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Modeling Unobserved Heterogeneity in 
New York Dairy Farms: One-Stage versus 
Two-Stage Models 
 
Antonio Alvarez, Julio del Corral, and Loren W. Tauer 
 
 Agricultural production estimates have often differentiated and estimated different technolo-

gies within a sample of farms. The common approach is to use observable farm characteristics 
to split the sample into groups and subsequently estimate different functions for each group. 
Alternatively, unique technologies can be determined by econometric procedures such as la-
tent class models. This paper compares the results of a latent class model with the use of a 
priori information to split the sample using dairy farm data. Latent class separation appears to 
be a superior method of separating heterogeneous technologies and suggests that technology 
differences are multifaceted. 

 
 Key Words: parlor milking system, stanchion milking system, latent class model, stochastic 

frontier 
 
 
The estimation of production (and cost or profit) 
functions usually relies on the assumption that the 
underlying technology is the same for all produc-
ers. However, it is possible that technological het-
erogeneity exists among farms, which means that 
some farms in an industry use different technolo-
gies. In such a case, estimating a common tech-
nology to all farms is not appropriate because it 
can yield biased estimates of the technological 
characteristics. 
 The issue of technological heterogeneity is of 
enormous relevance in studies of agricultural pro-
duction when an agricultural sector is believed to 
be characterized by different technologies. Man-
agement advice or policy implications may differ 
for these different sub-groups. For this reason, 
studies often control for the possibility of techno-
logical heterogeneity, traditionally accomplished 
by selecting a major characteristic of the produc-

tion process, dividing the sample based on this 
characteristic, and subsequently estimating differ-
ent functions for each group. Some characteristics 
that have been used in agricultural studies are 
type of seed or variety planted (Xu and Jeffrey 
1998, Balcombe et al. 2007), land type (Fuwa, Ed-
monds, and Banik 2007), location (Battese, Mal-
ik, and Broca 1993), or full-time versus part-time 
farms (Bagi 1984). 
 Technological heterogeneity is also believed to 
be present in dairy farming where different pro-
duction systems may be utilized. Thus, in dairy 
empirical analysis it is essential to correctly iden-
tify the groups of farms that operate under differ-
ent technologies. Separating a sample of dairy 
farms into several groups and subsequently esti-
mating separate functions was done by Hoch 
(1962), who split a sample of Minnesota dairy 
farms into two groups based on location; Bravo-
Ureta (1986), who classified a sample of New Eng-
land dairy farms based on the breed of the herd; 
Tauer (1998), who estimated different cost curves 
for stanchion and parlor dairy farms; Newman 
and Matthews (2006), who estimated different out-
put distance functions for specialist and non-spe-
cialist dairy farms; Brümmer, Glauben, and Thijs-
sen (2002), who estimated separate stochastic 
dairy production distance functions for three Euro-
pean Countries; and Moreira and Bravo-Ureta 
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(2010), who estimated different production func-
tions for three Southern Cone countries to subse-
quently estimate meta-technology ratios. 
 However, the use of a single or even multiple 
characteristics probably serves as an incomplete 
proxy to characterize a technology, since these 
characteristics may not exhaust all technology 
differences that exist between farms. Milking or 
feeding systems usually vary across dairy farms 
and may be an important descriptor of the tech-
nology, but there are additional unobserved (not 
measured) factors that may reflect technology 
differences. For example, one of these unobserved 
factors could be the genetic potential of the dairy 
herd. 
 Rather than use prior separators, different tech-
nologies within a sample can be isolated using 
statistical procedures. Groups of farms can be 
delineated using either cluster algorithms (Alva-
rez et al. 2008) or econometric techniques, such 
as the approach used in Kumbhakar, Tsionas, and 
Sipiläinen (2009), where a system approach was 
used to estimate the production technologies and 
the choice equation simultaneously, random coef-
ficient models (Emvalomatis 2012), or latent class 
models (Alvarez and del Corral 2010, Sauer and 
Morrison Paul 2013). Random coefficient models 
assume that each observation is derived from a 
unique technology, and thus farm-specific coeffi-
cients are estimated. In contrast, latent class mod-
els, often referred to as mixture models, assume 
that there are a finite number of groups underly-
ing the data and estimate a different function for 
each of these groups. For the purpose of this pa-
per, the use of a latent class model seems more 
appropriate than a random coefficient model 
given that the results from a latent class model 
can be easily compared, especially if the number 
of groups is the same, with the results obtained 
from separating a sample of dairy farms into sev-
eral groups and subsequently estimating separate 
functions. 
 Although a production relationship can be 
modeled by various functions such as cost, profit, 
or revenue, our model is a production function 
that we implement in the framework of a stochas-
tic frontier model (Aigner, Lovell, and Schmidt 
1977). Stochastic frontiers are widely used to es-
timate production functions where individual ob-
servations are constrained to be below the stochas-
tic frontier (with sampling error). Several authors 
have estimated latent class models in a stochastic 

frontier framework (e.g., Orea and Kumbhakar 
2004, Greene 2005). We use two milking systems 
—namely, stanchion and parlor—which are often 
used to differentiate dairy farms, as the observed 
characteristic to split the data and compare those 
results with our latent model results. Comparison 
between the stochastic frontiers of the two milk-
ing systems and a stochastic frontier latent class 
model allows us to determine whether the milking 
system is a relevant factor in determining technol-
ogy class. The milking system would be a rele-
vant factor in determining technology class if the 
grouping in the latent class model is also made 
using this criterion without utilizing this informa-
tion in the latent class model estimation. 
 The contribution to the literature of this paper 
is twofold. First, we provide evidence that using a 
latent class model can be more appropriate than 
estimating functions with different technologies, 
using a two-stage procedure where in the first step 
farms are grouped using some variable and subse-
quently separated functions are estimated. To the 
best of our knowledge there is no paper that has 
explicitly made such a comparison. Secondly, this 
paper estimates technology differences for dairy 
farms where substantial structural changes are oc-
curring with significant policy implications. 
 The remainder of this paper is organized as 
follows. The section immediately following pre-
sents the data used. Then, the methodology is ex-
plained. This is followed by the empirical model 
and estimated results. The paper ends with con-
cluding remarks. 
 
Data 
 
The data used, which were taken from the annual 
New York State Dairy Farms Business Summary 
(NYDFBS), are farm-level data collected on a vol-
untary basis from 1993 through 2004 (Knoblauch, 
Putnam, and Karszes 2005). As a voluntary parti-
cipant data sample, the sample of 817 unique farms 
does not necessarily represent the population of 
New York dairy farms.1 The number of farms par-
ticipating varies each year, producing an unbal-
anced panel data set of 3,304 observations. Those 
data are differentiated into stanchion (1,418 ob-

                                                                                    
1 Using a dairy farm sample based on voluntary participation is usual 

in the literature. Examples include Ahmad and Bravo-Ureta (1995), New-
man and Matthews (2006), and Byma and Tauer (2010). 
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servations) and parlor (1,886 observations) milk-
ing systems. There was attrition in NYDFBS parti-
cipation over this period, so the number of obser-
vations per year decreases over time, especially 
for stanchion farms. Fifty-one out of 762 farms 
switched from stanchion to parlor milking over 
this time period, but not vice versa, and those 
farms were coded and included as stanchion or 
parlor depending on the milking system that was 
used each year. Individual farm effects were not 
modeled. 
 Stanchion farms use conventional stall housing 
for dairy cows, where cows are milked and often 
housed in individual stalls, with the farmer mov-
ing from stall to stall in a stooped position to milk 
the cows, while in parlor farms cows enter a 
raised platform for milking and leave once they 
are milked. These are distinct milking systems, 
and it would be expected that production charac-
teristics might differ between these two systems 
as measured by output elasticities, returns to scale, 
input substitutability, and efficiency.2 
 In order to estimate the production function, we 
specify one output and six inputs. One output 
only is specified since these farms are highly spe-
cialized in milk production; milk sales must con-
stitute at least 85 percent of the revenue for a 
farm to be included in the original data set, and 
much of the remaining revenue are cull cow sales, 
a necessary by-product of dairy production (Kno-
blauch, Putnam, and Karszes 2005). Nonetheless, 
miscellaneous items are sold from these farms, 
and these items require inputs to produce. There-
fore, we add all non-milk output items to our sin-
gle output by converting each item into equiva-
lent pounds of milk by dividing revenue of these 
items by the price of milk. Six inputs are defined 
and include COWS (average number of cows dur-
ing the year), FEED (accrual purchased feed meas-
ured in U.S. dollars3), CAPITAL (service flow from 
land and buildings estimated as 5 percent of mar-
ket value plus accrual machinery hire expenses, 
accrual machinery repair expenses, and machin-
ery depreciation), LABOR (total worker equiva-
lents used on the farm), CROP (fertilizer, seeds, 
spray, and fuel accrual expenses), and OTHER (vet-
                                                                                    

2 Controlling for differences in milking systems is rather common in 
studies of dairy production. See, for example, El-Osta and Morehart 
(2000), Kompas and Che (2006), and Tauer (1993, 1998). 

3 All the monetary variables are expressed in 2004 US$. The U.S. CPI 
index was used to deflate the variables. 

erinary and medications, breeding, electricity, and 
milk marketing accrual expenses). Table 1 dis-
plays the descriptive statistics of these variables, 
the single input productivity measures of milk 
production per cow, milk per acre, and cows per 
acre of cropland, as well as a dummy variable 
named DPARLOR, which takes the value of one if 
the farm uses a parlor milking system and 0 if the 
farm uses a stanchion system. 
 
Methodology 
 
A stochastic frontier production function is writ-
ten as  
 
(1) ( ) exp( )y f x= ⋅ ε , v uε = − , 
 
where y represents the output of each farm, x is a 
vector of inputs, f(x) represents the technology, 
and ε is a composed error term (Aigner, Lovell, 
and Schmidt 1977).4 The component v captures 
statistical noise and is assumed to follow a normal 
distribution centered at zero, while u is a non-
negative term that reflects the distance between 
the observation and the frontier (i.e., technical in-
efficiency) and is assumed to follow a one-sided 
distribution (half-normal in our case). 
 We estimate two different stochastic frontier 
models using maximum likelihood techniques. 
First we estimate a model for both the parlor and 
stanchion farms that uses the Battese and Coelli 
(1992) specification of the inefficiency term: 
 
(2) ln ( )it it ity f x= + ε , 

it it itv uε = − ,  ( )exp ( )it iu T u= −η τ − ⋅ , 
 
where subscript i denotes farm, t indicates time, τ 
is the actual period, T is the total number of peri-
ods in the sample, and η is a parameter to be esti-
mated. If η is positive (negative), that implies that 
efficiency increases (decreases) over time. 
 Our second model is a stochastic frontier latent 
class model (Greene 2005), which is specified as: 
 
(3) ln ( )it it itj j

y f x= + ε , 

it j it it jj
v uε = − , ( )exp ( )it ij j j

u T u= −η τ − ⋅ ,
                                                                                    

4 See Kumbhakar and Lovell (2000), Greene (2008), or Amsler, Lee, 
and Schmidt (2009) for good overviews. 
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Table 1. Summary Statistics on New York Dairy Farm Business Summary Data (1993–2004) 

 Mean Standard Deviation Minimum Maximum 

Milk (lbs.) 4,270,430 5,650,650 173,868 44,407,600 

OUTPUT (lbs. equiv.) 4,911,670 6,484,540 194,779 53,100,000 

COWS (number) 203 242 19 2,172 

FEED (U.S. $) 157,487 228,524 3,061 2,483,210 

CAPITAL (U.S. $) 94,353 113,827 5,197 969,906 

LABOR (annual workers) 5.25 4.82 0.73 36.14 

CROP (U.S. $) 40,375 53,135 365.672 596,442 

OTHER (U.S. $) 62,239 83,451 2,011 672,933 

Milk per cow (lbs.) 19,203 3,560 5,796 28,895 

Milk per acre (lbs.) 7,179 8,849 700.608 269,578 

Cows per acre 0.36 0.41 0.07 13.17 

DPARLOR 0.57 -- 0.00 1.00 

Number of observations: 3,304     

 
 
 
 
where j represents the different classes (groups). 
The vertical bar means that there is a different 
model for each class j. It is important to note that 
the model assumes that each farm belongs to the 
same group over the sample period. The likeli-
hood function (LF) for each farm i at time t for 
group j is 
 
(4) ( )

( )
( )

, , ,

/ 1 ,
0

ijt it it j j j

j jit j it j

j j

LF f y x= β σ λ

Φ λ ⋅ε σ ε⎛ ⎞
= ⋅ ⋅ϕ⎜ ⎟⎜ ⎟Φ σ σ⎝ ⎠

 

 
where εit |j = ln yit – βj

′xit, σj = 2 2[ ]uj vjσ + σ ½,  λj = 
σuj /σvj, and φ and Φ denote the standard normal 
density and cumulative distribution function re-
spectively (Greene 2005). 
 The likelihood function for farm i in group j is 
obtained as the product of the likelihood func-
tions in each period: 
 

(5) 
1

T

ij ijt
t

LF LF
=

=∏ . 

 
 The likelihood function for each farm is ob-
tained as a weighted average of its likelihood 

function for each group j, using as weights the 
prior probabilities of class j membership. The 
prior probabilities of class membership (Pij) can 
be sharpened using separating variables, but as 
Orea and Kumbhakar (2004) state, a latent class 
model classifies the sample into several groups 
even when sample-separating information is not 
available. In this case, the latent class structure 
uses the goodness-of-fit of each estimated frontier 
as additional information to identify groups: 
 

(6) 
1

J

i ij ij
j

LF P LF
=

= ∑ . 

 
 The overall log-likelihood function is obtained 
as the sum of the individual log-likelihood func-
tions: 
 

(7)   
1 1 1 1

log log log
TN N J

i ij ijt
i i j t

LF LF P LF
= = = =

= =∑ ∑ ∑ ∏ . 

 
 The log-likelihood function can be maximized 
with respect to the parameter set θj= (βj,σj,λj,δj,  
ηj) using conventional optimization methods (Greene 
2005). Furthermore, the estimated parameters can 



Alvarez, del Corral, and Tauer Modeling Unobserved Heterogeneity in New York Dairy Farms   279 
 

 

be used to estimate the posterior probabilities of 
class membership using Bayes Theorem: 
 

(8) 

1

( / ) ij ij
J

ij ij
j

P LF
P j i

P LF
=

=
∑

. 

 
This models each individual farm to be in the 
same group over time. Because of the unbalanced 
panel, not all farms are present each year. 
 
 
Empirical Model and Results 
 
The empirical specification of the production 
function is translog. The dependent variable is 
milk production plus other revenue converted into 
equivalent pounds of milk. The inputs are COWS, 
FEED, CAPITAL, LABOR, CROP, and OTHER. 
These input variables were divided by their geo-
metric means so that the estimated first-order co-
efficients from the translog can be interpreted as 
the production elasticities evaluated at the sample 
geometric means. Additionally, a time trend plus 
a squared time trend are introduced to account for 
technological and other changes. In order to con-
trol for different regional conditions we use a set 
of dummy variables (DSOUTH, DNORTHWEST, 
DEAST, and DNORTHEAST).5 The omitted cate-
gory is the Northeast. Finally, we control for Bo-
vine Somatotropin (bST) usage by means of three 
dummy variables. DBST1 takes the value of one if 
25 percent or fewer of the cows were treated with 
bST sometime during their lactation; DBST2 takes 
the value of one if between 25 to 75 percent of 
the cows were treated with bST; and DBST3 takes 
the value of one if over 75 percent of the cows in 
the herd were treated. The reference then is for 
farms not using bST during the year. 
 The production functions estimated for parlor 
and stanchion farms are: 

                                                                                    
5 The New York counties in each defined region are as follows: 
DSOUTH: Allegany, Cattaraugus, Chautauqua, Chemung, Columbia, 

Cortland, Delaware, Schuyler, Steuben, Sullivan, Tioga, and Tomp-
kins. 

DNORTHWEST: Cayuga, Erie, Genesee, Livingston, Niagara, Ontario, 
Orleans, Seneca, Wayne, Wyoming, and Yates. 

DEAST: Albany, Chenango, Herkimer, Madison, Montgomery, Oneida, 
Onondaga, Otsego, Rensselaer, Saratoga, Schenectady, Schoharie, and 
Washington. 

DNORTHEAST: Clinton, Franklin, Jefferson, Lewis, and Saint Lawrence. 

(9) 

( )

0
1 1 1

3
2

1
3

1

1ln ln ln ln
2

 

 ; 

    exp ( ) ,
 

L L L

it l lit lk lit kit
l l k

z

t tt z zi
z

h

h hit it it
h

it i

y x x x

t t DLOC

DBST v u

u T u

= = =

=

=

=

=

= β + β + β

+ λ ⋅ + λ ⋅ + γ ⋅

+ α ⋅ + −

= −η⋅ τ − ⋅

∑ ∑∑

∑

∑

 

 
where t is a time trend, DLOC are the regional 
dummies, and subscripts l and k are used for in-
puts, z for zones, and h for bST usage. The Bat-
tese and Coelli (1992) specification of the ineffi-
ciency term is used. 
 The equation of the latent class model is then 
represented as: 
 

(10)     

( )

0
1

1 1

3
2

1
3

1

ln ln

1 ln ln
2

 

 ;

exp ( ) . 

L

it l j litj
l

L L

lk lit kitj
l k

z

t tt z zij j j
z

h

h hit it itj j j
h

it ij j j

y x

x x

t t DLOC

DBST v u

u T u

=

= =

=

=

=

=

= β + β

+ β

+ λ ⋅ + λ ⋅ + γ

+ α + −

= −η τ − ⋅

∑

∑∑

∑

∑

 

 
 In the latent class model the researcher speci-
fies the number of groups a priori since the num-
ber of groups is not a parameter to be estimated. 
To choose the number of groups, information 
criteria such as AIC and SBIC are typically used6 
(e.g., Orea and Kumbhakar 2004). Applying both 
AIC and SBIC separately leads to the conclusion 
that a model with two groups is the preferred 
model for these data. 
 Table 2 reports the estimation results of equa-
tions (9) and (10). All the first-order coefficients 
are positive and significant in all models. As ex- 

                                                                                    
6 The statistics can be written as: 

 2 log ( ) 2 ;   2 log ( ) log( )AIC LF J m SBIC LF J n m= − ⋅ + ⋅ = − ⋅ + ⋅ , 
 
where LF(J) is the value that the likelihood function takes for J groups, 
m is the number of parameters used in the model, and n is the number 
of observations. The preferred model will be that for which the value 
of the statistic is lowest. 
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Table 2. Stochastic Frontier Translog Production Function Estimates 
 Milking System Latent Class Model 
 Parlor Stanchion Group 1 Group 2 
CONSTANT 15.506*** 14.191*** 14.895*** 14.954*** 
COWS 0.643*** 0.621*** 0.763*** 0.398*** 
FEED 0.126*** 0.126*** 0.065*** 0.209*** 
CAPITAL 0.050*** 0.057*** 0.026*** 0.074*** 
LABOR 0.087*** 0.054*** 0.071*** 0.085*** 
CROP 0.021*** 0.036*** 0.028*** 0.040*** 
OTHER 0.145*** 0.196*** 0.103*** 0.306*** 
0.5 × COWS × COWS -0.353*** -0.134 -0.291*** 0.065 
0.5 × FEED × FEED 0.034* 0.067** -0.055* 0.183*** 
0.5 × CAPITAL × CAPITAL -0.031 0.001 -0.062*** 0.057 
0.5 × LABOR × LABOR -0.205*** -0.020 -0.093** 0.024 
0.5 × CROP × CROP -0.015 0.029 0.008 0.017 
0.5 × OTHER × OTHER 0.039 0.097*** -0.017 0.298*** 
COWS × FEED 0.097*** -0.008 0.090** -0.026 
COWS × CAPITAL 0.056* 0.105** 0.091*** 0.032 
COWS × LABOR 0.230*** -0.021 0.085** 0.095 
COWS × CROP -0.006 0.005 0.095*** -0.037 
COWS × OTHER 0.001 0.008 -0.060** -0.118* 
FEED × CAPITAL -0.045** -0.043** -0.022 -0.040* 
FEED × LABOR -0.082*** 0.040 -0.004 -0.003 
FEED × CROP 0.005 -0.035* -0.059*** -0.013 
FEED × OTHER -0.023 -0.042 0.074*** -0.126*** 
CAPITAL × LABOR -0.015 -0.056** -0.029 -0.035 
CAPITAL × CROP 0.011 -0.039** 0.003 -0.031 
CAPITAL × OTHER 0.006 -0.011 0.009 -0.017 
LABOR × CROP 0.047** 0.043* -0.010 0.085*** 
LABOR × OTHER -0.009 -0.050 0.010 -0.101** 
CROP × OTHER -0.025 -0.007 -0.033** 0.008 
TIME TREND -0.001 -0.005* 0.007*** -0.020*** 
SQUARED TIME TREND -0.001*** 0.000** -0.001*** 0.000 
DSOUTH -0.085*** -0.016 -0.028*** -0.084*** 
DNORTHWEST -0.075*** 0.024 -0.026*** 0.009 
DEAST -0.091*** -0.042*** -0.057*** -0.064*** 
DBST1: less than 25% 0.015** 0.033*** 0.024*** 0.009 
DBST2: 25–75% 0.061*** 0.044*** 0.051*** 0.063*** 
DBST3: higher than 75% 0.088*** 0.060*** 0.068*** 0.125*** 
η -0.019*** -0.026*** -0.019*** -0.005 
σ = [σv

2 + σu
2]1/2 0.169*** 0.239*** 0.910*** 0.843*** 

λ = σu / σv 2.802*** 3.746*** 0.028 0.034 
Observations 1,886 1,418 3,304 
Log LF 2,189 1,409 3,724 

Note: * , **, and *** indicate significance at the 10 percent, 5 percent, and 1 percent levels, respectively. 
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pected, the Bovine Somatotropin dummies indi-
cate that a higher use of this growth hormone in-
creases production ceteris paribus. The same re-
sult was found in Cabrera, Solis, and del Corral 
(2010). Moreover, farms located in the East are 
the least productive farms, with farms in the 
Northeast the most productive. The Northeast, of-
ten referred to as the North Country, is primarily 
a dairy region with few other commodities pro-
duced. Dairy farms have a comparative advantage 
in this region. The soils are generally poorer qual-
ity than in the valley regions of the other regions, 
and the growing season is shorter. Yet farmers in 
the Northeast are able to obtain good feed rations 
using produced forage augmented with grain pur-
chases. The South and East regions consist of hill 
and valley farms, with many of the hill farms dis-
appearing, since those are situated on poorer soils. 
In contrast the Northwest generally has the most 
consistently good quality soils and is the region 
where many of the larger farms have evolved. 
The Northwest is the second most productive re-
gion after the Northeast. 
 Table 3 shows the averages of representative 
variables for the two groups obtained in the latent 
class model as well as for both milking systems, 
while Table 4 shows the number of farms in the 
sample for each group and each year. There are 
differences between parlor and stanchion farms, 
but greater differences appear to exist between 
the two groups identified in the latent class 
model, labeled “group 1” and “group 2.” In par-
ticular, parlor farms and group 1 farms are larger 
in size and have higher input average productiv-
ities than stanchion farms and group 2 farms re-
spectively. On the other hand, group 1 of the la-
tent class model is formed mainly by parlor farms, 
while in group 2 there are relatively more stan-
chion farms than parlor farms. Yet there are signi-
ficant differences among those groups (i.e., parlor 
vs. group 1 and stanchion vs. group 2), especially 
in size. Therefore, although parlor and stanchion 
milking appear to differentiate our sample into 
unique technologies, additional characteristics ap-
pear important to differentiate the sample farms. 
A closer investigation of the estimated results of 
the production functions provides insights. 
 Output elasticities from the parlor and stan-
chion technologies are very similar. The null hy-
pothesis that both milking systems are character-
ized by the same output elasticities at the sample 
means was tested using a t-test for each input and 

was rejected only for OTHER at the 99 percent 
confidence level (t-statistic -3.34) and for LABOR 
at the 95 percent confidence level (t-statistic 1.98). 
LABOR is much more productive on the parlor 
milking farms, as shown later in Figure 2. 
 On the other hand, the estimation of the latent 
class model found two technologies that seem 
very different from each other. In this case the 
tests of equal output elasticities between groups 
indicate that the output elasticities are different 
for COWS, FEED, CAPITAL, and OTHER, but not 
for LABOR. It appears that the latent models are 
differentiating based upon minute technology dif-
ferences which may include cow genetics, feed-
ing system, amount of capital utilized (including 
parlors), and miscellaneous inputs. 
 Marginal products of the inputs can be calcu-
lated as 

 (11) l it
itl

itl

y
MP

x
ε ⋅

= , 

where εl is the weighted average for all farms of 
the output elasticity of input l using as weights 
the posterior probabilities in the latent class 
model, and the average of the output elasticity of 
input l in the milking system estimates. That is, εl 
varies across inputs and groups (i.e., parlor, stan-
chion, group1, and group2). Figure 1 shows the 
kernel distributions of the marginal products for 
all groups. These distributions show that for most 
inputs the distribution of the marginal products of 
the stanchion and parlor farms is rather similar 
except for labor, but that the distribution of the 
marginal products of the latent class models groups 
is clearly differentiated for all inputs except labor. 
Especially telling is the marginal product (MP) of 
the cow input, which is measured simply as the 
number of cows. Cows are slightly more produc-
tive in parlor farms than in stanchion farms, but 
the differential is most striking between the latent 
groups, with the MP of latent group 2 being much 
lower. Apparently, farms with low-producing cows, 
due possibly to inferior genetics, poor disease de-
tection and control, poor feeding, and other poor 
management practices, are being differentiated 
from farms with higher-productive cows. Milk 
per cow has always been a bellwether indicator of 
good management. Size may be associated simply 
with management.

  In contrast, the MP of purchased feed, which is 
measured in dollars of expenditures, is much 
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Table 3. Characteristics of Dairy Farm Production Systems (sample averages) 

 Milking System Latent Class Model 

  Parlor Stanchion Group 1 Group 2 

Number of observations  1,886 1,418 2,307 997 

DPARLOR 1 0 0.60 0.50 

Milk (lbs.) 6,492,910 1,314,450 5,140,050 2,258,190 

Cows 301 73 238 123 

Labor (annual workers) 7.21 2.64 5.96 3.62 

Land (acres) 729 307 598 434 

Yield per cow (lbs.) 20,308 17,734 20,181 16,940 

Milk per acre (lbs.) 8,713 5,137 8,107 5,031 

Milk per worker (lbs.) 808,569 505,947 728,057 564,460 

Purchased feed ($) per cow 739 613 710 627 

Cows per acre 0.42 0.28 0.39 0.29 

Technical efficiency 0.89 0.85 0.89 0.88 

 
 
Table 4. Number of Farms per Year and Group 

 Milking System Latent Class Model 

  Parlor Stanchion Group 1 Group 2 

1993  157 191 248 100 

1994 159 160 225 94 

1995 164 157 222 99 

1996 154 148 203 99 

1997 151 124 192 83 

1998 194 122 217 99 

1999 185 121 217 89 

2000 177 111 195 93 

2001 139 82 147 74 

2002 145 70 156 59 

2003 127 73 143 57 

2004 134 59 142 51 

Total 1,886 1,418 2,307 997 

 
 
higher in latent group 2 than in latent group 1, 
possibly reflecting the fact that the farms in latent 
group 2 are not using enough feed, since they use 
on average only $627 per cow compared to $710 
for latent group 1. Although the distribution of 
MPs of capital for both parlor and stanchion are 

essentially identical, the MP of latent group 1 is 
much lower than latent group 2. Yet, as indicated 
earlier, the MP of labor is almost identical be-
tween the two latent groups, which is not the case 
for parlors and stanchions, with the MP of labor in 
stanchion farms being much lower. With the crop 



Alvarez, del Corral, and Tauer Modeling Unobserved Heterogeneity in New York Dairy Farms   283 
 

 

D
en

si
ty

2500 5000 7500 10000 12500 15000 17500 20000
Pounds per COWS

Stanchion Parlor LCM1 LCM2

Kernel of the COWS marginal product

 

D
en

si
ty

0 40000 80000 120000 160000
Pounds per LABOR

Stanchion Parlor LCM1 LCM2

Kernel of the LABOR marginal product

 

D
en

si
ty

0 5 10 15 20
Pounds per FEED

Stanchion Parlor LCM1 LCM2

Kernel of the FEED marginal product

 

D
en

si
ty

0 5 10 15 20
Pounds per CROP

Stanchion Parlor LCM1 LCM2

Kernel of the CROP marginal product

 

D
en

si
ty

0 2 4 6 8
Pounds per CAPITAL

Stanchion Parlor LCM1 LCM2

Kernel of the CAPITAL marginal product

 

D
en

si
ty

0 10 20 30 40
Pounds per OTHER

Stanchion Parlor LCM1 LCM2

Kernel of the OTHER marginal product

 
Figure 1. Kernel Distributions of the Marginal Products for All Groups 
 
 
input, it appears that stanchion farms are similar 
to latent group 2, while parlor farms are similar to 
latent group 1. Finally, group 1 of the latent esti-
mates displays technological progress, while group 
2 does not. 
 
Differences in Technical Efficiency 
 
Technical efficiency (TE) reflects the ability of a 
farm to produce the maximum level of output 

from a given set of inputs. A technical efficiency 
index can be calculated using the following ex-
pression (the dependent variable must be in natu-
ral logs): 
 
(12) ˆexp( )TE u= − , 
 
where the inefficiency term, u, is separated from 
the other error component using the formula de-
veloped by Jondrow et al. (1982). 
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 The average technical efficiency in the parlor 
group was 0.89, whereas in the stanchion group it 
was 0.85 (Table 3). Thus, stanchion farms are less 
efficient on average than parlor farms. This dif-
ference was statistically significant based on a t-
test (t-statistic 14.03). Note, however, that the ef-
ficiency of each group is measured with respect 
to a different frontier, and therefore the average 
efficiency is telling us which groups of farms are 
closer to their own frontier. Although these stan-
chion barns are functionally operational, many 
are obsolete. Stanchion milking is labor-intensive 
and physically demanding. These milking sys-
tems also generally lack the monitoring equip-
ment found in most parlors. The parameter η is 
negative and statistically significant for stanchion 
farms and group 1 from the latent class model, 
implying that technical efficiency decreases over 
time for these two groups.7 Figure 2 shows the 
evolution of these average technical efficiency 
levels. Efficiency declines over time for parlors as 
well, but the decline is greater for the stanchion 
farms. These stanchion farms continue to depre-
ciate in efficiency as parlor milking systems domi-
nate the industry. Similarly, farms that belong to 
group 1 are more efficient than farms belonging 
to group 2 in the latent class model. However, 
due to the decreasing pattern in group 1 and the 
increasing pattern in group 2, technical efficiency 
is higher for group 2 than group 1 in the last years 
of the sample. 
 

.8
.8

5
.9

TE

1993 1996 1999 2002 2004
Year

Stanchion Parlor LCM1 LCM2

 
Figure 2. Average Technical Efficiency Over 
Time 
                                                                                    

7 However, it increases for some periods. The model implies that TE 
is a monotonic function of time, so this aberration occurs because the 
panel is unbalanced and the computations are based upon individual 
observations.  

Conclusions 
 
We investigate the identification of farm group-
ing within a sample where farms may not share 
the same technology. To accomplish this task, we 
compare the typical approach in the literature, 
i.e., splitting the sample based on an observable 
characteristic, with a latent class model, which is 
a relatively modern econometric procedure that 
uses statistical properties for differentiation. 
 The empirical exercise uses data from a sample 
of New York dairy farms. Because dairy farms 
are often separated into stanchion and parlor milk-
ing systems, we estimate separated stochastic pro-
duction frontiers for stanchion milking farms and 
for parlor milking farms. We also estimate a sto-
chastic frontier latent class model that identifies 
two groups of dairy farms based on their unob-
served (latent) technological differences. Com-
parison of the results from the two approaches 
implies that the milking system is only a partial 
determining factor of technology differences. 
 The latent class model was able to classify the 
farms into two groups that showed much higher 
technological differences than those obtained by 
splitting the sample using the kind of milking sys-
tem as the separation criterion. Therefore, from a 
methodological point of view, we suggest that, if 
researchers suspect that farms in the sample do 
not share the same technological characteristics, 
they use latent class models to control for hetero-
geneity. 
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