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The Approximation of Nonlinear Programming
Problems Using Linear Programming

Jeffrey Apland

Linear programming has been used extensively for analyzing eco-

nomic problems. Procedurally, linear programming (LP) is an attrac-

tive modeling alternative because of the availability of efficient

solution algorithms and the accessibility of computer routines

which use these algorithms. The applicability of linear program-

ming can be broadened significantly through the use of separable

programming -- a technique which allows for the approximation of

nonlinear programming problems using LP. Separable programming can

be applied to nonlinear programming problems with constraint and ob-

jective functions which can be specified as the sums of functions

of single variables CMiller]. Separable programming involves the

construction of piecewise linear approximations of the nonlinear

functions. The result is a LP problem which can be solved using a

conventional LP algorithm. In this paper, the technique of separ-

able programming will be discussed. An extension of the approach

to nonlinear programs with non-separable functions will be

presented also. Finally, examples of separable programming will be

provided and discussed.

The General Separable Programming Problem

Consider the following nonlinear programming problem:

Max: F(X) (1)

X
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s.t: g(X) < b (2)

X > 0 (3)

Where: X is an nxl vector of instruments, b is an mxl vector of

constraint constants and g(X) is an mxl vector of constraint func-

tions (with elements gi(X)...g,,(X)). If the objective function

F(X) and constraint functions. g(X)...g,,(X) are separable (i.e. can

be expressed as the sum of functions of single variables), the func-

tions can be restated as follows:

n
F(X) = F,(X,) (4)

j=l

n
g<(X) = Z gtj(X); i=l... m (5)

j=l

The nonlinear programming problem ((1), (2) and (3)) then becomes:

n
Max: F F,(X5) (6)

j=l

n
s.t: 2 g),(X ) S b1 (7.1)

j=1

n
E ga (X* ) < b1 (7.2)

nl .
n
Z g,,,(X) -< b,, (7.m)
j=l

Xj 0; j=l...n (8)

With separable programming, nonlinear functions F,(XJ,) and gj<(X,)

are approximated using linear segments. For the jth single

variable function within the objective (FJ(X,)), an approximating
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function can be derived as...

Fj(Xjkxl) - F (X.< )

Fj(X,) = F-j(Xjk) + (X--X 3-- ) (9)

X jk.--1 X j-

(9) defines a line through coordinates CX,.,F(Xk)] and CX.-l,

F(X..-+t)3 which is used to approximate Fj,(X,) for Xj,., < Xj < XJ J,., il

Where X.,: and X+,,z are in the neighborhood of X4, F,(Xj) ., F(X,)

Any value of X, such that X.: <! X, < XS+. can be expressed as:

(10)
X,) = (1-a)XJk + aX 

(10)

0 i< a 1 
(11)

It then follows that...

3- -X t = a(X Jk. '+1 J -X (12)

The approximated value of F,(X.), using (9) and (12) is:

F,(X ,...l) - F,(XX.) 

fj(a) = F(Xk.) + ((X,. k -X ,.)) (13)

X j -1 X ^ 

= F,(X,:) + a(F(X+-.) - F<(XJ.F)) (14)

(15)
= (1-ax)F,(XX,) + oFJ(X,^..i) 

(15)

If q values of X, are used in the approximation of functions FJ(X,,)

and g.,(X,), (call them X, Xa... X,,,), the technique of separable

programming calls for the definition of (qxn) special variables,

ak. j=l...n, k=l...q. Each special variable a<., corresponds

to the use of the kth value of X,, X,,, in the approximation of

nonlinear objective and constraint functions. 
In general, a unique

number of special variables and values will be used for functions

of each X,. However for convenience in notation, let qi=qe=
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·-.qy,=q. The following is a separable programming formulation of

the nonlinear programming problem (6) through (8):

n n q
Max: Z fj(o .... ,q) = F](X) ..)0 c. (16)j=1 j=1 k=1

-n q
s.t: ZE gIj(Xk)o, < b (17.1)

j=l k=l (17.1)

n q
Z Z gm- (Xk),.jk < b., (17.m)j=1 k=l

q
= 1 (18.1)

k=1

q
( a,0

k = 1 (*18.n)k=1

A~: > 0; j=l...n; k=l...q 
(19)

Note that (16) through (19) is a linear program. With e, the

Lagrange multiplier for constraint (17.i) and c, the Lagrange

multiplier for constraint (18.j), the Kuhn-Tucker conditions

characterizing an optimal solution to (1.16) through (19) are:

m
FJ(X,):) - Z OegJ(XJk) - ~ < 0 j=l...n; k=l...q (20)

EFJ(xjk) - eg9 gJ (Xk) - j 3a], = 0 j=l.. k=... k=l q (21)i=1

oah > 0 j=l ...n; k=l.. .q (22)

n q
b, - Z Z gij(X,:)oj > 0 i=l...m (23)j=l k=l

n q
[bi -- 2 g <(X k)a]3e = 0 i=l...m (24)j=1 k=l

e. > 0 i=l...m 
(25)
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1.0 -£ anj=1... 
(26)

k=1

Using (16) through (19) to approximate (6) through (8), the

q _ .

approximated optimal values of X, are S Xj:ajx, j=l...n (recall

k=1
q

that by (18), E a,. = 1.0, j=l...n). The approximated optimal

k=1 n q *

value of objective function (1.06) is Z E Fj(Xjk)ax and

j=1 k=l

n -* 
.**

Z gj(X)I.)kOC is the approximation of the ith constraint (7.i),

j=l

i=1..m. e8 is the approximation of the dual of constraint 7.i,

i=l...m. The duals of convexity constraints 18.j (<) can be

interpreted best in the context of specific classes of economic

problems.

Convexity and Separable Programming

If the opportunity set of a mathematical 
programming problem is

compact and nonempty, and the objective 
function is continuous over

the opportunity set, then a global solution to the problem 
exists

CIntrilligator, p.133. If, further, the opportunity set is convex

and the objective function is concave over the opportunity set, 
a

local maximum for the problem is a global maximum CIntrilligator,

p.15]. These theorems hold also for the separable 
programming prob-

lem ((6) through (8)) when the subfunctions FJ(XJ) and gt.(Xj) of

the original nonlinear program are concave 
and convex, respective-

ly. The convexity of the constraint functions 
and the concavity of

the objective function have special implications for the separable

programming problem.

Recall that the approximating function for 
F,(Xj), fj(ax), was
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derived in (9) through (15) for adjacent values of X, (Xaj, and

XJ,..1, where X,. < X.e < Xj, < ... X,,). The convexity constraints

of the separable programming problem ((18.1) through (18.n)) do not

confine adjacent special activities (oa,, and ac..,, for some k) to

sum to 1.0. Solutions involving convex combinations of

non-adjacent special variables may be feasible, implying that the

convex combination of points used to approximate F,(X,) may not re-

present the intended approximating function. However, if the objec-

tive function is concave and the constraint functions are convex,

the optimization process will insure that adjacent values of X,,

are used in the optimal solution (i.e. x,, + a,F,:, = 1.0, for every

j=l...n and for some k). A proof follows.

Suppose F,,(X) is to be approximated using consecutively in-

creasing values Xk., k=l...q. From (16) through (19), we have...

q
f,<(a) = 2 FJ(X,)a, (27)k=l 7)

q
Z axjc: = 1.0 

(k=l

c,: > 0, k=l ...q 
(29)

Let a' be a feasible solution to the LP problem, where a'<_ + o,.,
=1. So...

f.(caS, = F, (X,-.l )O,,l- + F. (Xjm.s, )oa,.,, (30)

Assume that Xm._,.'-c<, + Xj,,-,.<, = X,,. If F,(X,) is strictly

concave, then...

FF (X, X -l b, ,-.+X n,, l .-O(-.m1) > F X, ) -. i+Fo (Xj ) m-- +Fm, (31)J~~~3 
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Where am', = 1 and thus f,(a') = F,(X,,,), and using (30) and (31)...

fJ(a,) > fJ(a;) (32)

If a' is feasible, a; cannot (by (32)) be optimal. When constraint

functions g~,(X,) are convex, then...

9 ,J (CX am-- 1 O ,m-1 +X J, n.-:l. a ,m' I ) < 9 g. ( X a m-- ) a , n,.- 1 +g 9 i ( X M-3 )X a M, L : (33)

By (33), constraints for the LP will be no more binding at a' than

at a;. Thus, if a; is feasible, a' is feasible. If F,(X,) is

concave but not strictly concave, the more general result is...

f(a') > fJ(ax) (34)

That is, a solution involving non-adjacent values of X, will be

either nonoptimal or an alternative optimal solution. Figure 1 il-

lustrates the relationship between approximations with non-adjacent

points and adjacent points for a strictly concave objective func-

tion F(X). Where F(X) is to be maximized subject to the constraint

X < 20.0, an approximation using adjacent points B and C will always

give a greater value to the approximated objective function than an

approximation using non-adjacent points such as A and C.

The objective function shown with its separable programming ap-

proximation in Figure 2 is not concave. If maximized subject to

X < 32.66, the exact solution is at point B. The intended approx-

imation is at point A -- a linear combination of adjacent points.

However, a LP solver would select point C by using non-adjacent

points, and the intended approximation would be violated.
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Figure 1: Linear Approximation of a Separable, Strictly Concave
Objective Function.

500 - ----

C

400 -

300 -

200

100

0 ------------- I------------ ------------ I --- I --------- I---------I I

0 20 32.66 40

X

Figure 2s Separable Programming Approximation of an Objective
Function Which is Not Concave.
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Application of Separable Programming

A few general observations can be made about the implementation

of separable programming. The range of values of X, used in the

approximations should, of course, include the optimal value Xi',

plus and minus an allowance for errors in the approximation. A

working knowledge of the problem will usually provide reasonable

ranges for the variables. The smaller the ranges over which the

functions are approximated, the better the approximation for a

given number (q) of special variables.

A better approximation of the functions can be 
achieved also by

using more points in the approximation -- that is, by increasing q,

the number of special activities. While this leads to an increase

in the number of columns in the LP matrix, no additional rows (con-

straints) are needed. For many commercial LP solvers, computation-

al costs will not increase significantly as the number of activi-

ties increases.. The computations associated with matrix prepara-

tion, however, may be burdensome. When this is the case, it may be

useful to find a first approximation of the solution using a rela-

tively sparce set of values of the variables, then to solve the

problem again using the same number of values 
over a narrower range

around the first solution values. Care must be taken so that the

range of values is not reduced beyond the range of approximation

errors inherent in the first solution.

The solution to a separable programming problem may contain

information which is useful in finding formulation, data or solu-

tion errors. If an extreme value of a variable X; (X~1 or Xq,

where X,. < Xj ... < X,,) appears in the LP solution such that
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o:L = 1.0 or ajx = 1.0, the values used may be restricting the

optimal solution. If such a restriction is not intended and if

there are no alternative optimal solutions, the range should be ap-

propriately altered. If a convex combination of non-adjacent

values is used in the solution, errors may exist, also. This may

occur when the objective function is not concave, implying the need

for adjacency restrictions on the special variables to achieve the

intended approximation of the objective function. Similarly, if

one or more of the constraint functions. are not convex, adjacency

restrictions must be imposed to achieve the intended approximation

of the constraints. The imposition of adjacency restrictions on a

separable programming problem (using additional either-or restric-

tions with zero-one variables or a specially altered solution

algorithm) may be impractical due to the added computational

burden. Also, such techniques will typically insure only a local

optimum. The convex combinations of non-adjacent values in the

optimal solution may also occur if a nonlinear constraint function

is non-binding at the optimal solution or if the constraint is not

strictly convex. Finally, if the objective function is concave but

not strictly concave, an optimal solution may be constructed with a

convex combination of non-adjacent points on a flat region of the

function.

Linear Approximations of Non-Separable Functions

Nonlinear programming problems with constraint and or objective

functions which are not separable may be approximated with piece-

wise linearization. In some cases, simple algebraic manipulations
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may be used to transform a nonseparable constraint 
into a separable

form. McCarl and Tice have presented a technique 
which can be used

to transform non-separable quadratic programming problems into

separable forms which can be approximated with separable

programming. When such transformations are not 
possible, however,

a grid linear approximation of the problem 
may still be practical.

Consider a nonlinear programming problem with the following

constraint:

.t±s . o (35)
Y - 2.25X XeslX < 0- (35)

Discrete values of XI, Xm, and Xm may be defined to form a linear

approximation of the constraint 
-- call them XIJ, where XI < X~. <

...Xiq and i=1,2,3. A special activity (axh.) is defined for each

combination of values of XI, Xe and X0 to construct the following

approximation:

q q q
y - E E Z 5o) < 0 (36)

h=l k=l 1=1

q q q
Z E OzctcI z h~,l= 1 

(37)

h=1 k=l i=l

Note that in this form, the number of values of the variables used

in the approximation has a multiplicative effect on the 
number of

special activities. When the number of special activities 
must be

limited, the technique discussed earlier in the paper of finding a

first approximation, then solving 
again with the approximation con-

structed over narrower ranges in the variables, may be employed.
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A Spatial Equilibrium Model

Quadratic programming (QP) is frequently used to model the equi-
librium of spatially separated markets. Such models have been ex-
tended to the multiple commodity, multiple time period case
CTakayama and Judge], however for purposes of illustration, an
n-country, single commodity, static model will be used here. The
equilibrium of spatially separated markets can be modeled as the
following QP:

n
Max: Z ([aiX ,+ .5b XdS] - Ca X .+ .5b ,X ii=l

joi

ij j 

n n

-i-1= l Ec n (39)i=I j=1

n

jzi
n

X- X - E T < 0 i=l .. n 40)
j=1

^ 'XC 3Ž'T > 0 i=l ... n; j=l...n (jki) (41

Where: a,, is the intercept and b,. the slope of the excess demand
function for country i, as. is the intercept and b .. the slope of
the excess supply function for country i, ct is the unit trans-
portation cost from country i to country j, XI is the excess
demand and Xc, the excess supply in country i, and Ti, is total
units shipped from country i to country j. The objective function
(38) is the producer plus consumer surplus from trade -- explic-
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itly, the sum of the excess demand function integrals minus the sum

of the excess supply function integrals and transportation costs.

Constraint (39) limits excess demand in each country j to no more

than total shipments to that country. Constraint (40) limits ship-

ments from country i to no more than the excess supply in that

country. To account for trade distortions, the excess supply and

excess demand parameters may be adjusted to reflect tariffs and sub-

sidies and additional constraints may be imposed to reflect quotas

and other quantity restrictions. The duals of constraints (39) and

(40) are, at the optimal solution, equilibrium import and export

prices, respectively.

Note that the contraints of this trade problem are linear and

that. the objective function is quadratic and separable. Special

variables a.,: and T . ' can be used to construct the following

separable programming approximation of (38) through (41):

n q
Max: E Z {ECa Xd + .5 bi XA 3i W, - Ca,,X + .5b1 XO r, ]. }

i=l k=l

joi
n n

- Z c.TiJ (42)
i=1 j=l

ioj
q n

s.t: T X a Z T < 0 j=1 ... n (43)
k=l i=l

joi
q n

- E X < + E T < 0 i=l...n (44)
k=l1 j=1
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q
a. = 1 i=l...n (45)

k=l

q
T = 1 i=l...n (46)

k=l

0A Tlp Ti, > 0 i=l...n; j=l...n (jOi); k=l...q (47)

The approximation of the demand function integral for a partic-

ular country or region in a trade model is illustrated in Figure 3.

The graph at the top of Figure 3 shows the quadratic integral and

its approximation using five separable programming variables (a).

The piecewise linear approximation of the demand function integral

in the welfare function implies a step function approximation of

the linear demand func-tion as shown in the bottom graph. A more

exact approximation may, of course, te achieved by using a larger

number of points in the approximation as illustrated in Figure 4.

The Kuhn-Tucker conditions for (42) through (47) are given

below.

Ca jXfj+ .5b,,X , -kX,,I -j ' < O j=1...n; k.....q (48)

[a jX d + .5b,^i - e^ X - ]o = 0 (49)

j=l...n; k=l...q

Ca ,,X, ,+ .5b,,X3 S - eXi ,. - , I 0 i1... n; k=l...q (50)

la-X- ,+ .5bXe ] - X - , =0 (51)

i=l...n; k=l...q

- ca+ e, - 0 i=l n; j=...n; j=li...n, (52)
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Figure 3: Integral and Demand Function Approximations With Five
Special Variables.
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Figure 4: Integral and Demand Function Approximations With Forty
Special Variables.
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C - c + e - e3]T = 0 i=l...n; =l...n , j ... i (53)

a'c, Ai:' T.i 0 i=l...n; j=l...n (jfi); k=l...q (54)

i j
q n

-E Xcka + £ Ti > 0 j=l,..n (55)
k=1 i=1

-Z XdSka(jk + Z T e > 0 j=l ... n (56)

k=1 i=1

joi
q n

-X ,, - Ž TJ > 0 i=1 ...n (57)

k=l j=1

joi

1 ^k S T]e 0 i=l ... n (58)

k=1 j=l

q
Z a =1 i=l...n (59)

k=l

q
T = 1 i=l...n (60)

k=1

Suppose that in equilibrium country h is an importer and country 1

is an exporter. Further, assume that values of X,~, and X,. used in

the approximation are defined such that at the optimal (equilibri-

um) solution, O,=1.0 and p,=1.0. This assumption is a

convenience for the derivations which follow, but does not affect

the generality of the results. As with the original quadratic

programming formulation, it can be shown that the duals of the

commodity balance constraints, 9Q1, and G©i, are equilibrium import

and export prices, respectively. By (48) and (49), and (50) and

(51), the following conditions hold at equilibrium:
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[a ,X ,J+ *5b,, ,,X^ ,] - ex dX = lh (61)

Ca lX p .Sb XES p] - e8 IXp = az (62)

That is, by (61) the dual of the convexity constraint associated

with the approximation of the excess demand integral for country j

(or in general, any importing country) is the consumer surplus in

that country attributable to trade. By (62), the dual of the con-

vexity constraint associated with the approximation of an excess

supply function integral is the producer surplus from trade for

that country. These results from the optimal solution to the sepa-

rable programming problem (42) through (47) are not given directly

in the solution to the original quadratic programming formulation.

A Nonlinear Nutrient Requirement Constraint

Constraints which embody technological relationships of impor-

tance to production problems are often nonlinear. For example the

energy requirements of beef cattle are often modeled using the net

energy system CNational Research Council]. For a given type and

size of animal, the ration must have the energy necessary for main-

tenance of the animal's weight. To achieve a given rate of gain, a

given amount of gain energy will be necessary also. Under the net

energy system, energy in a portion of the ration is assumed to be

used to meet maintenance requirements. Energy in the remainder of

the ration is assumed to be used by the animal for gain. For an

animal of given type and size and for a targeted daily rate of

gain, net energy requirements are specified as follows CBrokken]:
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n

2 a,,,.X > NEM/e (63)

i=l

n

Z aiXij ! NEG/(1-e) (64)

i=l

0 ! e < 1 (65)

Where: NEM and NEG are the requirements of maintenance and gain

energy, respectively; e is the proportion of the ration which will

be used for maintenance requirements (thus (1-e) is the proportion

for gain); the amounts of maintenance and gain energy per unit of

feed i are am, and ax,i respectively; and X is the quantity of the

ith feed in the ration. Since for' a ration formulation problem e

is endogenous, the net energy constraints are nonlinear. A linear

approximation of the constraints may be constructed as follows:

n q
E amiXi - E (NEM/e.)ak 2 0.0 (66)

i=l k=l

n q
Z aXi - Z (NEM/(1-ek))ocak 0.0 (67)

i=l k=1

q
Z .e = 1 (68)

k=l

The resulting approximations of the maintenance and gain energy

constraints are illustrated in Figure 5.

Computerized Generation of Parameters of a Separable Program

The use of computer programs to generate linear programming ma-

trices can be an efficient approach to the construction of models
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Figure 5: Approximation of Net Energy Requirements.

which will be used repetitively CMcCarl and Nuthall]. Computerized

matrix generators can be especially effective for calculating the

discrete values of variables (X) and the corresponding function

values (F.(X,,) and g*(Xi,)) in a separable program. A simple

example will serve to illustrate the technique.

For the separable programming approximation of net energy

requirements given in (66), (67) and (68), three coefi.cients

(NEM/e, NEG/(1-e), and 1) must be input to the solver for each

special variable a><. If, as illustrated in Figure 5, 25 special

variables are used, 75 coefficients must be generated. Within a

FORTRAN matrix generating computer program which writes MPS
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formated matrix data, the lines of code below would create the

lines for entering the parameters of (66), (67) and (68). (Note

that these parameters are constraint coefficients of the LP which

are, in MPS format, entered in the "COLUMNS" data EMcRoberts].)

XNEM=6.89
XNEG=5.06
EMIN=0.075
EMAX=0.925
NQ=25
ESTEP=(EMAX-EMIN)/(NQ-1)
DO 10 K=1,NQ
EK=EMIN+(K-1)*ESTEP
AIJ1=XNEM/EK
AIJ2=XNEG/EK
WRITE(1,20) K,AIJ1

20 FORMAT(7X,'ALPHA',I2,4X,'NEMMIN',1X,F12.2)
WRITE(1,21) K,AIJ2

21 FORMAT(7X,'ALPHA',I2,4X,'NEGMIN',lX,F12.2)
WRITE(1,22) K

22 FORMAT(7X,'ALPHA',I2,4X,'CONVEX',0lX,'1.O')
10 CONTINUE

The number of points to be used in the approximation (NQ) is

specified along with the net energy requirements (NEM and NEG).

From this information, the program can calculate the incremental

increase in e (ESTEP). And by using a "DO" loop, the parameters of

the constraints are calculated and written to the designated file

in MPS format. In this example, the LP problem has 75 au's

associated with the approximation which are generated with 3

user-provided values -- EMIN, EMAX and NQ. The range of the

approximation (EMIN to EMAX) and the number approximating points

(NQ) can easily be altered. Given the parameter values in the
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code above, the following lines of MPS-formated data would be

generated:

ALPHA 1 NEMMIN 91.83
ALPHA 1 NEGMIN 5.47
ALPHA 1 CONVEX 1.0
ALPHA 2 NEMMIN 62.37
ALPHA 2 NEGMIN 5.69
ALPHA 2 CONVEX 1.0

ALPHA24 NEMMIN 7.74
ALPHA24 NEGMIN 45.82
ALPHA24 CONVEX 1.0
ALPHA25 NEMMIN 7.45
ALPHA25 NEGMIN 67.46
ALPHA25 CONVEX 1.0

Summary

Separable prgramming is a technique for approximating the

solution of nonlinear programming problems with separable objective

and constraint functions using linear programming. When nonlinear

programming solvers are not available or impractical to use,

linearization and the use of relatively efficient and accessable LP

codes is an attractive alternative. In some cases, the grid linear

approximation of nonseparable functions may be useful, also.
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