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COMPONENT PRICING OF PRODUCER MILK:

A YIELD-BASED MODEL FOR THE CHEESE INDUSTRY 1

I. Introduction

In recent years, several studies have addressed the question of how

milk producers should be rewarded for the levels of solid components

(butterfat (BF), protein (PR), and solids-not-fat (SNF)) in their milk.

Most authors seem to agree that producer prices should reflect the value of

the final product and the relationship between milk components and product

yield (Graf; Hillers, et.al.; Ladd and Dunn; Perrin). Discovering this

relationship has proven difficult, however.

In this paper, commercial plant data are used to estimate a cheese

yield production function. This yield relationship is then used as a basis

for constructing a pricing scheme for producer milk which accurately

reflects the economic value of producer milk components to a cheese plant.

The yield formula is of independent interest to the cheese industry for its

ability to accurately predict yield in an individual plant, and its

derivation is spelled out in some detail below.

II. Relation to the Literature

Historically, prices paid for producer milk have been established with

little regard for variations in its solids-not-fat or protein content,

largely because it was difficult to test for protein or SNF until fairly

recently. Now, these fractions may be determined quite easily and

inexpensively. Traditional milk pricing plans (with a base price which is

The authors would like to thank Vic Adamowicz, Rob King, Gerald Nolte,
Claudia Parliament, and Willis Peterson for providing helpful comments
on an earlier draft of the paper.
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adjusted for the milk's butterfat level) have also been criticized because

they adhere to an invalid assumption as to the degree of correlation between

the butterfat and non-fat content of milk (Froker and Hardin). The

relationship between these variables is actually weaker than was often

assumed in decades past (Hillers, et.al.).

Several writers have proposed pricing schedules which overcome this

difficulty by attempting to value milk components based upon final product

yield (Ladd and Dunn; Hillers, et.al.; Ernstrom). These studies incorporate

a cheese yield formula (CH - (BF(.93)+(C-.1)).(1.09)/(1-W); where C is milk

casein, CH is cheese yield, and W is cheese moisture (Van Slyke and Price))

to predict cheese yield, a formula which has two drawbacks for the purpose.

First, it is not plant specific, but, rather, it assumes a fixed production

technology across manufacturers. Second, it is linear in the butterfat and

protein variables, so that their substitution elasticity is assumed to be

infinite. We doubt that such an assumption is reasonable.

III. The Cheese Yield Function

As economists, we are accustomed, by the nature of our discipline, to

working with data generated in a non-experimental fashion. What's more, we

are not surprised when these data exhibit important departures from the

ideal. Indeed, econometrics developed as a distinct branch of statistics

for the very reason that economic data so often display one or another of

serial correlation, heteroscedasticity, multicollinearity, etc.

While one may hope, by designing laboratory cheese-making experiments,

to collect cheese yield data devoid of them, observations which are recorded

on the usual operations in a commercial plant will have these difficulties.

Data of this sort are almost certain to be correlated over time, and the
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variables which may be expected to best predict yield of cheese per unit of

milk, namely the milk's butterfat and protein content, are inherently

collinear.

Thus, the task of obtaining accurate and reasonable cheese yield

formulas at the plant level, using numbers generated by a commercial

process, falls naturally but somewhat surprisingly within the usual province

of the econometrician. In this section econometric tools are applied to the

problem which technical cheese researchers have historically addressed by a

mass balance approach (see, e.g. Van Slyke and Price; Lelievre, et.al.).

There, the milk is carefully measured for all component levels before being

made into cheese in a controlled experimental environment. The composition

of the cheese is then analyzed, and the resulting yield formula specifies

the share of each of the milk components which should be retained in the

cheese, and the share which will be included in the whey.

The Data and Functional Form

The data for the analysis were taken from the daily records of a

commercial Midwest cheddar plant. Observations on milk volume received, its

butterfat, protein, and SNF content, the total volume of cheese produced and

its moisture content were obtained for each of 660 days spanning 23 months.

The Cobb-Douglas (C-D) functional form was selected for the yield

production function. Finding the SNF variable to be insignificant, for each

functional form, in explaining cheese yield, we chose to use the milk fat

and protein levels (percentages) as explanatory variables. The dependent

variable was the moisture-corrected cheese yield (CH) per hundredweight

(cwt) of milk. Upon finding none of the parameter estimates different from

zero at the 0.10 level of significance for the translog or quadratic
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functional forms, attempts to fit the data to these forms were abandoned.

Dealing with serial correlation

As these were daily observations, it was not surprising that a

preliminary analysis revealed a distinct seasonal pattern in the milk

component levels and the cheese yield values. It was hypothesized that a

seasonal dummy variable specification would be an appropriate remedy for

this long and slow movement around the predicted relationship. Seasons were

specified as three-month intervals, with the spring season beginning on the

first day of March. The model of choice, then, in logged form, is

In (CH) - $0+ 5l1n (BF) + pzln (PR) + 3Ds+ 4DF+ 53Dw + u (1)

where

CH - cheese yield per cwt of milk, corrected to a standard moisture

level of 38%,

BF - percentage level of butterfat in the milk,

PR - percentage level of protein in the milk,

u is a disturbance term which is assumed to follow the normal

distribution with mean zero and variance matrix a2I and
660'

D takes on the value one for observations in season j and zero

otherwise; j takes values summer (S), fall (F), and winter (W).

The hypothesis of seasonality was tested by fitting (1) and the

Cobb-Douglas form

In (CH) - #'+ A'ln (BF) + ;'ln (PR) + u (2)

Model (1) allows the intercept parameter to vary across seasons, while

the slopes remain fixed; (2) restricts the model to a common intercept term.

The F-test for comparing models (1) and (2) indicated at the 0.01 level that

the intercept dummy variables should be included in the model. There was

some evidence that the slope parameters also move seasonally. That

specification led to negative marginal products in some periods, however,
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and was abandoned. The form of the production function, then, is given by

(1). Tables la and lb summarize the results of estimating (1) and (2).

It may be concluded that both models fit the data quite well. In each

case, the value of the coefficient on ln(BF) is slightly more than twice the

coefficient on ln(PR), a fact which will be important in the pricing

formula discussion. The negative coefficient on Ds shows that the yield of

cheese is systematically lower during the summer months than in other

periods, as would be expected from climactic and milk composition

considerations.

Dealing with multicollinearity

It is widely known that as the percentage of butterfat in milk

increases or falls, its protein content moves in the same direction (Froker

and Hardin). Clearly, this fact, together with our stated intention to use

butterfat and protein content as explanatory variables in the production

function estimation, gives a hint that collinearity may be a concern. By

the singular value decomposition of the 660-by-6 design matrix, the

condition number was found to equal 272.37. This far exceeds the rule of

thumb cut-off level for assessing damaging multicollinearity of 100

(Belsley, et.al).

While multicollinearity does not bias the parameter estimates, it

inflates their standard errors and thereby reduces the reliability of the

estimates. The oldest technique for remedying multicollinearity is to add

observations. With 660 already in the sample, it seems unlikely that this

would help very much. In fact, the sheer size of the data set adds to our

confidence in the estimates.

The collinearity problem was remedied by implementation of Theil's mixed
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Table la

RESULTS FROM ESTIMATION OF THE MODEL WITH

SEASONAL DUMMY VARIABLES (Equation (1))

Dependent variable: ln(CH)

Observations: 660 Degrees of freedom: 654
R-squared : 0.790 Rbar-squared : 0.788
Residual SS : 0.171 Std error of est 0.016
Total SS : 0.815 F(6 ,654 )-491.4988 P-value-0.00

Var Coef. Std. Coef. Std. Error t-Stat P-Value

Const 1.498093 0.000000 0.054562 27.456770 0.000000
ln(BF) 0.451142 0.486819 0.043458 10.381145 0.000000
ln(PR) 0.203660 0.123135 0.066542 3.060621 0.002209
SUMM -0.017997 -0.229255 0.002146 -8.387585 0.000000
FALL 0.008790 0.105067 0.002169 4.053292 0.000051
WINT 0.011251 0.131560 0.001977 5.689927 0.000000

Table lb

RESULTS FROM ESTIMATION OF THE TWO-VARIABLE

COBB-DOUGLAS MODEL (Equation (2))

Dependent variable: ln(CH)

Observations: 660 Degrees of freedom: 657
R-squared : 0.754 Rbar-squared 0.753
Residual SS : 0.201 Std error of est 0.017
Total SS : 0.815 F(3 ,657 )-1005.0717 P-value-0.00

Var Coef. Std. Coef. Std. Error t-Stat P-Value

Const 1.116606 0.000000 0.044081 25.331033 0.000000
ln(BF) 0.642577 0.693393 0.038587 16.652652 0.000000
ln(PR) 0.317856 0.192180 0.068868 4.615429 0.000000
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estimation procedure (Theil and Goldberger; Theil, pp. 347-352). Stated

briefly, by this technique a researcher introduces non-sample information,

consisting of stochastic restrictions on the parameter estimates, into the

estimation procedure.

Pure Bayesian techniques may also be used to remedy collinearity, but

they are analytically difficult and they demand much of the researcher's

subjective notions of the correct model. Ridge regression, another

alternative remedy, places very firm and inflexible prior restrictions on

the model, and in a way which is difficult to justify from a Bayesian

viewpoint. Mixed estimation falls between these two extremes in

computational difficulty and flexibility. In fact, the ridge estimator is

easily shown to be a special case of the mixed estimator. The reader is

referred to the Appendix for a discussion of the technical aspects of mixed

estimation and ridge regression.

The prior restriction placed on the model simply requires that the sum

of the parameter estimates +1+ fz be "near" 0.65, the value of this sum from

the OLS estimation.2 Thus, in the notation of the appendix, we chose the

scalar c - 0.65 and specified R as the 1x6 matrix R - 0 1 1 0 0 0 . It

was assumed that the sum 1+ '2 is normally distributed about 0.65, and

three levels of "nearness" for this value were specified. These were given

by intervals around 0.65 within which we wish to believe with 95% confidence

the true value would fall. Under the normality assumption, each of the 95%

confidence intervals implies a variance for the sum.

In Cases I - III, respectively, the 95% intervals were (0.55,0.75),

2Strictly speaking, this prior restriction is not in the spirit of mixedestimation, in which only non-sample information should be included inthe restrictions.
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(0.60,0.70), and (0.64,0.66). The implied variances are given by 0.002603,

0.00065, and 0.000026 respectively (see Belsley, et.al., pp. 198ff). In

Table 2 the mixed estimation results for these three degrees of tightness in

prior information are presented.

An informal comparison of the results in that table with Table la

readily supports the observation that the OLS estimate is quite reliable.

More formally, it is encouraging that while the condition number in Case III

was reduced by more than 25% from the OLS case, the parameter estimates

themselves moved only in the third decimal place. This also suggests that

the estimates are indeed quite reliable. The parameter estimates of Case

II, reported in Table 2b, were used for purposes of devising the pricing

plan.

To conclude this section, two observations on the estimation procedure

are noted. First, the data set was of remarkably good quality. Even at the

plant level, it is unlikely that a more carefully gathered set of numbers

could be obtained. And yet the correlation and collinearity problems were

substantial. These problems are inherent, and this work represents the most

reasonable method of making use of an imperfect dataset.

Second, the prior information used in the mixed estimation procedure

was ad hoc in some ways. However, again, if other alternatives may be

advocated for various reasons, this choice of restrictions, as well as any

other, offers a sensible and reasonable result.

Let us now turn our attention to the second stated goal - that of

devising a producer milk pricing schedule from the production function

estimation results of Table 2b.
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Table 2a: Case I

Observations: 661 Degrees of freedom: 655
R-squared : 0.967 Rbar-squared : 0.967
Residual SS : 0.171 Std error of est : 0.016
Total SS : 5.268 F(6 ,655 )-2.2599E+006 P-value-0.0000

Condition Number: 231.357

Var Coef Std. Error t-Stat P-Value

Const 1.500638 0.040495 37.056915 0.000000
ln(BF) 0.451342 0.043330 10.416280 0.000000
ln(PR) 0.201293 0.057174 3.520728 0.000430
SUMM -0.018048 0.002013 -8.967996 0.000000
FALL 0.008815 0.002137 4.125642 0.000037
WINT 0.011279 0.001935 5.829344 0.000000

Table 2b: Case II

Observations: 661 Degrees of freedom: 655
R-squared : 0.961 Rbar-squared : 0.961
Residual SS : 0.171 Std error of est : 0.016
Total SS : 4.441 F(6 ,655 )-2.2599E+006 P-value-0.0000

Condition Number: 209.900

Var Coef Std. Error t-Stat P-Value

Const 1.502419 0.026594 56.495496 0.000000
ln(BF) 0.451481 0.043264 10.435418 0.000000
ln(PR) 0.199637 0.049623 4.023114 0.000057
SUMM -0.018085 0.001915 -9.442860 0.000000
FALL 0.008833 0.002115 4.175800 0.000030
WINT 0.011298 0.001906 5.928966 0.000000

Table 2c: Case III

Observations: 661 Degrees of freedom: 655
R-squared : 0.806 Rbar-squared : 0.804
Residual SS : 0.171 Std error of est : 0.016
Total SS : 0.881 F(6 ,655 )-2.2625E+006 P-value-0.0000

Condition Number 201.059

Var Coef Std. Error t-Stat P-Value

Const 1.503665 0.007402 203.137422 0.000000
ln(BF) 0.451579 0.043218 10.448855 0.000000
ln(PR) 0.198479 0.043569 4.555492 0.000005
SUMM -0.018110 0.001844 -9.821051 0.000000
FALL 0.008845 0.002100 4.211756 0.000025
WINT 0.011312 0.001885 6.001346 0.000000
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IV. The Milk Pricing Mechanism

As noted earlier, there are some drawbacks to using the traditional

plan for determining producer prices for milk used in the manufacture of

cheese. In this section, an alternative pricing mechanism is devised which

is applicable only to milk used in the manufacture of cheese. It more

accurately rewards producers for supplying highly productive milk than does

any currently defined plan.

This pricing plan is essentially a weighting scheme for attributing the

values of cheese and whey products to the various milk solid components. At

its center are the marginal physical products (MPPs) of butterfat and

protein in the cheese yield production function. 3 Similar yield functions

for the various whey products were not estimated because the relevant data

were unavailable. Reported average whey product yields were used to

complete the weighting scheme.

The pricing mechanism calculates the value of all four of the final

products (cheese (CH), whey cream (WC), whey lactose (WLAC), and whey

protein concentrate (WPRO)) which this plant produces. Then, using the

production function for cheese and the reported monthly whey product yield

figures, the end product values are allocated to each of the milk

components: BF, PR, and non-fat, non-protein solids (MSOL). Exogenous

series are utilized for the product prices which play a role in the pricing

schedule.

Our objective is not to establish or derive the optimal base producer

3The marginal physical product of butterfat, for example, is the partial
derivative of the estimated (exponentiated) production function with
respect to BF. Where these expressions are used below, they are
evaluated at the plant means for the respective variables.
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price level. Doing so would require a formidable accounting exercise which

would both complicate the paper and obscure the primary results. Instead,

we estimate the total monthly producer remuneration and proceed to derive

formulas which determine producer prices and accurately reflect the end

product value of producer milk components. The important issue is not the

size of the pie, but how it should be divided.

The fundamental objective that leads to the derivation presented here

must be stated carefully at the outset. It is to calculate, for each of the

solid components (BF, PR, and MSOL) of producer milk, implicit (per pound)

prices which reflect the true value of the individual constituents in all

end products. We propose that manufacturers pay this constant dollar amount

per unit of BF, PR, and MSOL delivered by individual producers.

To justify this scheme, it is necessary to assume explicitly that no

one producer is large enough relative to the daily plant milk supply to

exert a measurable effect on the plant-wide milk component tests. Thus,

whatever the butterfat or protein percentages in an individual farmer's

milk, the value to the plant of a pound of milk component (BF, PR, or MSOL)

is constant across producers. No value is placed on the water in milk

(St-Pierre and Scobie). We also abstract from other milk quality

considerations, such as the somatic cell count, etc.

The Pricing Schedule

Let P denote the monthly average producer price received for a cwt of

milk of 3.5% butterfat content as reported by selected Midwest plants, and

let DIFF denote their reported monthly BF differential (the amount by which

the pay price varies for each 0.1% of butterfat above or below the base

level). If BF represents the monthly plant average butterfat level, then
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PP - P + (BF - 3.5).DIFF, where PP denotes the average producer pay price

for milk delivered to this plant in each month of the study period. The

total value of funds (PREV) allocated to producer remuneration is calculated

by multiplying PP by the total milk volume (MILK) in cwts:

PREV - PP . (MILK). (3)

It is this quantity, the total monthly producer revenue, which is divided

among all producers according to the set of equations below.

It should be recognized that there is an approximation error in

deriving average producer price from the data in this manner. However, it

is not central to what follows, and in an application the plant would know

the appropriate base price which it could afford to pay (and the correct

value for PREV).4

Since plant operating and fixed cost data were not available, the

processing costs could not be assigned to each of the individual end

products. Thus, it was assumed that the processing, handling, and labor

costs are proportional to the end product value.

The composition of the whey solids is treated in the following manner.

Half of the whey solids yield is known from plant data to be processed into

a whey protein concentrate product, and the other half into a lactose

concentrate. On a dry matter basis, these contain 24, 57, 17, and 2; and 4,

95, 0, and 1 percent of protein, lactose, ash, and butterfat, respectively.

Given the monthly series for the averages of the variables BF, PR, WC,

MSOL, WPRO, WLAC, PCH (the cheese price), PC (the whey cream price), PWCH WC J r
' ' WLAC

(the dried whey lactose concentrate price), and PwPRO (the dried whey

4A milk buyer must choose the total amount of revenue available to pay
producers in a pay period under any plan. That amount, in an
implementation of this schedule, would coincide with PREV.
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protein concentrate price), and the composition of the dried whey solids

products, the value of the end products resulting from processing one cwt of

milk may be calculated. Let Yi represent the yield of the ith end product

produced by one average cwt of producer milk, where in what follows i takes

on the values CH, WC, WPRO, AND WLAC. Let V be given by Y times the

product price P . Let VAL - v V denote the total end product value of

one cwt of milk.

To extract the share of the total end product value due to each product

i, weights W are defined as W - V / VAL, where Z W - 1. Using these

weights, the share PSi of the producer price PP which is claimed by each of

these products is defined as PS - Wi PP . Note that by construction

Z PS - PP 
i i m

Finally, the per pound implicit price (IP) of the components of

producer milk are given by the following set of equations:

r ' ' MPP
iF P PP + MPPP BF + PS + (.02)PS + (.01)PS (4a)

BF - BF CH MPP + MPP J WPRO WLAC~B W'F PRo 

1P P-RIP~c~ PPP PR

PR PR CH - MPP + MPP + (.24)PSR WLAC (4b)
BI F PR

IPM - M { (.74) PS + (.95) PS . (4c)
Po-MSOL MSOL WPRO WLAC 

Note that PS and PS are divided among the implicit prices for the
WPRO WLAC

protein, butterfat, and solids fractions according to the composition of the

whey solids products given above. Eqns. (4) comprise a weighting scheme for

attributing product values to milk component levels. The terms involving

5It is assumed that whey cream is 35 percent butterfat, and that one pound
of whey butterfat yields 1.23 pounds of Grade B butter.
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MPPs have a compelling intuitive interpretation. If the BF and PR levels in

milk were increased by a tiny increment, then cheese yield would rise by the

sum of the marginal physical products. The terms involving MPPs in (4a) and

(4b) capture the proportion of this increase which is due to the increase in

BF and PR, respectively.

Equations (4) can be used to demonstrate that under this pricing plan,

total outlays to producers will equal the funds available for those outlays,

PREV. For this result, let BFTOT, PRTOT, and MSOLTOT denote the total

butterfat, protein, and MSOL pounds which are received by the plant in a

month, let RTOT denote the total revenue paid to producers according to

equations (4), and let PREV be as defined above. Let MILK denote the total

volume of producer milk used for cheese production in the month, in cwts.

Also, denote by use of an overbar the sample mean of a milk component. A

little algebra allows us to see that

RTO- IPBF (BFTOT) + IP R (PRTOT) + IP S (MSOLTOT)TOT +F PR MSOL

[ IPBF) + PR(BF(PR) + IIPMOL.(MSOL) ].(MILK)

PSCH + PS + PWSOL (MILK) - PP * (MILK) - PREV.

Thus, by following the pricing schedule, a cheese manufacturer will pay

producers a total value which exactly exhausts the revenue available for

that purpose, as calculated independently from marginal analysis or from the

usual price formulation process.

An Empirical Application

If producer k's milk contains BFk, PRk, and MSOLk percent of

butterfat, protein, and solids not-fat not-protein, respectively, then we

calculate the realized producer per cwt milk price (Pk) from eqns. (4) as

P - IP * BF + IP * PR + IP * MSOL. (5)k BF k PR k MSOL k14
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Table 3 presents, for twenty milk PR, BF, and SNF combinations, per cwt

producer prices under the proposed pricing plan and the traditional plan.

Average 1987 milk and cheese quantities and prices are used to demonstrate

the impact of the plan.

Our pricing schedule implies that butterfat is underpriced relative to

protein by the traditional plan (see footnote 3 to the table), supporting

the argument of St-Pierre and Scobie. In general, producers of high-test

milk gain relative to lower-test producers by our plan.

V. Conclusions

In this study, a production function for cheddar cheese manufacture was

estimated using factory-level data. This yield relationship was used to

develop a pricing schedule that is more equitable than current plans. It is

practical for cheese manufacturers, and over time it would, by rewarding the

most valuable milk supplies, provide producers with an incentive to adjust

production in favor of the more valuable milk component by breeding and

feeding their cows for this purpose.

Future research could build upon this idea by deriving similar results

for the various dairy product sectors. If end product values were estimated

in this way for fluid milk, butter, and non-fat dry milk, these could be

merged into a pricing schedule that would be meaningful for the entire dairy

industry. The results here could also be used in studies of the

profitability of handlers' rerouting milk supplies to various plants in a

supply region if in fact the technologies in two or more centrally owned

cheese plants are relatively more efficient in utilizing various of the milk

components.
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Table 3

PRODUCER CWT MILK PRICES FOR TWO PRICING PLANS

AND 20 MILK COMPONENT COMBINATIONS1

MILK MILK MILK TRADITIONAL PROPOSED
% % % PRICING PRICING

BFAT PROT SNF PLAN2 PLAN3

3.20 2.90 8.30 11.2759 10.9758
3.20 2.95 8.35 11.2759 11.0399
3.20 3.00 8.40 11.2759 11.1041
3.20 3.05 8.45 11.2759 11.1682

3.40 3.00 8.40 11.5896 11.5082
3.40 3.05 8.45 11.5896 11.5723
3.40 3.10 8.50 11.5896 11.6365
3.40 3.15 8.55 11.5896 11.7006

3.55 3.05 8.45 11.8249 11.8755
3.55 3.15 8.55 11.8249 12.0037
3.55 3.20 8.60 11.8249 12.0679
3.55 3.25 8.65 11.8249 12.1320

3.70 3.20 8.60 12.0602 12.3710
3.70 3.25 8.65 12.0602 12.4351
3.70 3.30 8.70 12.0602 12.4993
3.70 3.35 8.75 12.0602 12.5634

4.00 3.40 8.80 12.5307 13.2338
4.00 3.50 8.90 12.5307 13.3620
4.00 3.55 8.95 12.5307 13.4262
4.00 3.65 9.05 12.5307 13.5545

The values for BF and PR used in this table are approximately distributed
around the 1987 plant means of 3.561 and 3.240, respectively.

The traditional milk pricing plan pays a base price (we use the average
of values reported for the months in 1987) for one cwt. of milk at
3.5% butterfat test, and adds the differential to or subtracts it from
this figure for each 0.1% difference above or below 3.5%.

3In each row of the table, the proposed price is calculated according to
equation (5) in the text, with IPB- 2.0208, IPP- 1.1399, and

BF
IP MSOI .1462 (the 1987 average values). The totals of the last two
columns are slightly different because of the approximation error
introduced in our calculation of PREV, the total producer revenue.
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Appendix: Mixed Estimation and Ridge Regression

Suppose we have the classical linear regression model

y - X3 + e, (A.1)

where y is nxl, X is nxk, P is kxl, and e is nxl with E(e) - 0, var(e) - 2 ,

and 1 is a positive definite nxn matrix. Suppose, further, that there

exist p 2 1 linear prior restrictions which the researcher is willing to

impose on the model. These are given by

c - RE + (, (A.2)

with E(() - 0 and var(() - E2, a positive definite pxp matrix. R is a known

constant pxk matrix of rank p < k, c is a vector of specified constants, and

e is independent of e. The researcher also specifies ZS.

Combining (A.1) and (A.2), we have

[y - X] p ^+ (A.3)

where the variance of the error term is given by

Z 0
[ - 1 1 (A.4)

0 Z

In the event that Z is known, generalized least squares may be

implemented to calculate the mixed estimator as

M _ (X Z X + RVR] ) (X2 y + R c). (A.5)

Moreover, if one specifies - s2I , then (A.5) becomes
n

ME - (X X + s RT1R) ' y + s2RZc). (A.6)

Some computer statistical packages, including the time-series package

RATS, perform mixed estimation by pre-coded routines. Here, it is shown
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that (A.6) is easily manipulated in such a way that it may be estimated

simply using matrix-based languages such as GAUSS or MATLAB. Denote by D

the pxp matrix D - sE 112 . We show that (A.6) is equivalent to the OLS
2

estimator of the model

[ ] -K ] + [A 7
[ Dc DR D (A.7)

Let (A.7) be given by the expression y* - X* + C, where - (eT T D),

and where X and y denote the obvious augmented matrices. Let the OLS

estimator of (A.7) be denoted . If we assume that - sI , then the
1 in

covariance matrix of the error term { may be shown to satisfy the

restrictions of the ordinary linear model. It follows that

var(O) - [ -T s2 n 1 (A.8)

0 DT SD 0 I

which clearly satisfies the assumptions required for the application of the

Gauss-Markov theorem and the method of least squares. The estimator * is

calculated from (A.7) as

X*TX*)-lX*T *
fX - (XX y

- [ X + RTDTDR ] ' XTy + RTDTDc 

XTX + S2RTE-1R ])[ xTy +s2RTZ1C .

Usually, the prior information will not include restrictions on the

covariances of the i's. That is, Z will usually be diagonal,so that D is

easily calculated. In ay event, while 2 is positive definite, mixed

estimation may be applied by adding the p-dimensional vector Dc to the

dependent variable co.lumn vector and the pxk matrix DR to the design matrix

as in (A.7) before performing OLS.
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Ridge regression (Hoerl and Kennard, 1970) is a special case of

mixed estimation. The ridge estimator is

- [XX + dIn ] (A.9)

where d > 0 is the ridge parameter. While one may specify different weights

on various of the i restrictions using mixed estimation, ridge regression

imposes identical weights. What's more, restrictions of the kind used in

the paper, where we specified

R- [ 0 1 1 0 0 0 ),

are impossible using ridge regression. Only individual parameter values may

be restricted. If we take S - a2I and Z - p2I , and if we let c - 0,
1 n 2 p

then (A.5) is easily shown to be the ridge estimator with d - a2/pz.

The stochastic prior ridge (SPR) estimator of Fomby and Johnson (see

also Burt, Frank and Beattie) is given by

SR (XTX + dIn )( XTy + dB (A.10)

where B is a k-dimensional vector of random variables which are specified as

constants by the researcher. This estimator lies between the mixed and

ridge estimators in some sense. The ridge estimator biases the OLS estimate

of P uniformly (that is, in each component) toward zero. The SPR estimator

of Fomby and Johnson avoids this limitation. Using the SPR approach, each

pi may be biased toward a separate (possibly nonzero) real number. However,

the SPR limits the researcher to restricting only individual parameters. As

with the ridge estimator, the analysis of this paper, in which we imposed a

restriction on the sum of two parameters, could not have been carried out

using the stochastic prior ridge technique.

In addition, the SPR estimator is a special case of the mixed estimator
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(A.5). To see this, suppose that S1 - a2I . Then if S - p2I, we
I n 2 p

have M - SPR whenever

1.) - 2RT'R - dI and
2 n

2.) a 2 RTEslc - dB.
2

But these hold whenever d - o2/p2, R - I , and c - B.
p

These two features, the nature of the prior information provided and

the degree of limitation on the form of the parameter restrictions, favor

the mixed estimator quite strongly over both the ridge and the stochastic

prior ridge estimators for confronting an ill-conditioned design matrix in

linear regression analysis.
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