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A Single Matrix Method for Several Problems 
By Alvin C. Egbert 

• 
Matrix algebra has become a familiar research tool 
in recent years, but the teaching and learning prob-
lem is still formidable for many individuals. The 
purpose of this paper is to present a simple general-
purpose method of handling matrices for solving 
simultaneous equations, including those involved in 
regression and linear programming problems. 
High-speed computers and different methods are 
now used in most practical analysis in this field, but 
teaching must rely on manual approaches to illustrate 
the mathematical principles. The method presented 
here is believed to shorten learning time .and reduce 
the memory burden. In short, this is an introduc-
tion to matrix algebra in one easy lesson. The 
author wishes to thank Rex Daly and Martin Abel 
for suggestions that have helped to improve this 
article. 

THIS PAPER SHOWS how a single method 
of handling matrices can be applied to prob-

lems involving simultaneous equations, regression 
analysis, and linear programming. All of this 
will be found in standard textbooks, but the con-
ventional solutions for problems in each of these 
fields have been fragmented along lines that select 
a most efficient method for each purpose considered 
independently. The general-purpose approach 
presented here is a sort of least common denomina-
tor which has the pedagogical advantage of bring-
ing out more clearly the interrelationships between 
the different types of problems. 

The method presented employs what might be 
called a "desired goal approach." No proof of 
the method is given because this can be found 
elsewhere (4, ch. 1-4) .1  Nor is originality 
claimed. The procedure uses only a few principles 
of elementary matrix algebra and anyone who has 
used signed (positive and negative) numbers will 
have no difficulty in learning the method. The 
method is not the fastest one available for every 
situation. But it does get the job done with a 
minimum of mental effort. 

I  Italic numbers in parentheses refer to Selected Refer-
ences, p. 100. 

The order of presentation is first to outline the 
procedure step by step using a simple example and 
then to show the several applications. 

The Method 

I. Some Definitions 
EXHIBIT A 

RI  

R2 	 

R3 

A. Exhibit A is called a matrix. A matrix is 
simply a rectangular array of numbers. 

B. P1, P2, etc., are labels or identifications for 
the columns. 

C. A column, or column vector, is a vertical 
array of numbers, e.g., column P1. 

D. A row, or row vector, is a horizontal array of 
numbers, e.g., 

E. A column is sometimes called a column m. 
trix ; a row is called a row matrix. 

F. An element is any single number in a row, 
column or matrix. In a matrix, an element in 
row 2, col. 3 is identified as e,,,—or 3 in Exhibit A. 

G. An identity, or unit column is one containing 
the numbers, one (1-unity) in one position only, 
and zeros elsewhere, e.g., columns P4j  P5, and P6. 

II. Objective 
Vectors P1, P2, and P3  are to be transformed into 

unit vectors like vectors Po  P5, and P6  without 
disturbing the "relationship" between the rows 
and vectors (the reason why we want to do this will 
be clear later) . 

III. Procedure 
A. First we need some information about what 

we can do without disturbing the relationship be-
tween the rows and columns. This information 
is stated without proof. 

1. A row can be multiplied or divided by some 
number without disturbing the relationship. 

2. A row or some multiple of a row (i.e. a row 
times 2 or row times 1/2  and so forth) can be added 

P1 P2 P3 P4 P5 P6 

6 4 2 1 0 0 

4 9 3 0 1 0 

2 3 5 0 0 1 
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to another row without disturbing the relation- 

B. Armed with this information we can now 
proceed toward the objective. 

1. We know that we want to get the number 1 
or unity where element e11 or 6 now stands, hence, 
we divide row 1 by the number 6, element by 
element : 

PI P2 
	

P3 
	

P4 P5 P6 

R1' _ _ _ _ 	1 . 66667 . 33333 . 16667 	0 	0 

2. We know also that we want to get zeros in 
the positions of elements e21  and en, i.e., rows 2 and 
3 of column P1. Accordingly, we subtract 4 times 
row 1' from row 2, element by element. 

P1 P2 P3  P4 Ps P6 

4 9 3 0 1 0 
4 2.66668 1.33332 .66668 0 0 

0 6. 33332 1. 66668 -. 66668 1 0 

3. And similarly we subtract 2 times row 1' 
from row 3: 

P1 P2 P3 P4 Po P6  

2 3 5 0 0 1 
2 1. 33334 . 66667 . 33334 0 0 

0 1. 66666 4.  33333 -. 33334 0 1 

Now we have a completely new matrix in 
which we have accomplished one-third of our 
task, i.e., column Pi  is in the desired form and 
the matrix at this point is as follows: 

PI  
EXHIBIT B 

P2 	P3 P4 P5 P6  
1 . 66667 . 33333 . 16667 0 0 

R 	 0 6. 33332 1. 66668 -. 66668 1 0 

R;_ 	 0 1. 66666 4. 33333 -. 33334 0 1 

Beginning with Exhibit B, let us proceed with 
the next step of our objective, i.e., to change 
column P2  into one like column P5. 

C. Since new column P2  now has the number 
6.33332 in second row, we must divide row 2' by 

' The term column can be substituted for row and these 
statements are still true. But row and column opera-
tions cannot be intermingled. If we start with row oper-
ations, we must continue with them to the solution and 
vice versa. 

this number. We also operate on the other two 
rows in the same way as we did in the first step. 

1. Row 2" below is row 2' in Exhibit B divided 
by 6.33332 in order to get 1 in element e22. 

P1 
 

P2 P3 	P4 	Ps P6  

RV 	0 
	

1 . 26316 -. 10526 . 15790 0 

2. Row 1" is obtained by subtracting .66667 
times row 2" from row 1'. 

	

P1 	P2 	P3 	P4 	Ps 	P6 

	

1 	. 66667 . 33333 	. 16666 	0 	0 

	

0 . 66667 . 17544 -. 07017 	. 10527 	0 

1 0 	. 15789 	. 23683 -. 10527 	0 

3. Row 3" is obtained by subtracting 1.66666 
times row 2" from row 3'. 

P1 	P2 	P3 	P4 	 P5 	P6  

0 1.66666 

	

0 1.66666 4. 33334 -. 33333 0 	1 

	

. 43860 -. 17543 	. 26317 	0 

RV__ 0 0 	3. 89474 -. 15790 -. 26317 1 

Collecting the transformed rows we have a new 
matrix: 

EXHIBIT C 

P1 P2 P3 P4 P5 Po 

1 0 . 15789 .23683 -. 10527 0 

11;' 	 0 1 . 26316 -. 10526 . 15790 0 

R 0 0 3. 89474 -. 15790 -. 26317 1 

D. With the results in Exhibit C we can proceed 
to the final step. 

1. Divide row 3" by 3.89474 to get the number 
1 in row 3" of column P3  and thus obtain a new 
row 3"'. 

P1 P2 P3 P4 	P5 	P6  

	 0 	0 	1 	-. 04054 -. 06757 . 25676 

2. The final row, 1' is row 1" minus .15789 
times row 3"': 

P1 P2 	P3 	P4 	Ps 	Po  

1 	0 . 15789 	. 23683 -. 10527 	0 

	

0 0 . 15789 -.00640 -. 01067 	. 04054 

Rc"__ 1 0 0 	. 24323 -. 09460 -. 04054 

3. The final row, 2"', is row 2" minus .26316 
times row 3'". 

PI P2 P3 P4 Ps P6 

0 1 . 26316 -. 10526 . 15790 0 

0 0 . 26316 -. 01067 -. 01778 . 06757 

R2"'_ 0 1 0 -. 09459 . 17658 -. 06757 
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The following exhibit presents the final rows : 	and 133  in Exhibit A and let B stand for vectors Po  
P5, and 135  in Exhibit D then : 

AB =I 
EXHIBIT n—final matrix 

P1 P2 P3 P4 Ps  P6  

R1"' 	 1 0 0 . 24323 —. 09460 —. 04054 
R2411 0 1 0 —. 09459 . 17568 —. 06757 
R8/// 0 0 1 —. 04054 —. 06757 . 25676 

E. The original mission is now completed—
vectors P1, '132, and P3  are unit vectors in Exhibit 
D. In review the steps are : 

1. Decide on objective (in the above example, 
this was the columns to become identity vectors 
and the elements in these vectors to become the 
number one or unity). 

2. Select pivotal element. This is the element to 
be transformed to the number one, and is the ele-
ment that designates the operating column and 
critical row. These were selected (so it appears) 
in arbitrary manner in the preceding example. 
In particular problems, the pivotal element will be 
selected by specific criteria. 

3. Divide critical row by the pivotal element. 
4. Multiply transformed critical row by the 

number located in operating column of row 1 and 
subtract products from row 1. Do this for all 
rows, except the critical row. This operation 
transforms all elements in the operating column 
(except the element of the critical row) to zeros. 

5. Steps 2 through 4 are repeated for every col-
umn or vector that must be transformed into a unit 
vector. 

Once these steps have been learned, it is usually 
more convenient when using a desk calculator to 
go directly from one intermediate matrix to an-
other (A to B, B to C and so forth) without writ-
ing down the individual row multiplications and 
subtractions as we have done in this example. It 
is a good plan when using the direct method to 
have each successive matrix identified on a long 
sheet of paper so that the elements can be filled in 
as computations proceed. 

Matrix Inversion Defined 

The operations carried out in the preceding sec-
tion have inverted a matrix. The final vectors P., 
P5, and P6  in Exhibit D form an inverse of orig-
inal vectors P1, P2, and P3  in Exhibit A. 

If we let the symbol A stand for vectors Pi, P23  

1 0 0 
where I=0 1 0 

0 0 1 

and e,.,. or 1 is obtained by multiplying row 1 in A, 
by column 1 in B, element by element, and adding. 
For example, using row 1 of columns P1, P2, and 
P3  in Exhibit A and column 4 in Exhibit D yields 
the following : 

1= [6 (0.24323) ] + [4 (0.09459) ] + [2 ( — 0.04054) ] 
In the same way, the zero element, e32, of I is the 
sum of the inner products of row 3 of A and col-
umn 2 of B. 

Using the Inverse To Solve Simultaneous Equations 

If we let 57.-  stand for a column vector, P0 = 50, 
40 

30 
then we can write: 

YT=AR 

where s is also a three-element column and A is 
the 3-column (Pr, P2, P3) matrix in Exhibit A. 
We can also write the above: 

y 	A 	TE 
[40] [6 4 21 [X] 

50 	4 9 3 X2  
30 	2 3 5 X3  

Or it can be written as a set of simultaneous 
equations in conventional algebraic form: 

40 = 6X1  +4X2+2X3  

(1) 	50 =4X, + 9X2  + 3X3  

30=2X1+3X2+ 5X3 

This is an ordinary set of linear simultaneous 
equations for which unique numbers can be found 
for X1, X2, and X3  if certain conditions hold.' 

3 We usually say that these equations have a unique 
solution if the matrix is nonsingular, which means that 
no row or column is some multiple of some other row(s) 
or column(s). Also, if a matrix has an inverse it is 
nonsingular. The A matrix has an inverse. Hence, it is 
nonsingular. But, if a matrix is singular and the method 
outlined here is used to solve a set of equations or invert 
a matrix, at some stage in the computations a row of 
zeros will appear. 

96 



B 

[
. 24323 — .09460 

—. 09459 	. 17568 
—.04054 —.06757 

The inverse can be used to get these X values *Lee: 
AB=BA=I 

Where A is the original matrix and B the inverse 
(sometimes designated A') of that matrix, 

then By=BAR=R 
BA=I and Irc=R 

In terms of our example, the coefficients in the 
inverted matrix (B) (Exhibit D) times 37 are equal 
to R, the values of X as follows: 

EXHIBIT E 

simultaneous equation problem, the y vector and 
the A matrix are known and we want to find a 
consistent 5'c vector. For the input-output prob-
lem, the A matrix is known, the R vector is 
assumed and we want to find a consistent y vector. 

Other Solutions to Simultaneous Equations 

We do not need the inverse in order to solve 
simultaneous equations, as most readers know. 
The inverse was used above only to show how it 
can be used if it is available. Suppose we only 
want the solution to three equations such as: 

EXHIBIT F 

y PO 	P1 	P2 	P3 

—.04054 3.78300 40 =6X1+4X2+2X3  
—. 06757 

.25676 

[401 
X 50 

30 
=2.97330 

2.70270 50 =4Xi  + 9X2+3X3  

30 =2X1+3X2+ 5X3  
Accordingly, 40 (.24323)+50 (—. 09460)+ 
30 (— .04054)=3.78300, and so forth. 

The Inverse in Input-Output Analysis 

This example is also useful to show how the 
inverse is used in Leontief's input-output analysis. 

Illtithout going into detail as to how a Leontief 
atrix is assembled, let us say only that it repre-

sents certain relationships within the economy 
that tie gross output (y) to net output (R). Now 
assume that our B matrix in Exhibit E is such an 
input-output matrix and the A matrix is its 
inverse. Accordingly, for any level of net output 
R, we can find the corresponding level of gross 
output needed. If vector R=3.78300, 2.97330, 
2.70270, and represents the level of net output 
required of goods A, B, and C respectively, then 
the required gross outputs of A, B, and C would 
be 40, 50, and 30. For example, 40=6(3.78300)+ 
4(2.97330)+2(2.70270) and so forth. In matrix 
notation, this operation is: 

y =AR 

which looks like the above simultaneous equation 
problem. But it differs in this respect. For the 

We can use the outlined procedure and work with 
the constants in columns Po, P,, P2, and P3  only. 
On carrying the computational procedure to com-
pletion, the solution is given by the final Po  
column. After performing the required steps the 
final matrix is: 

EXHIBIT G 

Po P1 P2 P3 

	

3. 78300 	1 	0 	0 

	

2. 97330 	0 	1 	0 

	

2.70270 	0 	0 	1 

Hence, X1=3.78300, X2=2.97330, and X3= 
2.70270; which is the same answer obtained by 
using the inverse. 

Regression Analysis 

Let us assume that vectors Pa, P,, P2, and P3  in 
Exhibit F represent the normal equations in a 
regression problem with three independent vari-
ables, X1, X2, and X3  and the dependent 
variable Y (Exhibit H). 

EXHIBIT H 

(VCIY=40)=131(2XIX1=6) +132(21C1X2 = 4) +b3(EXIX3=2) 

(MX2Y= 50) =b1(lX1X2=4) +132(2X2X2=9) +b3(EX2X3=--3) 

(EX3Y=30)=131(2XIX3=2)-Fb2(Z)C2X3=3)+b3(MX3X3=5) 
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Then again the values in the Po  column of Exhibit 
0 constitute the solution to these normal equa-
tions, i.e.: 

3.78300=b1, 2.97330=b2, and 2.70270=b3  

Also, the data required to obtain the normal 
equations or Exhibit H and the data in Exhibit 
D permit us to derive the standard regression 
statistics: 

R21.234 —
binciy+b2Mx2y+bolxoy 

y2 

S21.234= My2  ""A311ZX1Y b2IX2Y b3lX3Y 

1/
S21.234 

oil 

Sb2- 1/821.234 
C22 

etc. 
where 	 ell= .24323 

and 	 c22=.17568 

Multiple regression problems can be solved then 
by these steps: 

1. Use the formula 

to get the normal equations, where X11  stands 
for Y. 

2. Write these down in matrix form with the 
identity matrix along side, just as was done in 
Exhibit A. 

3. Perform standard steps to reduce X matrix 
to an identity. 

4. Use this final Po  column to specify regression 
equations, i.e.: 

Y=a+3.78300X1+2.97330X2+2.70270X3 

(Nom: We could have assumed some arbitrary 
numbers for the means and 1372  then computed the 
constant (a=y— ibxi ) and standard error of the 
b's in the above equation. However, the purpose 
of this section is only to relate the computational 
method to regression analysis, not to give a com-
plete explanation and interpretation.') 

See for example Anderson and Bancroft (1), chapters 
13, 14, and 15. 

In using this method to solve regression prob-
lems, as in other similar methods, it may be pr 
dent to add a row sum or check column to JP 
right of the identity matrix. If the same opera-
tions are performed on this column as are done 
on all the other columns, at any stage in the com-
putations, the sum of all other elements in a row 
should equal the value of the element in the check 
column, of the same row. The completed compu-
tations can be checked by multiplying the original 
matrix by the inverse to check that AB=I 

a12b21+ asobsi+ • • • + amboi=1 

a11b32+k2b22+ anboo + • • • + ainbo2  — 0 

Etc. 

In making such checks, it may be found that 
the sums of the inner products do not equal 0 or 
1, but are very near these values. Such discrep-
ancies may be due to the number of decimal places 
carried in the computations. For most regression 
problems no more than eight decimal places need 
be carried. On small problems five or six places 
may be adequate. However, if there is a high 
degree of correlation between the independent 
variables more decimal places may be needed to 
prevent degeneracy (division by zero). 

Linear Programming 

With a few additional rules or steps, the pro-
cedure outlined in Section III can be used to solve 
linear programming problems. For program-
ming problems the procedure is usually called the 
simplex method. 

Looking at Exhibit H, let us assume that ele-
ments e01, eo, and eoo  in the Po  vector represent re-
sources available to a particular firm, for example, 
40 = hours of labor, 50 = hours of machine A time 
available, and 30 =hours of machine B time avail-
able. Let the vectors Pi, P2, and P3  represent the 
quantities of each of these resources needed to pro-
duce one unit of products X, Y, and Z respectively. 
In linear programming each resource row must 
have an identity vector associated with it. Hence 
we need vectors P4, Pg, and Po  of Exhibit H. 
These vectors can appear in any position in the 
matrix; first, last or in the middle. And be-
cause in linear programming problems the num-
bers of columns does not need to equal the number 
of rows, let us add columns P7, P8, and Po. 

ZiXliZiXik 
n 

• 
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EXHIBIT I 

• C j  ►  9 

P1  

4 

P2 

7 

P3  P4  P3 

0 

P6 

3 

P7 

8 

Ps 

5 

P. 
Solution 
vector Po 

P4 40 6 4 2 1 0 0 2 4 2 6. 7 

133  50 4 9 3 0 1 0 4 5 3 12. 5 

P6 •30 2 3 5 0 0 1 3 3 2 15. 0 

Z; 0 0 0 0 0 0 0 0 0 

Z;  - c;  —9 —4 —7 0 0 0 —3 —8 —5 

though we do not need to, we can assume that 
these vectors represent alternative ways of pro-
ducing commodities X, Y, and Z. 

Further, in order to have a linear programming 
problem, we need a profit row. This is usually 
written above the basic matrix and called the C j  
row. We also need other rows, usually called the 
Z j  and the Zj  — C j. The latter is, of course, the 
Z j  row minus the C j  row as in Exhibit I. 

The Z j  row is computed by multiplying the C j  
values of the basis (identity) vectors, i.e., P., P5, 
and Po, by each of the vectors Po  through P9. For 
example, Z j  for Po  is 0(40) +0(50) + 0 (30) =0 
and Z j  for P, is 0(6) +0 (4) +0(2) =O. Because 
in this case all Cj  of the basis vectors are zero, all 

111•Zi  values are zero. In numerous programming 
problems, however, especially minimizing prob-
lems, the Cj  values of the initial basis are non-
zeros. Once the Zj  row and then the ZI  — C j  row 
have been computed, the Z j  can be omitted from 
subsequent computations. 

Exhibit I is the standard format for linear pro-
gramming problems. The computational pro-
cedure outlined in the first part of this paper can 
be used to obtain the solution. The objective here 
is different, however. In words, it is : To find some 
non-negative levels of the Pi  to Po  that will maxi-
mize net returns, given the resources available, 
i.e., the Po  column. Also, the method of selecting 
rows and columns for sequential operations is dif-
ferent. At the outset we do not know which 
columns we want to convert to unit vectors and 
which elements we want to be unity or the number 
1. Finally, we need a criterion to tell us when the 
answer is found. But let's take one thing at a 
time : 

1. The operating column is the column with 
largest negative Zi — C j  element. In Exhibit I this 
is Pi, since its Zj  — CI  value is — 9. 

2. The critical row is the row with smallest posi-
tive ratio of Po  element to operating column ele-
ment.5  For example, in Exhibit I, given P, as 
operating column, 40/6=6.7, 50/4=12.5, 30/2= 
15.0. Hence, row 1 is the critical row. 

3. The optimal solution is obtained when all 
values in Zj  — C j  row are non-negative (i.e., zero or 
positive). The optimal solution (maximum or 
minimum) is given by the values in the Po  column. 

The optimal profit solution to Exhibit I is de-
rived by first converting column Pi  to a unit vec-
tor, with the number 1 in row one, the critical row. 
When this step is completed column Po  or activity 
P9 has the largest negative Zj  — C j  value. It, 
therefore, is the operating column for the next 
step and row 3 is the critical row. After P9  has 
been converted to a unit vector with the number 1 
in row 3, all Z j  — C j  values are non-negative, indi-
cating the solution is optimal. These steps are not 
shown, to save space. The final matrix, after the 
described steps are completed, is given in Exhibit 
J. 

The solution is as given by the Po  column : 2.5 
units of Pi  (product X), 12.5 units of P9 (product 
Z), and 2.5 units of time on machine A unused or 
left idle. The profit is given in the pivotal element 
of the Po  column and the Z j  — C j  row. 

Several checks are available to verify the 
optimal solution. One is the feasibility check 
which simply checks that resources are available 
to meet the specified levels of output. This can be 
checked by matrix multiplication, using the 
original vectors P1, P5, and Po. We multiply 

In some problems this ratio may be zero. Computa-
tions can continue even though the ratio is zero. Also, 
the ratio for two rows may be the same. The selection of 
either row is permissible in this case. • 	 99 



EXHIBIT J 

C;  > 9 

P, 

4 

P2 

7 

P3  

0 

P9 

0 

P5  

0 

P6 

3 

P7 

8 

P8 

5  • 

P9 

Solution 
vector Po  

9 	P1  2. 5 1 . 25 -. 75 . 25 0 -. 25 -. 25 .25 0 
0 	Po  2.5 0 4.25 -3.75 -.25 1 -1. 25 -.25 .25 0 

5 	P9  12. 5 0 1. 25 3. 25 -. 25 0 . 75 1. 75 1. 25 1 

Z,- C;  1 85. 0 0 4. 50 2. 50 1. 00 0 1. 50 3. 50 .50 0 
'Net profit. 

these by the final Po  vector and check to see that 
the product is equal to the original Po  vector : 

[64 	[ 	? [tgl 
2 0 2 	12. 5 	30 

Multiplying each row of the left-hand matrix 
sequentially by the right-hand column or solution 
vector we see that the solution is feasible. 

The net profit in the final matrix can be checked 
simply by multiplying the solution vector by the 
associated C3  value : 

9(2.5) +0(2.5) +5(12.5) =85 

Another check is to multiply the original re-
source levels by the values in the Z3  - Ci  row of 
the final matrix columns P4, P5, and P6, the origi-
nal identity vectors. 

1.0(40) +0(50) +1.5 (30) =85 

Checking we see that the equality is satisfied. 
The final Z, - Ci  values associated with the 

original identity vectors are the shadow prices of 
the resources. 

Summary 

This paper has shown how a relatively simple 
computational technique can be used to solve sev-
eral types of problems. Simple matrix algebra 
principles are stated. Then these principles are 
used to outline a uniform computational method 
that is easily memorized. With this method firmly 
in mind, the student can move easily from one 
type of problem to another without going to ref-
erence books for computational formulas that 
many times are difficult to follow. 

Only hypothetical data are used in the exam-
ples presented. The basic theories of input-out-
put analyses, multiple regression, and linear 
programming were not discussed beyond an at-
tempt to show some of their similarities and dis-
similarities. We did not discuss how data are 
collected and manipulated to build up the several 
matrices that are needed before computations can 
begin. Many references are available for those 
who need information on these subjects. For ex-
ample, see (1), (3), (5), and (6). 
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