constant level M - B even when VM is very

small. In this region, even small errors in the value of M can cause XM to

change abruptly from 0 to M - B. This unstable behavior disappears when the

uncertainty in the peak demand is taken into account. The significance of the

factors in the criterion of Eq. (3.2) is easily recognized: First, one must have

c < wK-wP so that the gain from replacing a unit of back-up energy by pumped

energy more than compensates for the unit investment cost c. Then, the potential

replacement capacity M - B must be large enough to regain the fixed investment
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cost CO.

3.2. Uncertain peak demand

When YH is a random variable distributed according to F, the cost of energy

supply depends on the realization of YH. The storage choice is determined so as

to minimize expected cost. Following Eq. (3.1), the energy supply cost given

that demand equals YH is

Gy (X) = WBB +WP(YH-B)I(YH-SX+B) +WpXI(YH>X+B) +WK[YH-(B+X)]I(YH>X+B) +cX+c 0 .

Taking expectation with respect to YH yields

X+B

G(X) = E{GYH(X)} = WBB + Wp J sf(s)ds - wpB[F(X+B)-F(B)] + wpX[1-F(X+B)] +

B

+ WK f sf(s)ds - WK(B+X)[1-F(X+B)] + cX + co, (3.4)

X+B

The first order condition for a minimum requires that optimal storage X

satisfies

aG(X )/a8X = wp[l-F(X +B)] - WK[1-F(X +B)] + c = 0,

from which we obtain

F(X +B) = 1 - c (3.5)
WK-w P '

provided F(B) < 1 - c or, put differently, c < (wK-Wp)[1-F(B)]; otherwise,

X = 0. It is easy to verify that a2G(X )/aX2 = (wK-wp)f(X +B), thus X

minimizes G(X) whenever f(X +B) > 0 (as wK-WP > 0). Yet, the condition

c < (WK-Wp)[l-F(B)] is not sufficient to ensure a non vanishing solution. A

necessary condition that takes the co jump of G(X) at X=0 into account (in

analogy to the condition of Eq. 3.2), is derived below.

The value of a storage project of capacity X, denoted by V(X), equals the

cost saving it generates, i.e., V(X) = G(0) - G(X). Using (3.4)-(3.5) and some
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algebraic manipulations, we obtain

X +B

G(X') = wBB + wKfsf(s)ds - wp[l-F(B)]B - (wK-Wp) f sf(s)ds - cB + c0 .

B B

and

o00

G(O) = WBB + wKjsf(s)ds - WKB[1-F(B)].

B

Therefore,

X +B

V(X ) -G(O)-G(X ) = (wK-wp) J sf(s)ds - (wK-Wp)[1-F(B)]B + cB - CO. (3.6)

B

X +B

Using (wK-wp) J Bf(s)ds = (wK-Wp)[1-F(B)]B - cB, V(X ) reduces to

B

X +B

V(X ) = (wK-wp) f (s-B)f(s)ds - co. (3.7)

B

Since the decision not to undertake the project is always feasible, V(X )

must be positive for the project to be profitable. Thus, a necessary condition

for X > 0 is

X +B

co < (wK-wp) f (s-B)f(s)ds. (3.8)

B

When ar -> 0, f(s) is very small except for s - M. Thus, s-B can be approximated

by M-B and taken out of the integral which reduces to F(X +B) - F(B). Since M-B

>> (, F(B) can be neglected, while F(X +B) is given by Eq. (3.5). We find that

(3.8) reduces to the condition co < (w K-Wp-c)(M-B), derived for stable peak

demand with Y = M.
H

As a concrete example, suppose that YH is distributed uniformly over [a,p],
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with a and g two positive constants such that a < 3, B < (a+3)/2 = M, and

(3-a) /12 = C . Using (3.5) and F(x) = (x-a)/(i3-a), a s x - 13, we find

X = (1 wKw (-J ) + a - B = 1E 7 - ) M - B (3.9)

provided the right-hand side is positive; otherwise, X = 0. When ao = 0, this

result reduces to XM = M - B, derived above.

Using Eqs. (3.7) and (3.9), we also find

V(X ) = (w -w )X 2/8a - co if a s B (3.10)K P 0

V(X*) = (wK-Wp )[X -(a-B) ]/2(3-a) - c = (wK-wp-c)(X +a-B)/2 - c

= (wK-Wp-c)[M-B-3rcac/(wK-wp)] - c if a > B (3.11)

Again, for a- = 0, Eq. (3.11) reduces to VM = (WK-WP-C)[M-B] - Co, in agreement

with Eq. (3.3).

4. The stabilization value of energy storage

When YH is assumed to be stable at the mean, the storage capacity is chosen

at XM. If YH is truly random, this choice is sub-optimal: the optimal choice is

X , which yields the storage benefit V(X ). The cost associated with the sub-

optimal decision is the difference in cost saving between a project of capacity

XM and the optimal project. This difference, which we call the stabilization

value of energy storage and denote by SV, is given by SV = V(X ) - V(XM). The

stabilization value measures the economic benefit from energy storage which is

due to the random component of peak power demand. In terms of the production

costs, SV = G(XM)-G(X ), which is non-negative (since X minimizes G).

The formalism of Section 3 provides all the necessary relations to derive the

stabilization value for arbitrary demand distributions and system parameters. We

investigate first the magnitude of SV in terms of a specific example, in which

the distribution of YH is assumed to be uniform over its domain. Following
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Section 3, closed form expressions as well as some numerical examples are given.

It is found that the contribution of the stabilization value to the total benefit

of the project can be quite significant. Finally, the generalization of these

results to arbitrary demand distributions is presented.

Suppose that YH is distributed uniformly over [a,13], with a and 13 two

positive constants such that a < (3, B < (a+13)/2 = M, and (3-a) /12 = oa-. From

Eq. (3.9), X* = 1 2of 2 w-Cw) + M - B. When a _ B, Eq. (3.4) specializes to

V(X) = (wK-w )X(2X -X)/f[r - co , which reduces to V(X*) = (w -w )X*2/4T - co

in agreement with Eq. (3.10). Applying this result to XM = M - B =

X - w-w, we find

2„ ^2

SV = V(X ) - V(X M) = (wK-w )(X _X2)2/F4 = 3r((w -w - (4.1)

Since c - 0, the share of the stabilization value in the total value of energy
0

storage is bounded by the relation

sv (X _XM)2 equality holding when c = 0. (4.2)
* 0

V(X) X z

When a > B, the derivation is quite similar, although some care must be exercised

in the application of Eq. (3.4), since the lower limit of the integrals is a

rather than B and F(B) = 0 in this case. For X > a - B, one finds V(X) = V(X )

- (WK-WP)(X-X*) 2 /4-C, so Eq. (4.1) holds for a > B as well. The corresponding

bound on SV/V(X*) is, however, stronger. Using the first form of Eq. (3.11),

V(X ) = (w -w )X -(a-B)2]/2-a - co, we find

* 2 2-X)2
SV (XXM) X , equality holding when co = 0. (4.3)

V(X ) .X -(a-B) X -(XM-[)

It is seen that the relative importance of SV depends on a- and on the relative
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unit gain (w K-w)/c. For a- = M-B and (w K-w)/c = 10, we find from Eq. (4.2) that

SV/V(X ) 2 34%, whereas for (w -w )/c = 1.5, the same relation gives SV/V(X ) -2

186% Neglecting the random components of peak power demand entails a benefit

loss of more than 34% in the first example and more than 186% in the second, due

to the sub-optimal capacity choice. The latter result, (which means that

*

V(XM) < 0), manifests the basic difference between the two methods of assessing

the project benefit: when demand uncertainty is taken into account, the low

relative unit gain entails low optimal capacity, X _ 0.42(M - B). On the other

hand, assuming a stable peak demand would lead the planner to the choice of

*
XM = M - B, which is insensitive to such details. In the particular example at

hand, such a choice inflicts a negative expected value.

The discussion above is based on the assumption that both assessment schemes

suggest that the project is profitable (although they differ in the proposed

optimal capacity value). Indeed, under certain circumstances they may produce

conflicting conclusions on whether the project is worth while at all. If, for

example, the relative unit gain assumes the value (w K-w)/c = 1.25, Eq. (3.9)

gives a negative value for X , implying that the project should not be

undertaken. Assuming that the demand is stable, one might erroneously decide

that XM is the optimal choice if c0 is small enough.

Similar results can be obtained for arbitrary error distributions. Following

the derivation of Eq. (3.7), one finds

*
X +B

SV = (w K-w P) (s-M)f(s)ds if M < X*+B (4.4)

M

(with an obvious modification when M > X +B). Combining Eqs. (4.4) and (3.7), we obtain the

following bound
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*
X +B

f (s-M)f(s)ds

SV - , equality holding when c = 0. (4.5)
V(X ) X*+B 0

f (s-B)f(s)ds

B

It is seen that when M -B, XM - 0, the stabilization value constitutes nearly

the entire benefit of the storage project. Indeed, for B = M the storage project

will always be rendered unprofitable under the assumption of a stable peak

demand. Accounting for uncertainty, the solution of Eq. (3.5) can produce

positive values of X if (w K-w)/c is large enough. Again we see that neglect of

the demand uncertainty can lead to a wrong policy decision; in this case a

storage project of positive expected value will not be undertaken.

When X -XM is not too large, G(X) can be approximated by a second-order

Taylor expansion, G(X) - G(X ) + (w -w )f(X +B)(X-X ) /2, (see the discussion

following Eq. 3.5), in which case Eq. (4.4) simplifies to

SV _ (WK-Wp)f(X*+B)(X-X*)/2. (4.6)

It is easy to check that Eq. (4.6) specializes to Eq. (4.1) when f is the uniform

density.

Another result which appears peculiar to the uniform distribution holds, in

fact, for every symmetric distribution: observe in Eq. (3.9) that X = XM

whenever (w -w )/c = 2. However, Eq. (3.5) implies that X +B equals the median

in this case. Therefore, the two results for the optimal storage capacity agree

for every distribution for which the mean and the median coincide. For such

distributions the stabilization value is expected to be small if the relative

unit gain is roughly equal to two, but can be considerable otherwise.
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5. Concluding Comments

Daily cycles of electricity demand contain stochastic components due, for

instance, to the variability of weather conditions. A significant part of the

benefit associated with energy storage is due solely to these stochastic

components. We denote this benefit the stabilization value of energy storage.

The term "stabilization" signifies the role of energy storage in stabilizing the

stochastic demand fluctuations and reducing the dependence on expensive back-up

electricity.

Explicit expressions and simple lower bounds on the relative size of the

stabilization value (compared to the overall benefit of energy storage) have been

derived. Under some circumstances, the contribution of the stabilization value

is considerable. Thus, failing to account for the uncertainty in peak power

demand (e.g., by erroneously assuming that demand is stable at the mean), leads

to sub-optimal investment choices, and in some cases to wrong decisions on

whether or not a storage project should be undertaken.

The significance of the stabilization value of energy storage depends on a

few parameters which vary from place to place. The approach presented here,

however, is general and applicable for a wide class of situations characterized

by the structure of electricity demand, details of the various elements in the

utility's production mix, and the costs associated with feasible energy storage

projects. The data required to determine the relevant parameters is usually

available to the utilities, so the application of this analysis to realistic

situations should be straightforward.
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