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The Approximation of Nonlinear Programming
Problems Using Linear Programming

Jeffrey Apland

Linear programmihg has been used extensively for analyzing eco-
nomic problems. Procedurally; linear programming.(LP) is an attrac-
tive modeling alternative because of the availability of efficient
solution algorithms and the accessibility of computer routines
whi&h use these algorithms. The applicability of linear program-
ming can be broadened significantiy through the use of separable
programming -- a technique which allows for the approximation of
nonlinear programming problems using LP. Separable programming can
be applied to nonlinear programming problems with constraint and ob-
jective functions which can be specified as the sums of functions
of single variables [Millerl. Separable programming'involves the
construction of piecewise linear approximations - of the nonlinear
functions. The result is a LP problem which can be solved using a
conventional LP algorithm. In this paper, the technique of separ-
able programming will be discussed. An extension of the approach
to nonlinear programs with non-separable functions will be
presented also. Finally, examples of separable programming will be

provided and discussed.

The General Separable Programming Problem

Consider the following nonlinear programming problem:

Max: F(X) (1)
X



s.t: g(X) £ b (2)
X 2 0 (3)
Where: X is an nx1 veétor of instruments, b is an mxl vectar of

constraint constants and g(X) is an mxl vector of constraint func-
tions (with elements gr(X)e.oeGQm(X)). If the objective function
F(X) and constraint functions g, (X)...gw(X) are separable (i.e. can
be expressed as the sum of functions of single variables), the func-—

tions can be restated as follows:

n
FIX) = Z F (X,) (4)
i=1
n
gi{X) = Z gui,(Xy)3 i=tl...m (5)
=1
The nonlinear progfamming problem ((1), (2) and (3)) then becomes:
n .
Max:s X F,(X;) (&)
i=1
n
s.t: T gi,(Xy) £ b,y (7.1)
j=1
n .
L Qmy (Xy) & bm (7.2)
ji=1 .- .
n . .
Z gms{X;) £ b (7.m)
j=1
X, 2 05 j=1l...n (8)

With separable programming, nonlinear functions F,(X;) and g, ,(X,)
are approximated using linear segments. For the jth single

variable function within the objective (F,(X,)), an approximating



function can be derived as...

- _ Fj(-;(_,m»«]_) - FJ(T(JM) -
Fj(xl‘g) = F"_i(x‘jp;) + (Xa—x\jp;) (9)

Xau+1 - XJM

(9) defines a line through coardinates [X 1w sF (X301 and [Xguris

F(X,u+2)1 which is used to approximate F,(X,) for Xaw & Xy & Xjuwno

Where X, and X ,we: are in the neighborhood of X, Fb(xéi w F (X )
Any value of X, such that idm £ X, £ ijhwl can be expressed as:

X, = (1=K yu + &X yuws (10)

0 £ o s 1 | (11)
It then follows fhat...

xév— X = (X grwn = Xyu), (12)
" The approximated value of F,(X,)s using (9) and (12) is:

' _ Fo(i\,;.—,-rl) - Fa(iop;) - -
FJ(X;M) + (ot(X‘:,w,.‘.l—X“.;)) - (13

fyla) = - -
Xjk*l - Xok'
= F,(Xym) + &(F (X ypin) = FolX yu)) (14)
= (1=0)F, (X30) + oF 5 (X)) (15)

If q values of X, are used in the approximation of functions F,(Xy)
and g.,(X;)s (call them f,lyiéa...i,q), the technigque of sepafable
programming calls for the definition of (gxn) special variables,
Xy j=l...ny k=1l...q. Each special variable &;u corresponds

to the use of the kth value of XQ, RJH, in the approximation of
nonlinear objective and constraint functions. In general, a unique
number of special variables and values will be used for functions

of each X,. However for convenience in notation, let qi=qa=



--+:Gn=q. The following is a separable programming formulation of

the nonlinear Programming problem (&) through (8):

n n q _
Max: = ‘f",(O(\”,...O(‘,.r_,) = X p Fa(x‘-)p;)(x‘gp;

j=1 j=1 k=1

n q _
s.t: z z gld(X‘,M)a‘,H < b-_!_

j=1 k=1 .

n q _ .

z z gm.,(X_,k_)O(jH L bny

j=1 k=1

q

z oKy = 1

k=1 .

q .

z a\"\k: = 1

k=1

Ay 2 05 j=1...n} k=1...q

Note that (1&) through (19) is a 1linear program.

With
Lagrange multiplier for constraint (17.i) and &, the
multiplier for constraint (18.j5), the Kuhn-Tucker

characterizing an optimal solution to (1.1&) through

m
FJ(XJH) - Z eggga(xdh) e QJ 5 0 j=1.--n; k=1-.
i=

-

LR ki) = E 04ga 3 (Xy0) = 8,30, = 0 j=1...n;

m
i=1

%gm 2 0 j=1...nj k=1...q

n q -
b, - T L gas{Xywloyw 2 0 i=1...m
j=1 k=1
n o q _ ‘
by, - X Z gy (X mdoy10, = 0O i=l...m
i=1 k=1 '

@, 2 0 i=1...m

.

(146)

(17.1)

(17.m)

(18.1)

(18.n)

(19)

Lagrange

conditions

(19) are:

.q

k=1...q

(20)

(21)

(22

(23)

(24)

(25)

the



q
1.0 - £ &,y = O j=1l..en (2b)
k=1

Using (16) through (19) to approximate (&) through (8), the

a_ *
approximated optimal values of X, are I X ju&ju.s j=1...n {(recall
k=1
q
that by (18), I x4 = 1.0, j=l...n). The approximated optimal
k=1
. n q — *
value of objective function (1.06) is X £ F,y{Xsm)xse and
j=1 k=1

n

- *
T Quys(Xju)yw 18 the approximation of the ith constraint (7.1),
i=1

i=1l...Mm. 8% is the approximation of the dual of constraint 7.1
i=l...m. The duals of convexity constraints 18.3 (&%) can be
interpreted best in the context of specific classes of economic

problems.

Convexity and Separable P}ogramming

If the opportunity set of a mathematical programming problem is
compact and noneﬁpty, and the objective function is continuous over
the opportunity set, then a global solution to the problem exists
EIntrilligator, p.131. 1If, further, the opportunity set is convex
and the objective function is concave over the opportunity set, a
local maximum for the problem is a global maximum EIntrilligétor,
p.lS].' These theorems hold also for the separable'programming prob-—
lem ((&) through (8)) when the subfunctions F ,;(X,) and gsstXy) of
the original nonlinear program are concave and convex, respective—
ly. The convexity of the constraint functions and the concavity of
the objective function have special implications for the separable
programming problem.

Recall that the approximating function for F (X,), f lx,), was



derived in (9) through TiS) for adjacent values of X; (X, and
Xsmmr s wheré Xoa € Xz < Xym < ... X5} The convexity constraints
of the separable programming problem ((18.1) through (18.n)) do not
confine adjacent special activities (o4, and qgh*l, for some k) to
sum to 1.0. Solutions involving convex cambinations of
non—adjacent special variablgs may be feasible, implying that the
convex combination of points used to approximate F,(X,) may not re-
present the intended approximating function. However, if the ob jec—
tive functian is concave and the constraint functions are convex,
the optimization Process will insure that adiécent values of X,,,
are used in the optimal solution (i.e. oy, + aah;l = 1.0, for every
j=l...n and far some k). A proof foilows.

Suppose F,(X,) is to be approximated using consecutively in-

creasing values X,,, k=1...9. From (16) through (19), we have...

a -
falaxy) = X FalXam)axy, . (27)
k=1
g
Y oy = 1.0 (28)
k=1 ' ’ .
A b 2 0, k=1.--q (29)

Let «” be a feasible solution to the LP problem, where o},.. + s S,

= 1. So...

Falad) = FulXymm1)®fmes + Fy (X ymes ) & Gomns ' (30)

Assume that X,meuOlm-1 + XymesOlmes = Xome If Fy(X,) is strictly

concave, then...

Fa (X gmm2 % mea +X sy s ) > Fd<§$mml)agm»1+Fd(§jm¢1)a;m*1 (31)



Where oy, = 1 and thQs Falay) = FylX, m)s and using (30) and (31)...
Folay) > Fla}) (32)

If 4 is feasible, o} cannot (by (32)) be optimal. When constraint

functions g, ,(X,;) are convex, then...
Gy 3 (Xgm—1®im=1FX ymea Xim+1) € Ga g (Xymea )X m—1+Gs 5 (Xymu1 ) X]man (33)

By (33), constraints for the LP will be no more binding at «f than
at «o}. Thus, if aj is feasible; o'y is feasible. If F, (X ,) is

concave but not strictly concave, the more general result is...
fFalat) 2 f,{al) (34)

That is, a solution involving non—adjacenf values of X; will be
either nonoptimal or an alternative optimal solution. Figure 1 il-
lustrates the relationship between approximations with non-adjacent
points and adjacent points for a strictly concave objective func—
tion F(X). Where F(X) is to be maximized subject ta the constraint
X £ 20.0, an appraximation using adjacent peoints B and C will always
give a greater value to the approximated objective function than an
approximation using non—adjacént points such as A and C.

The objective function shown with its sepéréble programming ap-—
proximation in Figure 2 is not concave. 'If maximized subject to
X £ 32.66, the»exact solution is at point B. The intended approx-
imation is at point A -— a linear codbination of adjacent points.
However,; a LP solver would select point € by using non-adjacent

points, and the intended approximation would be violated.
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Application of Separable Programming

A few general observations can be made about the implementatioh
of separable programming. The range of values of X, used in the
approximations should, of course, include the optimal value X%
plus and minus an allowance for errors in the approximation. A
working knowledge of the problem will wusually provide reasonable
ranges for the variablés. The smaller the ranges over which the
functions are approximated, the better the approximation for a
given number (q) of special variables. .

A better approximation of the functions can be achieved also by
using more points in the approximation -— that is, by increasing q,
the number of special activities. While this leads to an increase .
in the number of columns in the LP matrix, no additional rows (con-
straints) are neededr For many commercial LP solvers, computation-—
al costs will not increase significantly as the number of activi-
ties increases. The computations associated with matrix prepara-
tion, however, may be burdensome. When this is the case, it may be
useful to find a first approximation of the solution using a rela-
tively sparce set of values of the variables, then to solve the
problem again using the same number of values over a narrower range
around the first solution values. Care must be taken so that the-
range of values is not reduced beyond the range of approximation
errors inherent in the first solution. |

The solution to a separable programming problem may contain
information which is useful in finding formulation, data or solu-—.
tion errors. If an extreme value of a variable X; (ij or_X,q,

where f,l < iag .. < X434) appears in the LP solution such that



aFr = 1.0 or a%4 = 1.0, the values used may be restricting the
optimal solution. If such a restriction i% not intended and if
there are no alternative optimal solutions, the ranQE'should‘be ap-
propriately altered. If a convex combination of non—ad jacent
values is used in the solution,; errors may exist, also. This may
occcur when the objective function is not concave,; implying the need
for adjacency restrictions on the special variables to achieve the
intended approximation of the objective function. Similarly, if
one or more of the constraint functions; are not convex, adjacency
restrictions must be imposed to'achieve the intended approximation
of the constraints. The imposition of adjacency restrictions on a
separable programming problem (using additional either-or restric-—
tions with zero-one wvariables or a specially altered solution
‘algorithm) may ‘be impractical dﬁe to the added computational
burden. Also, such féchniques will +typically insure only a local
optimum. The convex combinations of non-—ad jacent values in the
optimal solution may also occur if a nonlinear constraint function
is non-binding at the optimal solution or if the constraint is not
strictly convex. Finally, if the objective function is concave but
not strictly concave, an optimal solution may be constructed with a

convex combination of non~adjacent points on a flat region of the

function.

Linear Approximations of Non-Separable Functions
Nonlinear programming problems with constraint and or objective
functions which are not separable may be approximated with piece-

wise linearization. In some cases, simple algebraic manipulations



may be used to transform a nonseparable constraint into a separable
form. McCarl and Tice have presented a technique which can be used
to transform non-separable quadratic programming problems into
separable forms which can be approximated with separable
programming. Wwhen such .transformations are not possible, however,
a grid linear approximation of the problem may still be practical.
Consider a nonlinear programming problem with the following

constraint:

Y - 2.25X:®UX,MEXT ¢ 0 ‘ , (35)

Discrete values of Xas Xy and X may be defined to form a linear
approximation of the constraint -—- call them X,,s where Xua < Xpm <
eeoXsg and i=1,2,3. A special activity (Gpie1) 18 defined for each

combination of values of X1y X and X=s to construct the following

approximation: {
Q 49 49 e e
y - £ £ (2.25X;%ar®X5i")onna £ 0 (36)
h=1 k=1 1=1
q 49 9
T T T G =1 (37)

h=1 k=1 i=1

Note that in this form, the number of values of the variables used
in the approximation has a m;ltiplicative effect on the number of
special activities. Wheri the number of special activities must be
limited, the technique discussed earlier in the paper of finding a
first approximation, then solving again with the approximation con-

structed over narrower ranges in the variables, may be employed.



A Spatial Equilibrium Model
Quadratic programming (QP) is frequently used to model the equi-
librium of spatially separated markets. Such models have been ex-
tended to the multiple commodity, multiple time period case
[(Takayama and Judgel, however for purposes of illustration, an
n-country, single commodity, static model will be used here. The
equilibrium of spatially separated markets can be modeled as the

following QP:

n
Max : b CEa::iixc$:,+ 'Sbuzxfjxj - Eaa-"-.nxtsa."' -5bsnx‘é;'133

j#Ei
n n
-z z CysTy, (38)
i=1 j=1
i#j
n ¥
s.t: Xy, = & T,, £0 ji=l...n (39)
i=1 .
j#i
n
- Xg, - I T,, £0 i=t...n (40)
i=1
X“i,xml,Tld 2 0 i=l...n3 j=1...n (j#i) (41)

Where: R4y is the intercept and buas the slope of the excess demand
function for country i, ag, is the intercept and by, the-slope of
the excess suppiy .function for country i, Cay is fhe unit trans-
portation cost from country i to country j, Xa. is the excess
demand and X, the excess supply in country i, and Tuisy is total
units shipped from Cauntry i tg country j. The objective function

(38) is the producer blus Consumer surplus from trade -—-— explic-
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q ,
T o, =1 i=1...n . (45)
k=1
q
T, =1 i=l...n (4b6)
k=1
®,pr Towr To, 20  i=l...ni j=1...n (j#i); k=l...q (47)

The approximation of the demand function integral for a partic-
ular country or region in a trade modgl igs illustrated in Figure 3.
The graph at the top of Figure 3 'shows the quadratic integral and
its -approximatibn using five separable programming variables («).
The piecewise linear approximation of the demand function integral
in the welfare function implies a -step function approximation of
the linear demand‘ function as shown in éhe baottom graph. A more
exact approximatiaon ‘may, of course, be achiéved by us{pg a larger
number of points in the approximation as illustrated in Figure 4.

'The'Kuhﬁ-Tucker conditions for (42) through (47) ‘gre given

below.

Ca, ,Xa,ut 90 ,X2,.0 = 0, Xy, — &,, £ 0 j=l...nj k=l...q  (48)

[[aaaaxaﬂ.jlc+ 'Sbc!,jxi::;h:] - elJXcﬂJM - éla]a‘jh; = O - (L’Q)
j=l...n3 k=1l...q

[ag,Xayut T8, X2, .0 = 00, Xgyp — &m, £ O i=l...n; k=l...q  (50)

[[ammxmnh:"' 'Sbs'-;za.lesa‘w.] ~ OnaXaam T QE‘_&.]TQ.M =0 (51)
i=l...nj k=1...qg

- C,,*0,, ~ 8, £0 i=l...nj j=l...n, j#i ‘ (52)
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L c,, ¥ 6,, - 0, 1T,, = O i=l...nj3 j=l...n, j&i ) (53)
o, s Tops T,, 20 i=l...ny j=1l...n (j#i); k=1l...q (54)
i#j
9 _ n )
- Z Xy, t 2T, 20 j=1l...n (55)
k=1 i=1
q _ n
[ - I Xgu®y z le]ela 2 0 j=l...n (356)
k=1 i=1
j*i
q n
Z XgapuTaw - X2 T,, 20 i=l...n (57)
k=1 j=1 .
jEi
q _ n
[ L XgowTaw - Z Ta-’]e&?g 2 0 i=l...n (58)
k=1 j=1
q
oo, =1 i=l...n (59
k=1
al . .
ZT,,. =1 i=l...n (60)
k=1

Suppose that in equilibrium country h is an importer and country 1
is an exporter. Further, assume that values of Xu. and Xe. used in
the approximation are defined such that at the optimal (equilibri-
um) solution, AN w=1.0 and T¥.=1.0. This assumption is a
convenience for the derivations which follows, but does not affect
the generality .of the results. As with the original quadratic
programming formulation, it can be shown that the duals of the
commodity balance constraints, 9%, and 6%,; are equilibrium import
and export prices, respectively. By (48) and (4%9), and (50) and

(51), the following conditions hold at equilibrium:



[ac‘.lhxl::lhm-.-_ 'Sbuihxﬁhrnj - elhxcﬁhm = §:l.l"\ (61)
- -~ _
Eamlxﬁlw"' 'Sbwlxsslm] - eﬂuxtamp = &y, (62)

That 1isy by (61) the dual of the convexity constraint associated
with the approximation of the excess demand integral for cauntry j
{or in general, any importing country) is the consumer surplus in
that country éttributable to trade. By (462), the dual of the con-
vexity constraint associated with the approximation of an excess:
supply function integral is the producer surplus from trade for
that country. These results from the optimal solution to the sepa-
rable programming problem (42) through (47) are not given directly

in the solution to the original quadratic programming formulation.

A Nonlinear Nutrient Requ?re&ent Coanstraint

Constraints which embody technological relationships of ihpor—
tance to production problems are often nanlinear. For example the
energy requiremgnts of beef cattle are often modeled using the net
- energy system [National Research Councill. For a given type and
size of animal, the ration must have the energy necessary for main-
tenance of the animal’s weight. To achieve a given rate of gain, a
given amount of gain energy will be necessary also. Under the net
energy system, energy in a portion of the ration is assumed to be -
used to meet &aintenance regquirements. Energy in the remainder of
the ration is assumed to be used by the animal for gain. For an
‘animal of given type and size and for a targeted daily rate of

gaih, netgenergy reguirements are specified as follows [Brokkenl:



n .
Z amXs. 2 NEM/e (63)
i=1
n
T ag:iXs 2 NEG/(1-e) (64)
i=1 '

0 £ e <1 (65)

Where: NEM and NEG are the requirements of maintenance and gain

energy, respectively; e is the proportion of the ration which will
be used for m;intenance requirements (thus (l-e) is the proportion
for gain); the amounts of maintenance and géin energy per unit of
feed i are amn, and ag.,, respectivelyj and X, is the guantity of the
ith feed in-the ration. Since for a ration formulation .problem e
is endogenous, the net énergy constraints are nonlinear. A linear

approximation of the constraints may be constructed as follows:

n q

T amsXs — £ (NEM/eudaw 2 0.0 (66)
i=1 k=1

n q

T ams Xy — & (NEM/(1-eu))a. 2 0.0 (&67)
i=1 k=1 ‘

q

L oo = 1 ' (68)
k=1

The resulting approximations of the maintenance and gain energy

constraints are illustrated in Figure 5.

Computerized Generation of Parameters of a Separable Program
The use of computer programs to generate linear programming ma-—

trices can be an efficient approach to the construction of models
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which will be used repetitively [McCarl and Nuthalll. Computerized
matrix generators can be especially effective for calculating the
discrete values of variables (X) and the corresponding function
values (Fa(iﬁn) and g;a(fdh)i in a separable program. A simple
example will serve to illustratg the.technique.

For the separable programming approxi@ation of net energy
requirements given in (&6), (&7) and (48); three coeficients
(NEM/e, NEG/(1-e), and 1) wmust be input to the solver for each
special variable oy, . Ify, as illustrated in Figure 5, 25 special
variables are used, 75 cqefficients must be generated. Within a

FORTRAN matrix generating computer program which writes MPS
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formated matrix data, the lines of code below would create the
lines for entering the parameters of (66)s (67) and (468). {Note
that these parameters are constraint cdefficients of the LP which

are, in MPS format, entered in the "COLUMNS" data [McRobertsl.)

XNEM=6 .89

XNEG=5.06

EMIN=0.075

EMAX=0.925

NG=25

ESTEP=(EMAX-EMIN) / (N@-1)

DO 10 K=1,NQ

EK=EMIN+(K-1)*ESTEP

A1J1=XNEM/EK

AT J2=XNEG/EK

WRITE(1,20) K,AIJ1 :
20 FORMAT(7X, ’ALPHA’ ,12,4X, "NEMMIN’ , 1X,F12.2)

WRITE(1,21) K,AIJ2
21 FORMAT(7X,’ALPHA’ ,12,4X, *NEGMIN®,1X,F12.2)

WRITE(1,22) K
22 FORMAT(7X,’ALPHA® ,12,4X,  CONVEX’,10X,’1.0%)
10 CONTINUE

The number of points to be used in the approximation (NQ) is
specified aiong with the net energy requirements (NEM and NEG).
From this information,; the program can calculate the incremental
increase in e (ESTEP). And by using a "DO" loop, the parameters of
the constraints are calculated and written to the designated file
in MPS format. .In this example, ¢the LP problem has 75 a.;’s
associated with the approximation which are generated with 3
user-provided values -—- EMIN, EMAX and NQ. The range oaof the
approximation (EMIN to EMAX) and the number approximating points

{NQR) can easily be altered. Given the parameter values in the



_EE_
code above, the following lines of MPS-formated data would be

generated:

ALPHA 1 NEMMIN %1.83
ALPHA 1 NEGMIN 5.47
ALPHA 1 CONVEX 1.0
ALPHA 2 NEMMIN 62.37
ALPHA 2 NEGMIN 5.69
ALPHA 2 CONVEX 1.0
ALPHAZS NEMMIN 7.74
ALPHAR24 NEGMIN 45.82
ALPHAR4 CONVEX 1.0
ALPHARS NEMMIN 7.45
ALPHARS NEGMIN 67 .44
ALPHARS CONVEX 1.0
Summary

-Separable prgramming is a technique for approximating the
solution of nonlinear programﬁing problems with separable objective
and constraint functions using linear programming. When nonlinear
programming solvers are not available or impractical to use,
linearization and the use of relatively efficient and accessable LP
codes is an attractive alternative. In some éases, the grid linear

approximation of nonseparable functions may be useful, also.
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