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Abstract 

Emphasis on finding the most cost-effective ways to reduce reservoir sedimentation is 

increasing. Biophysical and economic models for a large agricultural watershed are integrated to 

estimate the average and marginal costs of reducing sedimentation with an optimal combination of land 

management strategies compared to the cost of dredging.   



Problem Identification
Many reservoirs built in US from 1930-1960
Built to operate 50-200 years
Tuttle Creek Lake (TCL) has lost 77% of sediment 

storage capacity and 42% of total storage (sediment 
pool plus multipurpose pool) capacity in 47 years
 9,600mi2 watershed – 25% located in KS (Figure 1), 

but contributes 69.5% of annual sediment load to 
TCL
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Erosion of cropland and streambanks main sources
TCL exhibits one of the most critical cases of 

reservoir sedimentation nationwide.

Research Question
Is economically optimal placement of three land 
management strategies for sedimentation reduction 
less costly than dredging?

Conceptual Framework
Answer research question by integrating
Physically-based watershed model
Economic analysis of three alternative 

sedimentation land management reduction 
strategies vs. dredging from a watershed 
manager’s perspective

Two stage process (Figure 2)
1. Generate marginal cost and total cost of 

implementing BMPs.
2. Compare costs of dredging to those of BMP 

implementation.
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Data
BMP economics (Figure 3)
Filter strips, No-till, Permanent vegetation projects
Establishment and annual costs of each BMP
 Include opportunity costs
Calculate net present values and annualize over 15-year horizon

Dredging economics
Estimate the annualized cost of dredging.

Physiographical data
Soil and Water Assessment Tool (SWAT) model is used to estimate 

the baseline and post-BMP implementation sediment loading into 
TCL at a subwatershed level (Figure 4).
SWAT accounts for current cropping rotations and field operations.
SWAT calibrated against flow and observed water quality data.

Empirical Methods
 Incorporate the SWAT results from 1,858 cropland Hydrologic 

Response Units (HRUs) as input into an economic model.
 Assume that 25% of most erosive HRUs already have BMPs

implemented. These HRUs are removed from the choice set.
 Economically optimal method is used where BMPs are placed in 

areas of the watershed where sediment loading is reduced at lowest 
costs ($/ton) in sequential order.

Cropland BMP Implementation Results
Challenge Which HRUs have or have not already implemented BMPs?
Figure 5 and Figure 6 results assume the most erosive 25% of HRUs (in terms of baseline soil erosion) 

across the TCL watershed have already adopted BMPs.
Figure 5 shows the priority areas for reducing sediment with filter strips.
Figure 6 shows the priority areas for reducing sediment with no-till.

BMPs vs. Dredging
The benefits of BMPs are the costs of dredging that are avoided.
BMPs are economically preferred to dredging for the first 287,585 tons of sediment per year (Figure 8).
Current cost of dredging ($6.28/ton) equals the MC of BMPs at an $881,437 annual budget (Figure 8).
The results are based on BMPs implemented in a highly targeted “optimal “approach.
 If targeting of BMPs is not an option, the prescription is to dredge immediately (from a cost perspective 

only).

Conclusions
Both physiographical and economic factors must be considered for cost-effective conservation to occur.
Approximately $881,437 per year, not considering “intangible” costs of BMP implementation, could be spent on 

targeted BMP implementation before some selected dredging may be needed.
 If “intangible” costs of BMP implementation are significant and/or BMPs cannot be targeted effectively, 

dredging is likely more cost-effective.
This analysis does not consider benefits associated with BMPs other than dredging costs avoided. The 

benefits of BMPs and dredging would have to be known to more adequately compare the alternatives for 
protecting and/or restoring TCL.

Figure 4: Acre‐weighted Average Pollutant Loading at Edge of HRU Across 
All Agricultural HRUs (tons or lbs/ac/yr)

Figure 8: Marginal and Total Cost Curves for Sediment Reduction with Targeting Figure 9: Marginal Cost Curves for Sediment Reduction without Targeting 

Figure 1: Study Region

Figure 2: Conceptual Model

Figure 6.  Priority Areas for No‐till.Figure 5.  Priority Areas for Filter Strips.

Subject to:

where:
= annual sediment reduction in tons/acre with BMPi in HRUj
= acres of BMPi in HRUj
= annualized cost in $/acre for BMPi in HRUj
= annual budget constraint
= 1 to 3 BMPs
= 1 to 1,858 HRUs
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Figure 3: “Original” BMP Annualized Costs Over a 15‐year Time Horizon

Figure 7: Sediment Reduction Results with 25% Most Erosive HRUs Eliminated and Additional 
BMPs Implemented Cost‐effectively.
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