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• Nonlinear Programming of 

Field and Plant Vegetable Processing Activities 

By Robert H. Reed and James N. Boles 

Empirical studies of plant costs and efficiency always 
have stressed the importance of both size of plant and 
length of operating season on the level and shape of 
the economies of scale curve as well as the technical 
organization of production implied in it. Because 
most processing firms are integrated systems of prod-
uct assembly, processing, and distribution, the mini-
mum-cost combination of plant size and hours 
operated must be considered in terms of total opera-
tion, not of any single "stage" or component. This 
paper presents a method for determining optimum 
combinations of hours of operation and size of plant 
(as measured by rates of output) for two compo-
nents, field and plant operations, of an integrated 
system of preparing lima beans for freezing. 
Though the analysis is oriented to only two "stages" 
and a particular product, the authors are hopeful 
that it may point the way toward extension to addi- ton'al "stages" and other products. 

OST SYNTHESIS is an effective economic 
tool for reflecting in-plant cost functions, 

technical relationships, and operating characteris-
tics of agricultural processing operations? 
Through this procedure, data on elemental input-
output and plant records are used to develop cost-
output relationships among individual operating 
stages with alternative production techniques. 
Comparison of such stage-cost functions provides 
the basis for selecting least-cost operating tech-
niques and for the development of generalized 
plant-cost functions that are closely analogous to 
the long-run cost or planning functions of eco-
nomic theory. 

For detailed presentation of economic-engineering tech-
niques in cost measurement, refer to B. C. French, L. L. 
Sammet, and R. G. Bressler, Jr., "Economic Efficiency in 
Plant Operations with Special Reference to the Marketing 
of California Pears." Hilgardia, Vol. 24, No. 19, July 1956, 
pp. 543-721. Also, Sammet, L. L., "Economic and Engi-
neering Factors in Agricultural Processing Plant Design" 
(unpublished Ph. D. thesis, Department of Agricultural 
Economics, University of California, Berkeley, 1959), 
434 pp. 
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As long-run total and unit plant costs vary with 
both length of season and capacity output rates, 
optimum plant adjustment is determined by both 
variables simultaneously. This may be made clear 
by noting several general characteristics of long-
run average cost behavior. 

First, with any given pattern of daily operat-
ing hours and length of operating period, total 
hours per period are fixed and so differences in 
total planned volume per period requires changes 
in plant capacity (measured as an output rate). 
Consequently, each point on a particular long-
run average cost curve represents unit cost with a 
different plant. With a given length of operating 
period, and over a wide range of output scale, unit 
costs as represented by such a curve decrease as 
plant capacity increases. The decrease results 
from more effective utilization of supervisory and 
other partially fixed labor inputs and the substi-
tution of various cost-reducing techniques in the 
larger plants. 

Second, plant capacity rates necessary to achieve 
any given season volume decrease as hours of 
operation per season increase. As capacity de-
creases, investment cost and the corresponding an-
nual fixed costs are smaller, with the result that 
unit fixed costs decline. But variable costs tend 
to rise and some of the cost advantages of increased 
scale are lost. Thus, efficient plant organization 
calls for balancing the net cost effects of scale of 
plant and operating hours? 

Most processing firms are an integrated system 
of product procurement, processing, and distribu-
tion. With the technique of cost synthesis the 
analyst can develop a separate cost function for 
each "stage" or component operation of the inte-
grated system. But he must consider minimum-
cost combination of rates and hours in terms of the 
total operation, not of any single component. 

a  An example and discussion of the problem of finding 
optimum combinations of plant size and time of operation 
for any given season volume is given in : French, Sammet, 
and Bressler, op. cit., pp. 684-704. 
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If output rates for individual stages can be 
varied and part of the product stored between 
stages, the problem may usually be treated as a 
constrained minimum problem whereby a nonlin-
ear objective function is minimized, subject to a 
series of linear restraints. A detailed develop-
ment of the nonlinear programming problem in 
which the restraining functions are linear is given 
by Dorfman, Samuelson, and Solow.3  These au-
thors point out that, though "no sure fire practical 
method for solving nonlinear programming prob-
lems has yet been found, . . . special approximative 
methods can be tailor-made to solve individual 
problems as they arise." 

In this paper we demonstrate a method for de-
termining optimum combinations of hours of op-
eration and rates of output for two components 
of an integrated system.4  The example involves 
field and plant operations in preparing lima beans 
for freezing, using data developed in a 1958 study 
in California. The field operations consist of vin-
ing or shelling the beans and transporting them to 
the receiving station of the plant. At the freez-
ing plant, the product is pumped, flumed, or other-
wise conveyed from the receiving station through 
a series of in-plant operations. Substantial invest-
ment is required at both field and plant locations.5  

The following assumptions and constraints re-
flect conditions consistent with actual experience: 
(1) A maximum of 8 hours of storage (with ice) is 
allowed between vining and in-plant processing, 
and is assumed to have no measurable effect on 
quality; (2) the daily operating hours and rates 
of output of vining and plant operations are such 
that the total volume vined or shelled per day 
equals the total daily volume processed; and (3) 

Robert Dorfman, Paul A. Samuelson, and Robert M. 
Solow, Linear Programming and Economic Analysis 
(New York : McGraw-Hill, Inc., 1958), 527 pp. Also, H. 
W. Kuhn and A. W. Tucker, "Nonlinear Programming," 
Proceedings of the Second Berkeley Symposium on Math-
ematical Statistics and Probability, ed. J. Neyman (Berke. 
ley : University of California Press, 1951), pp. 481-492. 

Though oriented to two "stages" and a particular 
product, the analysis may be extended to additional 
stages, and to other products, involving similar considera-
tions. 

5  A detailed analysis of lima bean assembly and process-
ing operations and costs is given in : Robert H. Reed, 
Economic Efficiency in Assembly and Processing Lima 
Beans for Freezing, California AES Mimeographed Report 
No. 219 (Berkeley, 1959), 106 pp. 

in recognition of time lost daily in lunch periods 
changing shifts, cleanup, equipment servicing, r 
periods, and other delays, a maximum of 16 oper-
ating hours per day is assumed. 

Economic-engineering methods were used to 
synthesize cost functions for field and plant ac-
tivities representing total and average planning 
costs for each activity. Specific equations are 
given by Reed.6  These are expressed here solely 
in terms of rates of output (R) and hours oper-
ated per season (H) by substituting, in more gen-
eral equations, particular values for the variables 
representing distance of haul, percentage manual 
grade-out, and proportions packed in retail, insti-
tutional, and bulk containers. That is : 

(1) TSC1= $3,929 + $2,633R, + $0.3691H, + 
$A1R1111 

(2) TSC -2  -= $15,353 + $1,870R2+ $27.6177112+ 
$A2R2H2 

where 

TSC1  is total annual costs of vining and hauling. 
TSCZ  is total annual costs of in-plant processing. 
R1  and R2 are hourly rates of vining and in- 

plant processing, respectively, in 1,000-pom. 
units. 

II, and 112 are hours of vining and in-plant 
processing per season. 

Q =-- 	= R2I12  is total annual volume proc- 
essed, in 1,000 pounds packed-weight equiva-
lent. 

Al  and A2 are constants whose values depend on 
those specified for the variables : distance of 
haul; percentage manual grade-out; and pro-
portions packed in the various size containers. 

Daily cost equations may be derived by dividing 
the coefficients by the number of days operated 
per season. As R1111=-- R2HZ= Q by constraint 
(2) above—with Q expressed in packed-weight 
equivalent—the above equations can be written 
solely in terms of (H's) and (Q). 

For any length of season (number of days oper-
ated), values of II, and 112  and R1  and R2  can be 
found that minimize the combined costs of field 
and plant operations. The solution presented be-
low assumes a 40-day operating season. (Solutions 

° Reed, op. cit., pp. 78-80. 
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for seasons of different length are presented later 
&the paper.) Carrying through the substitutions 
Wted, the daily cost equations for vining and in-

plant processing are as follows : 

(3) TDCi= Ci  = $98.225 + 
$65.825Q  +$0.3691111+ a1Q 

111  
(4) TDC2= C2-4383.825 + 

$46.750Q  +$27.6177112+ a2Q, 
112 

The optimum combination of daily hours and 
output rates is obtained by minimizing C= 	C29 
subject to the constraints of a maximum of 16 
hours operation per day and a maximum tempo-
rary storage period of 8 hours per day.' 

Thus : 
H,—H2< 8 

H2 —H1  8 

H2 .16 

These constraints are graphically depicted in 

grre 1. Every point on the graph corresponds 
a pair of values for Hi  and 112. Any point in-

side or on the boundary lines of the figure 
(OABCDE) corresponds to combinations of Ili  

and 112  that simultaneously satisfy all the con-

straints. 
The solution to this problem is simplified by 

temporarily assuming there are no effective re-
strictions on daily hours of operation and that all 
variables except output and total cost are inde-
pendent of hours operated per day. Then H, and 

112  are free to vary up to 24 hours per day with no 
increase in cost rates and equations C., and 02  may 

be minimized separately, that is : 

T  As the unit cost of temporary storage operations aver-
ages less than five-tenths of a mill per pound, the total 
daily cost function (0=01-FC2) was not adjusted for these 
costs for each of the constraints on Hz and Hz. Adjust-
ment of the daily cost functions to account for variations 
in temporary storage costs as the constraints vary would 
have no significant effect on the solution obtained. Where 
temporary storage costs are important, however, costs 
should be adjusted to reflect such variation, or included in 
the analysis as an additional "stage" or component cost 

function. 

dC —65.825Q  
dHi= 	

+0.3691=0 

dC2  —46.75Q -1-27.6177--0 
di/2  Hz 

H1=13.354(01/2  

H2=1.301(0112  

Thus, the locus of cost-minimizing combinations 
of Ili  and H2  for different values of Q is given by 
the equation : 

(5) 111=10.264112 

If total daily volume (Q) is allowed to increase 
from zero along the "expansion path" defined by 
equation (5), the extent of movement is con-
strained by the limitation Ili-112=8. The values 

for Hi  and H2—and consequently, for Ri, R2, and 
Q—for which this constraint first becomes bind-
ing, are found by solving the pair of equations : 

II,-112=8 

Hi  =10.624112  

These equations imply that Hi  =8.86, 112 =0.86, 
and Q=0.440, which define point F in figure 1. 
Plants of such low capacity are below the range 
found in actual processing operations. 

For larger volumes of daily output (Q), the 
constrained cost-minimizing expansion path fol-
lows the line H, —112  = 8. The next step then is to 
minimize the function C =C, -PC2  subject to the 
linear restraint II, — 112 = 8. To do so, let 

0=C — A (Hi— — 8), where A. is a Lagrange 

multiplier. 

SO —65.825Q-1-0.3601—X=0 
SH1 	.1-1? 

30 —46.75Q 
yty2 — 	+27.6177+X-=0 

Adding these equations and clearing of fractions 
results in 

(6) — 65 .825 Q/--/ + 27 .9868HTH — 46 .75 Qiff-=-- 0 

This equation can be solved explicitly for Hi  and 

H, noting that Hi-112 +8. This gives a 4th de-
gree equation, however, and it is easier to specify • 	 91 
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LEGEND: 
H1 = vining hours per day 
H2: plant hours per day 

Q = daily volume, thousand pounds, 
with optimum rates and hours 

D 
 

2 	4 	6 	8 	10 	12 
Hours of plant operation per day (H2) 

FIGURE 1.—Feasible and optimal combinations of daily hours of field and plant operations for frozen lima bean processing, 
California. 

14 	16 

a point on the line (Hi  —1-12  = 8) and use the above 
equation to find the corresponding value of Q. 
For example, if H, is set at 14 hours and FL at 6 
hours, the above equation implies that Q=16.9. 

Movement along the line H,—H2 =8 can proceed 
with increasing daily volume, Q, until H, reaches 
the specified maximum of 16 hours. At this point 
(point B, figure 1), the value of 13, is 16 and the 
value of IL is 8. With these values of H, and  

112, the daily volume Q implied by equation (6) 
is 28.3 and the expansion path becomes the hori-
zontal line H,.=16. With 11, fixed at 16 hours per 
day, C can be minimized for Q greater than 28.3 
by minimizing C2  independently, or as derived 
above, H2  = 1.301 (Q)%. For example, if Q=85.2, 
the cost-minimizing value of 112 is 12 hours. 

As total daily volume increases further, H, can 
expand to its absolute limit of 16 hours (point C, 
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Plant 
(R,) 

Field 
(R1) 

Plant 
(H,) 

Field 
(Hi) 

Hours operated 
per day 

Output per hour 

Daily 
	

Season 
volume 	volume 

(Q) 
	

(q) 

TABLE 1.—Minimum,-cost combinations of hours operated and rates of output for field and plant opera-
. tions in processing lima beans for freezing, three lengths of operating season, California, 1958 

30-DAY SEASON 

Hours Hours Pounds Pounds 
Thousands 

pounds 
Million 
pounds 

16 8 1, 328 2, 657 21. 254 0. 637 
16 10 2, 769 4, 430 44. 304 1. 329 
16 12 3, 993 5, 324 63. 890 1. 917 
16 14 5, 428 6, 203 86. 848 2. 605 
16 16 7, 089 7, 089 113. 418 3. 403 
16 16 9, 375 9, 375 150. 000 4. 500 
16 16 12, 500 12, 500 200. 000 6. 000 
16 16 18, 750 18, 750 300. 000 9. 000 
16 16 25, 000 25, 000 400. 000 12. 000 

40-DAY SEASON 

16 8 1, 771 3, 542 28. 338 1. 134 
16 10 3, 692 5, 907 59. 072 2. 363 
16 12 5, 324 7, 099 85. 186 3. 407 
16 14 7, 237 8, 271 115. 797 4. 632 
16 16 9, 452 9, 452 151. 224 6. 049 
16 16 12, 500 12, 500 200. 000 8. 000 
16 16 18, 750 18, 750 300. 000 12. 000 
16 16 25, 000 25, 000 400. 000 16. 000 

50-DAY SEASON 

16 8 2, 214 4, 428 35. 423 1. 771 
16 10 4, 615 7, 384 73. 840 3. 692 
16 12 6, 655 8, 874 106. 483 5. 324 
16 14 9, 046 10, 339 144. 746 7. 237 
16 16 11, 814 11, 184 189. 030 9. 452 
16 16 12, 500 12, 500 200. 000 10. 000 
16 16 18, 750 18, 750 300. 000 15. 000 
16 16 25, 000 25, 000 400. 000 20. 000 

figure 1), which corresponds to Q=151.2. No 
further adjustment of H1  and 112  is possible as 
Q expands and increasing daily volume beyond 
Q=151.2 can only be achieved with proportional 
increases in the hourly output rates (size of vining 
and plant facilities). 

The number of days operated per season has an 
important effect on the least-cost combination of 
daily operating hours and size of facilities. The 
effect on rates and hours is directly proportional 
to the length of season. With a 30-day operating 
season, for example, the total daily volume (Q) 
corresponding to point C of figure 7 is 113.4, 
exactly three-fourths of the value for Q with a 40-  

day operating season. Table 1 gives selected 
values for combinations of hours and rates of field 
and plant operations, both daily and seasonal, for 
operating seasons of 30, 40, and 50 days. 

The above example suggests that total combined 
costs of field and plant operations are lowest when 
storage time and field hours operated per day are 
maximized. The relatively low level of economies 
of scale found in the field operations suggests the 
same conclusion. In situations where assembly 
and storage costs are more important components 
of the total cost picture, a complete analysis would 
require their explicit consideration. • 	 93 
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