

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

A Single Matrix Method for Several Problems

By Alvin C. Egbert

Matrix algebra has become a familiar research tool in recent years, but the teaching and learning problem is still formidable for many individuals. The purpose of this paper is to present a simple generalpurpose method of handling matrices for solving simultaneous equations, including those involved in regression and linear programming problems. High-speed computers and different methods are now used in most practical analysis in this field, but teaching must rely on manual approaches to illustrate the mathematical principles. The method presented here is believed to shorten learning time and reduce the memory burden. In short, this is an introduction to matrix algebra in one easy lesson. The author wishes to thank Rex Daly and Martin Abel for suggestions that have helped to improve this article.

THIS PAPER SHOWS how a single method of handling matrices can be applied to problems involving simultaneous equations, regression analysis, and linear programming. All of this will be found in standard textbooks, but the conventional solutions for problems in each of these fields have been fragmented along lines that select a most efficient method for each purpose considered independently. The general-purpose approach presented here is a sort of least common denominator which has the pedagogical advantage of bringing out more clearly the interrelationships between the different types of problems.
The method presented employs what might be called a "desired goal approach." No proof of the method is given because this can be found elsewhere (4, ch. 1-4). ${ }^{1} \quad$ Nor is originality claimed. The procedure uses only a few principles of elementary matrix algebra and anyone who has used signed (positive and negative) numbers will have no difficulty in learning the method. The method is not the fastest one available for every situation. But it does get the job done with a minimum of mental effort.

[^0]The order of presentation is first to outline the procedure step by step using a simple example and then to show the several applications.

The Method

I. Some Definitions

exhibita

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}
	6	4	2	1	0	0
$R_{1} \ldots \ldots$						
$\mathrm{R}_{2} \ldots \ldots$						
$\mathrm{R}_{3} \ldots \ldots$						

A. Exhibit A is called a matrix. A matrix is simply a rectangular array of numbers.
B. $\mathrm{P}_{1}, \mathrm{P}_{2}$, etc., are labels or identifications for the columns.
C. A column, or column vector, is a vertical array of numbers, e.g., column P_{1}.
D. A row, or row vector, is a horizontal array of numbers, e.g., R_{1}.
E. A column is sometimes called a column ma trix; a row is called a row matrix.
F. An element is any single number in a row, column or matrix. In a matrix, an element in row 2, col. 3 is identified as e_{23}-or 3 in Exhibit A.
G. An identity, or unit column is one containing the numbers, one (1-unity) in one position only, and zeros elsewhere, e.g., columns $\mathrm{P}_{4}, \mathrm{P}_{5}$, and P_{6}.

II. Objective

Vectors P_{1}, P_{2}, and P_{3} are to be transformed into unit vectors like vectors P_{4}, P_{5}, and P_{6} without disturbing the "relationship" between the rows and vectors (the reason why we want to do this will be clear later).

III. Procedure

A. First we need some information about what we can do without disturbing the relationship between the rows and columns. This information is stated without proof.

1. A row can be multiplied or divided by some number without disturbing the relationship.
2. A row or some multiple of a row (i.e. a row times 2 or row times $1 / 2$ and so forth) can be added
to another row without disturbing the relationhip. ${ }^{2}$
B. Armed with this information we can now proceed toward the objective.
3. We know that we want to get the number 1 or unity where element e_{11} or 6 now stands, hence, we divide row 1 by the number 6 , element by element:

$\mathrm{R}_{1}{ }^{\prime}-\ldots-$| P_{1} | P_{2} | P_{3} | P_{4} | P_{5} | P_{6} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | .66667 | .33333 | .16667 | 0 | 0 |

2. We know also that we want to get zeros in the positions of elements e_{21} and e_{31}, i.e., rows 2 and 3 of column P_{1}. Accordingly, we subtract 4 times row 1^{\prime} from row 2 , element by element.

3. And similarly we subtract 2 times row 1^{\prime} from row 3:

Now we have a completely new matrix in which we have accomplished one-third of our task, i.e., column P_{1} is in the desired form and the matrix at this point is as follows:

	EXHIBIT B					
	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}
$\mathrm{R}_{1}^{\prime} \ldots \ldots-$	1	.66667	.33333	.16667	0	0
$\mathrm{R}_{2}^{\prime} \ldots-\ldots$	0	6.33332	1.66668	-.66668	1	0
$\mathrm{R}_{3-\ldots}^{\prime} \ldots$	0	1.66666	4.33333	-.33334	0	1

Beginning with Exhibit B, let us proceed with the next step of our objective, i.e., to change column P_{2} into one like column P_{5}.
C. Since new column P_{2} now has the number 6.33332 in second row, we must divide row 2^{\prime} by

[^1]this number. We also operate on the other two rows in the same way as we did in the first step.

1. Row $2^{\prime \prime}$ below is row 2^{\prime} in Exhibit B divided by 6.33332 in order to get 1 in element e_{22}.

R ${ }^{\prime \prime}$

$$
\begin{array}{cccccc}
\mathrm{P}_{1} & \mathrm{P}_{2} & \mathrm{P}_{3} & \mathrm{P}_{4} & \mathrm{P}_{5} & \mathrm{P}_{6} \\
\hline 0 & 1 & .26316 & -.10526 & .15790 & 0
\end{array}
$$

2. Row $1^{\prime \prime}$ is obtained by subtracting .66667 times row $2^{\prime \prime}$ from row 1^{\prime}.

3. Row $3^{\prime \prime}$ is obtained by subtracting 1.66666 times row $2^{\prime \prime}$ from row 3^{\prime}.

Collecting the transformed rows we have a new matrix:

EXHIBIT C

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}
$\mathrm{R}_{1}^{\prime \prime}$-----	1	0	. 15789	. 23683	-. 10527	0
$\mathrm{R}_{2}^{\prime \prime}$	0	1	. 26316	-. 10526	15790	0
R ${ }^{\prime \prime}$	0	0	3. 89474	-. 15790	-. 26317	1

D. With the results in Exhibit \mathbf{C} we can proceed to the final step.

1. Divide row $3^{\prime \prime}$ by 3.89474 to get the number 1 in row $3^{\prime \prime}$ of column P_{3} and thus obtain a new row $3^{\prime \prime \prime}$.
$\mathrm{Ra}_{3}^{\prime \prime}$-----

P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}
0	0	1	-.04054	-.06757	.25676

2. The final row, $1^{\prime \prime \prime}$ is row $1^{\prime \prime}$ minus .15789 times row $3^{\prime \prime \prime}$:

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}
	1	0	. 15789	23683	-. 10527	
	0	0	. 15789	-. 00640	-. 01067	. 04054
$\mathrm{R}_{1}^{\prime \prime}$ -	1	0	0	. 24323	-. 09460	-. 04054

3. The final row, $2^{\prime \prime \prime}$, is row $2^{\prime \prime}$ minus .26316 times row $3^{\prime \prime \prime}$.

$$
\begin{array}{r}
\begin{array}{cccccl}
\mathrm{P}_{1} & \mathrm{P}_{2} & \mathrm{P}_{3} & \mathrm{P}_{4} & \mathrm{P}_{5} & \mathrm{P}_{6} \\
\hline 0 & 1 & .26316 & -.10526 & .15790 & 0 \\
\mathrm{R}_{2}{ }^{\prime \prime \prime}- & 0 & \frac{0}{0} & \mathbf{1} & 0 & .26316 \\
\hline & \frac{-.01067}{-.09459} & \frac{-.01778}{.17658} & \frac{.06757}{-.06757}
\end{array}
\end{array}
$$

The following exhibit presents the final rows:

	P_{1}	P_{2}	P_{3}	P_{4}	\dot{P}_{5}	P_{6}
$\mathrm{R}^{\prime \prime \prime \prime}$ -	1	0	0	. 24323	-. 09460	-. 04054
$\mathrm{R}^{\prime \prime \prime \prime}$ -	0	1	0	-. 09459	. 17568	-. 06757
$\mathrm{R}^{\prime \prime \prime \prime}$ -	0	0	1	$-.04054$	-. 06757	. 25676

E. The original mission is now completedvectors P_{1}, P_{2}, and P_{3} are unit vectors in Exhibit D. In review the steps are:

1. Decide on objective (in the above example, this was the columns to become identity vectors and the elements in these vectors to become the number one or unity).
2. Select pivotal element. This is the element to be transformed to the number one, and is the element that designates the operating column and critical row. These were selected (so it appears) in arbitrary manner in the preceding example. In particular problems, the pivotal element will be selected by specific criteria.
3. Divide critical row by the pivotal element.
4. Multiply transformed critical row by the number located in operating column of row 1 and subtract products from row 1. Do this for all rows, except the critical row. This operation transforms all elements in the operating column (except the element of the critical row) to zeros.
5. Steps 2 through 4 are repeated for every column or vector that must be transformed into a unit vector.
Once these steps have been learned, it is usually more convenient when using a desk calculator to go directly from one intermediate matrix to another (A to B, B to C and so forth) without writing down the individual row multiplications and subtractions as we have done in this example. It is a good plan when using the direct method to have each successive matrix identified on a long sheet of paper so that the elements can be filled in as computations proceed.

Matrix Inversion Defined

The operations carried out in the preceding section have inverted a matrix. The final vectors P_{4}, P_{5}, and P_{6} in Exhibit D form an inverse of original vectors $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3} in Exhibit A.

If we let the symbol A stand for vectors P_{1}, P_{2},
and P_{3} in Exhibit A and let B stand for vectors P_{4}, P_{5}, and P_{6} in Exhibit D then:

$$
\begin{gathered}
A B=I \\
\text { where } \left.I=\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

and e_{11} or 1 is obtained by multiplying row 1 in A , by column 1 in B , element by element, and adding. For example, using row 1 of columns $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3} in Exhibit A and column 4 in Exhibit D yields the following:

$$
1=[6(0.24323)]+[4(0.09459)]+[2(-0.04054)]
$$

In the same way, the zero element, e_{32}, of I is the sum of the inner products of row 3 of A and column 2 of B.

Using the Inverse To Solve Simultaneous Equations

If we let \bar{y} stand for a column vector, $\mathrm{P}_{\mathrm{o}}=50$,
then we can write:

$$
\bar{y}=A \bar{x}
$$

where \bar{x} is also a three-element column and A is the 3 -column ($\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$) matrix in Exhibit A. We can also write the above:

$$
\left.\begin{array}{c}
\mathrm{y} \\
{\left[\begin{array}{c}
40 \\
50 \\
30
\end{array}\right]}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{A} \\
\hline
\end{array} 42 .\right.
$$

Or it can be written as a set of simultaneous equations in conventional algebraic form:

$$
\begin{align*}
& 40=6 \mathrm{X}_{1}+4 \mathrm{X}_{2}+2 \mathrm{X}_{3} \\
& 50=4 \mathrm{X}_{1}+9 \mathrm{X}_{2}+3 \mathrm{X}_{3} \tag{1}\\
& 30=2 \mathrm{X}_{1}+3 \mathrm{X}_{2}+5 \mathrm{X}_{3}
\end{align*}
$$

This is an ordinary set of linear simultaneous equations for which unique numbers can be found for X_{1}, X_{2}, and X_{3} if certain conditions hold. ${ }^{3}$

[^2]The inverse can be used to get these X values nce:

$$
\mathrm{AB}=\mathrm{BA}=\mathrm{I}
$$

Where A is the original matrix and B the inverse (sometimes designated A^{-1}) of that matrix,

$$
\text { then } \begin{aligned}
\mathrm{By} & =\mathrm{BA} \overline{\mathrm{x}}=\overline{\mathrm{x}} \\
\mathrm{BA} & =\mathrm{I} \text { and } \mathrm{I} \bar{x}=\overline{\mathrm{x}}
\end{aligned}
$$

In terms of our example, the coefficients in the inverted matrix (B) (Exhibit D) times $\overline{\mathbf{y}}$ are equal to \bar{x}, the values of X as follows:

EXHIBIT E
$\frac{\mathrm{B}}{\overline{\mathrm{y}}} \overline{\overline{\mathrm{x}}}$

Accordingly, $40(.24323)+50(-.09460)+$ $30(-.04054)=3.78300$, and so forth.

The Inverse in Input-Output Analysis

This example is also useful to show how the inverse is used in Leontief's input-output analysis. Vithout going into detail as to how a Leontief matrix is assembled, let us say only that it represents certain relationships within the economy that tie gross output ($\overline{\mathrm{y}}$) to net output ($\overline{\mathrm{x}}$). Now assume that our B matrix in Exhibit E is such an input-output matrix and the A matrix is its inverse. Accordingly, for any level of net output \bar{x}, we can find the corresponding level of gross output needed. If vector $\bar{x}=3.78300,2.97330$, 2.70270 , and represents the level of net output required of goods A, B, and C respectively, then the required gross outputs of A, B, and C would be 40,50 , and 30 . For example, $40=6(3.78300)+$ $4(2.97330)+2(2.70270)$ and so forth. In matrix notation, this operation is:

$$
\bar{y}=A \bar{x}
$$

which looks like the above simultaneous equation problem. But it differs in this respect. For the
simultaneous equation problem, the \bar{y} vector and the A matrix are known and we want to find a consistent $\overline{\mathrm{x}}$ vector. For the input-output problem, the A matrix is known, the $\overline{\mathrm{x}}$ vector is assumed and we want to find a consistent \bar{y} vector.

Other Solutions to Simultaneous Equations

We do not need the inverse in order to solve simultaneous equations, as most readers know. The inverse was used above only to show how it can be used if it is available. Suppose we only want the solution to three equations such as:

EXHIBIT F

$$
\begin{aligned}
& P_{0} \quad P_{1} \quad P_{2} \quad P_{3} \\
& \hline 40=6 \mathrm{X}_{1}+4 \mathrm{X}_{2}+2 \mathrm{X}_{3} \\
& 50=4 \mathrm{X}_{1}+9 \mathrm{X}_{2}+3 \mathrm{X}_{3} \\
& 30=2 \mathrm{X}_{1}+3 \mathrm{X}_{2}+5 \mathrm{X}_{3}
\end{aligned}
$$

We can use the outlined procedure and work with the constants in columns $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3} only. On carrying the computational procedure to completion, the solution is given by the final P_{0} column. After performing the required steps the final matrix is:
exhibit G

P_{0}	P_{1}	P_{2}	P_{3}
3.78300	1	0	0
2.97330	0	1	0
2.70270	0	0	1

Hence, $\mathrm{X}_{1}=3.78300, \mathrm{X}_{2}=2.97330$, and $\mathrm{X}_{3}=$ 2.70270 ; which is the same answer obtained by using the inverse.

Regression Analysis

Let us assume that vectors P_{0}, P_{1}, P_{2}, and P_{3} in Exhibit F represent the normal equations in a regression problem with three independent variables, $\mathrm{X}_{1}, \mathrm{X}_{2}$, and X_{3} and the dependent variable Y (Exhibit H).

EXHIbIT H

$$
\begin{aligned}
& \left(\Sigma \mathrm{X}_{1} \mathrm{Y}=40\right)=\mathrm{b}_{1}\left(\Sigma \mathrm{X}_{1} \mathrm{X}_{1}=6\right)+\mathrm{b}_{2}\left(\Sigma \mathrm{X}_{1} \mathrm{X}_{2}=4\right)+\mathrm{b}_{3}\left(\Sigma \mathrm{X}_{1} \mathrm{X}_{3}=2\right) \\
& \left(\Sigma \mathrm{X}_{2} \mathrm{Y}=50\right)=\mathrm{b}_{1}\left(\Sigma \mathrm{X}_{1} \mathrm{X}_{2}=4\right)+\mathrm{b}_{2}\left(\Sigma \mathrm{X}_{2} \mathrm{X}_{2}=9\right)+\mathrm{b}_{3}\left(\Sigma \mathrm{X}_{2} \mathrm{X}_{3}=3\right) \\
& \left(\Sigma \mathrm{X}_{3} \mathrm{Y}=30\right)=\mathrm{b}_{1}\left(\Sigma \mathrm{X}_{1} \mathrm{X}_{3}=2\right)+\mathrm{b}_{2}\left(\Sigma \mathrm{X}_{2} \mathrm{X}_{3}=3\right)+\mathrm{b}_{3}\left(\Sigma \mathrm{X}_{3} \mathrm{X}_{3}=5\right)
\end{aligned}
$$

Then again the values in the P_{0} column of Exhibit G constitute the solution to these normal equations, i.e.:

$$
3.78300=\mathrm{b}_{1}, 2.97330=\mathrm{b}_{2} \text {, and } 2.70270=\mathrm{b}_{3}
$$

Also, the data required to obtain the normal equations or Exhibit H and the data in Exhibit D permit us to derive the standard regression statistics:

$$
\begin{aligned}
& \mathrm{R}^{2} 1.234=\frac{\mathrm{b}_{1} \Sigma \mathrm{x}_{1} \mathrm{y}+\mathrm{b}_{2} \Sigma \mathrm{x}_{2} \mathrm{y}+\mathrm{b}_{3} \Sigma \mathrm{x}_{3} \mathrm{y}}{\mathrm{y}^{2}} \\
& \mathrm{~S}^{2} 1.234=\Sigma \mathrm{y}^{2}-\mathrm{b}_{1} \Sigma \mathrm{x}_{1} \mathrm{y}+\mathrm{b}_{2} \Sigma \mathrm{x}_{2} \mathrm{y}+\mathrm{b}_{3} \Sigma \mathrm{x}_{3} \mathrm{y} \\
& \mathrm{~S}_{\mathrm{b}_{1}}=\sqrt{\frac{\mathrm{S}^{2} 1.234}{\mathrm{c}_{11}}} \\
& \mathrm{~S}_{\mathrm{b}_{2}}=\sqrt{\frac{\mathrm{S}^{2} 1.234}{\mathrm{c}_{22}}} \\
& \text { where } \quad \mathrm{c}_{11}=.24323 \\
& \mathrm{c}_{22}=.17568
\end{aligned}
$$

etc.
and
Multiple regression problems can be solved then by these steps:

1. Use the formula

$$
\operatorname{\Sigma ix}_{1 j} \mathrm{X}_{1 \mathrm{k}}=\Sigma \mathrm{iiX}_{1 \mathrm{~J}} \mathrm{X}_{\mathrm{tk}}-\frac{\Sigma \mathrm{iX}_{1 j} \Sigma \mathrm{i} X_{1 \mathrm{k}}}{\mathrm{n}}
$$

to get the normal equations, where X_{11} stands for Y .
2. Write these down in matrix form with the identity matrix along side, just as was done in Exhibit A.
3. Perform standard steps to reduce X matrix to an identity.
4. Use this final P_{0} column to specify regression equations, i.e.:

$$
\mathrm{Y}=\mathrm{a}+3.78300 \mathrm{X}_{1}+2.97330 \mathrm{X}_{2}+2.70270 \mathrm{X}_{3}
$$

(Note: We could have assumed some arbitrary numbers for the means and Σy^{2} then computed the constant ($a=y-\operatorname{Sibx}_{1}$) and standard error of the b's in the above equation. However, the purpose of this section is only to relate the computational method to regression analysis, not to give a complete explanation and interpretation. ${ }^{4}$)

[^3]In using this method to solve regression problems, as in other similar methods, it may be pru dent to add a row sum or check column to the right of the identity matrix. If the same operations are performed on this column as are done on all the other columns, at any stage in the computations, the sum of all other elements in a row should equal the value of the element in the check column, of the same row. The completed computations can be checked by multiplying the original matrix by the inverse to check that $\mathrm{AB}=\mathrm{I}$:

$$
\begin{aligned}
& a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31}+\ldots+a_{1 n} b_{n 1}=1 \\
& a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32}+\ldots+a_{1 n} b_{n 2}=0
\end{aligned}
$$

Etc.
In making such checks, it may be found that the sums of the inner products do not equal 0 or 1, but are very near these values. Such discrepancies may be due to the number of decimal places carried in the computations. For most regression problems no more than eight decimal places need be carried. On small problems five or six places may be adequate. However, if there is a high degree of correlation between the independent variables more decimal places may be needed to prevent degeneracy (division by zero).

Linear Programming

With a few additional rules or steps, the procedure outlined in Section III can be used to solve linear programming problems. For programming problems the procedure is usually called the simplex method.
Looking at Exhibit H, let us assume that elements $\mathrm{e}_{01}, \mathrm{e}_{02}$, and e_{03} in the P_{0} vector represent resources available to a particular firm, for example, $40=$ hours of labor, $50=$ hours of machine \mathbf{A} time available, and $30=$ hours of machine B time available. Let the vectors $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3} represent the quantities of each of these resources needed to produce one unit of products X, Y, and Z respectively. In linear programming each resource row must have an identity vector associated with it. Hence we need vectors $\mathrm{P}_{4}, \mathrm{P}_{5}$, and P_{6} of Exhibit H . These vectors can appear in any position in the matrix; first, last or in the middle. And because in linear programming problems the numbers of columns does not need to equal the number of rows, let us add columns $\mathrm{P}_{7}, \mathrm{P}_{8}$, and P_{9}. Al-

though we do not need to, we can assume that these vectors represent alternative ways of producing commodities X, Y, and Z .
Further, in order to have a linear programming problem, we need a profit row. This is usually written above the basic matrix and called the C_{5} row. We also need other rows, usually called the Z_{j} and the $Z_{j}-C_{j}$. The latter is, of course, the Z_{j} row minus the C_{j} row as in Exhibit I.

The Z_{j} row is computed by multiplying the C_{j} values of the basis (identity) vectors, i.e., $\mathrm{P}_{4}, \mathrm{P}_{5}$, and P_{6}, by each of the vectors P_{0} through P_{9}. For example, Z_{j} for P_{0} is $0(40)+0(50)+0(30)=0$ and Z_{j} for P_{1} is $0(6)+0(4)+0(2)=0$. Because in this case all $\mathrm{C}_{\mathbf{j}}$ of the basis vectors are zero, all Z_{3} values are zero. In numerous programming problems, however, especially minimizing problems, the C_{j} values of the initial basis are nonzeros. Once the Z_{j} row and then the $Z_{j}-C_{j}$ row have been computed, the Z_{j} can be omitted from subsequent computations.

Exhibit I is the standard format for linear programming problems. The computational procedure outlined in the first part of this paper can be used to obtain the solution. The objective here is different, however. In words, it is: To find some non-negative levels of the P_{1} to P_{9} that will maximize net returns, given the resources available, i.e., the P_{0} column. Also, the method of selecting rows and columns for sequential operations is different. At the outset we do not know which columns we want to convert to unit vectors and which elements we want to be unity or the number 1. Finally, we need a criterion to tell us when the answer is found. But let's take one thing at a time:

1. The operating column is the column with largest negative $\mathrm{Z}_{\mathbf{j}}-\mathrm{C}_{\mathrm{j}}$ element. In Exhibit I this is P_{i}, since its $Z_{j}-C_{j}$ value is -9 .
2. The critical row is the row with smallest positive ratio of P_{0} element to operating column element. ${ }^{5}$ For example, in Exhibit I, given P_{1} as operating column, $40 / 6=6.7,50 / 4=12.5,30 / 2=$ 15.0. Hence, row 1 is the critical row.
3. The optimal solution is obtained when all values in $Z_{j}-C_{j}$ row are non-negative (i.e., zero or positive). The optimal solution (maximum or minimum) is given by the values in the P_{0} column.

The optimal profit solution to Exhibit I is derived by first converting column P_{1} to a unit vector, with the number 1 in row one, the critical row. When this step is completed column P_{9} or activity P_{9} has the largest negative $Z_{j}-C_{s}$ value. It, therefore, is the operating column for the next step and row 3 is the critical row. After P_{9} has been converted to a unit vector with the number 1 in row 3 , all $Z_{j}-C_{j}$ values are non-negative, indicating the solution is optimal. These steps are not shown, to save space. The final matrix, after the described steps are completed, is given in Exhibit J.

The solution is as given by the P_{0} column : 2.5 units of P_{1} (product X), 12.5 units of P_{9} (product Z), and 2.5 units of time on machine A unused or left idle. The profit is given in the pivotal element of the P_{0} column and the $Z_{j}-C_{j}$ row.

Several checks are available to verify the optimal solution. One is the feasibility check which simply checks that resources are available to meet the specified levels of output. This can be checked by matrix multiplication, using the original vectors P_{1}, P_{5}, and P_{9}. We multiply

[^4]
these by the final P_{0} vector and check to see that the product is equal to the original P_{0} vector :

Multiplying each row of the left-hand matrix sequentially by the right-hand column or solution vector we see that the solution is feasible.
The net profit in the final matrix can be checked simply by multiplying the solution vector by the associated C_{j} value:

$$
9(2.5)+0(2.5)+5(12.5) \stackrel{?}{=} 85
$$

Another check is to multiply the original resource levels by the values in the $Z_{j}-C_{j}$ row of the final matrix columns $\mathrm{P}_{4}, \mathrm{P}_{5}$, and P_{6}, the original identity vectors.

$$
1.0(40)+0(50)+1.5(30)=85
$$

Checking we see that the equality is satisfied.
The final $Z_{j}-C_{j}$ values associated with the original identity vectors are the shadow prices of the resources.

Summary

This paper has shown how a relatively simple computational technique can be used to solve several types of problems. Simple matrix algebra principles are stated. Then these principles are used to outline a uniform computational method that is easily memorized. With this method firmly in mind, the student can move easily from one type of problem to another without going to reference books for computational formulas that many times are difficult to follow.

Only hypothetical data are used in the examples presented. The basic theories of input-output analyses, multiple regression, and linear programming were not discussed beyond an attempt to show some of their similarities and dissimilarities. We did not discuss how data are collected and manipulated to build up the several matrices that are needed before computations can begin. Many references are available for those who need information on these subjects. For example, see (1), (3), (5), and (6).

Selected References

(1) Anderson, R. L., and Bancroft, T. A. 1952. Statistical theory in research, 399 pp., McGraw-Hill, New York.
(2) Birkhoff, Garrett, and MacLane, Saunders 1953. brief survey of modern algebra. 472 pp., Macmillan, New York. Rev. Ed.
(3) Dorfman, Robert, Samuelson, Paul A., and Solow, Robert M.
1958. LINEAR PROGRAMMING AND ECONOMIC analysis. 525 pp . McGraw-Hill, New York.
(4) Frazier, R. A., Duncan, W. J., and Collar, A. R. 1955. elementary matrices. 415 pp., Cambridge Univ. Press, England.
(5) Ostel, Bernard
1954. statistics in research. 487 pp., Iowa State College Press, Ames.
(6) Snedecor, George W.
1956. statistical methods. 5th ed., 534 pp., Iowa State College Press, Ames.

[^0]: ${ }^{1}$ Italic numbers in parentheses refer to Selected References, p. 100.

[^1]: ${ }^{2}$ The term column can be substituted for row and these statements are still true. But row and column operations cannot be intermingled. If we start with row operations, we must continue with them to the solution and vice versa.

[^2]: ${ }^{3}$ We usually say that these equations have a unique solution if the matrix is nonsingular, which means that no row or column is some multiple of some other row(s) or column(s). Also, if a matrix has an inverse it is nonsingular. The A matrix has an inverse. Hence, it is nonsingular. But, if a matrix is singular and the method outlined here is used to solve a set of equations or invert a matrix, at some stage in the computations a row of zeros will appear.

[^3]: ${ }^{4}$ See for example Anderson and Bancroft (1), chapters 13,14 , and 15.

[^4]: ${ }^{5}$ In some problems this ratio may be zero. Computations can continue even though the ratio is zero. Also, the ratio for two rows may be the same. The selection of either row is permissible in this case.

