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Using Discrete Programming 

By Clark Edwards 

• 
In many important economic problems, a variable 
is maximized subject to constraints. In a subset of 
such problems, a linear combination of decision vari-
ables is maximized subject to linear constraints. The 
latter subset is amenable to linear programming 
analysis. Efforts to expand the usefulness of linear 
programming methods usually involve incorporat-
ing nonlinear elements either in the criterion func-
tion or in the constraints. Such efforts frequently 
result in discovering ways to incorporate the non-
linear element in some acceptable linear form, thus 
retaining the usual linear programming procedure 
but broadening the researcher's capacity to apply the 
method to important economic problems (9).1  Dis-
crete programming is a case in point. Discrete pro-
gramming problems and ordinary linear program-
ming problems are about the same, except that a side 

ilk condition is imposed that some of the decision vari-
ables must take on discrete values, usually nonnega-
tive integers. The resultant, noncontinuous nature 
of the criterion function or of the constraints places 
discrete programming in the class of nonlinear pro-
gramming (10). Sufficient conditions for a solution 
to discrete programming problems have been known 
for several years (15). Recently, systematic proce-
dures for solving discrete programming problems 
have been put forward (14, 16). This paper dis-
cusses one of them. Decks and tapes for solving 
such problems on high-speed computers are not yet 
abundant, but it would be easy to supply them 
should the demand arise. 

A LINEAR PROGRAMMING problem is one A in which elements of a decision vector x are 
to be chosen in such a way as to maximize Q 
(1) Q=c'x 
subject to 
(2) Ax-b 
and to 
(3) x0 

1  Italic numbers in parentheses refer to Literature Cited 

eland Selected References, p. 59. 

Integer programming is done under the addi-
tional constraint that 
(4) some elements of x are integers. 

If Q is net revenue in a farm management prob-
lem and xi  is the swine activity, to insist by (4) 
that xi  be an integer is simply to require that if 
some sows are to be farrowed in the optimal farm 
plan, an integral number must be farrowed. If, 
without the discrete restriction, the optimal num-
ber of sows were estimated at 17.682, the question 
arises (in this case, perhaps, a somewhat trivial 
question) as to whether some limited resources 
should be withdrawn from other activities to in-
crease sow numbers to 18 (or 19) or whether it 
would be more profitable to farrow 17 (or 16) 
sows and release some limited resources for other 
uses. 

Some integer programming restrictions are 
shown in figure 1. Line ABCD represents the 
feasible, noninteger boundary for pairs of x1  and 
x2  given levels for activities x3 to xn. Inside 
ABCD, the boundary for integer pairs of values 
is marked with a dotted line. With RR depicting 
the price ratio, or choice indicator, B marks the 
high profit point of the noninteger solution. E 
marks the high profit point for x1  and x2  integers 
but x3  to xn  held constant. In a simultaneous 
integer solution of all n activities, the optimal 
level of, say, x, might change sufficiently that the 
best combination of x1  and x2  would shift away 
from E, say, to F or G. 

The marginal utility of adding a discrete 
restriction to a programming problem may be 
negligible when the magnitude of the decision 
variable is large relative to the size of the dis-
crete jump. For example, it may be less interest-
ing to know if a number like 103.467 should round 
up to 104 or down to 103 than to know if a num-
ber like 0.674 should round up to 1.0 or down to 
zero. It is the systematic way in which discrete 
programming handles relatively large jumps that 
makes it useful and interesting. 
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FIGURE 1.—Some integer programming restrictions. 

The integer programming method can handle 
several kinds of problems (8) : 

1. It may ensure that variables in the solution 
are positive integers. 

2. It may incorporate all-or-nothing-at-all re-
strictions such as owning a combine or not; and 
as using the full wheat acreage allotment or pro-
ducing no wheat. Lump-sum costs or resource 
requirements associated with the all-or-nothing 
decision may be allowed for. This sort of restric-
tion usually employs a variable confined to two 
values, 0 and 1. 

3. Admissible ranges for levels of inputs or out-
puts may be established by integer programming, 
as when a poultry enterprise must have at least 
1,000 layers if poultry is included in the optimal 
farm plan. Variations in net revenues or resource 
requirements with respect to ranges of values for 
specific variables may be incorporated. 
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4. Either-or choices may be analyzed in the 
integer programming framework as when one 
would either milk dairy cows or feed beef cows, 
but not both. 

5. Multiple choice problems in which one ele-
ment is chosen from a set of elements are amenable 
to integer programming. Choosing among equi-
distant numbers on the real line is a trivial exam-
ple and includes choosing among real integers, 
even numbers, numbers which are multiples of 10, 
and so on. Choosing among a finite set of num-
bers not equidistant from one another is associated 
with some decisions concerning size of enterprise 
or level of resource use. In an economies-of-scale 
study, one could analyze a feeder cattle enterprise 
with the following alternative sizes : 0, 25, 100, 
500, and 1,000. Choices among finite sets not 
usually measured numerically may also be incor-
porated in integer programs such as choosing 



among five crop rotations considered for a farm; 

Sr, choosing among three feeding methods con-
sidered for a hog enterprise. 

Writing the Discrete Restrictions 

Writing a discrete restriction in a program-
ming problem frequently involves devising a 
scheme for restating a nonlinear, discontinuous 
problem in a linear, continuous form, equations 
(1), (2), and (3), and then imposing the added 
restriction that one or more variables are integers, 
equation (4). Some examples follow : 

Example 1.—Let xi  be acres of corn and xk  a 
(0,1) variable representing a fixed complement of 
machinery and equipment necessary for handling 
a corn crop. Net  revenue, equation (1), includes 
the terms 

(5) 
	

eiXj +CkXk 

where ck is the annual cost of making the machin-
ery and equipment available and cj  is the change 
in net revenue associated with growing an acre 
of corn given that the machinery has been made 
available. 

A complete statement of the corn-machinery 

(

froblem could include the statement that 

which says that if corn is grown, machinery must 
be made available, and if machinery is not made 
available, corn can not be grown. That machin-
ery might be made available without growing 
corn is feasible according to (6) but not economic 
according to (5). Growing corn without equip-
ment is not feasible according to (6). 

While (6) states the discrete restriction, it is 
not in the form of equation (2) and is not amen-
able to ordinary programming procedures. The 
restriction may be translated to a usable form by 
introducing a dummy parameter based on the 
knowledge that the variable xi  has an upper 
bound imposed by other constraints to the prob-
lem. For instance, one of the restrictions in (2) 
may state that only 100 acres of corn land are 
available in which case any real number not less 
than 100 may be used as an upper bound for xj. 
Let us call the dummy parameter ai. Now we 
write the restriction 
(7) 
	 xi-<-ccixk  

• 

	 xk  an integer  

which conforms to (2) and (4) and can be shown 
to satisfy (6). The terms (5) would appear in 
equation (1) and the inequality in (7) would 
appear as one of the equations in (2). According 
to (7), it is not feasible to grow corn unless 
machinery is made. available. If corn is not grown 
on the farm, the profit maximizing criterion 
requires that no machinery is made available. If 
corn is grown, then (7) requires that at least one 
set be made available and the profit maximizing 
criterion requires that not more than one set of 
machinery is acquired. Thus xk  will be either 
0 or 1 in the optimal solution. Many enterprises 
require an initial, overhead cost in addition to a 
variable, unit cost. Discrete programming is an 
efficient way to distribute fixed charges. The term 
ckxk  in (5) represents a fixed charge in terms of 
a cash outlay, or a lump sum reduction in net 
revenue. 

If the fixed cost were measured in terms of 
using up a lump sum of limited resources such as 
building space or labor, rather than in terms of 
directly reducing net revenue, a similar restric-
tion results. Interpreting (7) as above, set ck  =0 
to show that net revenue is not directly affected 
by a change in the (0,1) variable, xk. Then, let-
ting the PI equation in (2) represent the labor 
restriction, let au, reflect the fixed labor require-
ment. See appendix table 1, line 5, for an illus-
tration. Now if xk  =1 the fixed labor supply is 
reduced by aik, but if xk=0 the labor supply is 
not affected. 

Example 2.—In example 1, the discrete variable 
takes one of two values : 0 and 1. In other prob-
lems, the discrete variable may assume any non-
negative integer. For instance, perhaps the 
number of storage bins is to be an integer and 
there must be at least one bin for each 10,000 
bushels of grain; or the number of machines 
employed in an activity must be an integer and 
there must be at least 1 machine for each 10 
units of labor. 

Let xi  be an activity providing labor and xk 
one providing machines and suppose the number 
of machines supplied must be an integer. The 
supplies of xi  and xk  may be perfectly elastic with 
unit costs represented by cj  and ck. In this event, 
neither variable would have an upper bound as 
did the variable in the previous example. Appro-
priate coefficients in the labor restriction equation 
would ensure that an adequate quantity of labor, 
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6) x j>0-->xk=1 



xj, is made available. In addition, an equation 
saying that xj--axk  as in equation (7), will 
ensure that there will be at least one machine 
for each a units of labor. Hence, while other 
restrictions in (2) would lead to the optimal labor 
utilization, (7) would ensure an adequate supply 
of machinery. 

Example 3.—Sometimes it is desirable to impose 
the restriction that if an activity is used, it is used 
at least at a minimal level. For instance, if wheat 
is to be grown then at least 15 acres must be 
grown; and, if cows are to be milked then at least 
25 head must be in the herd. Let us say that for 
a dairy activity, x j, it is known from other con-
straints in the problem that 100 is an upper 
bound for x j. Furthermore, we know from prior 
economic analysis that if there is to be a dairy 
activity in the final solution, the herd must have 
at least 25 cows. That is, we wish to impose 

(8) 
either 25-xj-100 
or 	xj=0 

This nonlinear, discontinuous condition can be 
written in a form suitable for ordinary program-
ming methods by writing 

(9) Xi  '13j xk 
xk  an integer 

where a j  is the upper bound, 100, and Si  is the 
lower bound, 25. If introducing the first 25 cows 
involved an overhead cost, this could be reflected 
by a value for ck  in the profit equation. If the 
first 25 cows affected the ith  restriction differently 
from the additional cows, as by requiring a lump 
sum labor requirement in addition to the variable 
labor requirement per cow, this could be reflected 
by a value for aik  in the ith equation of (2). In 
(9), it  follows that if xk  = 0, xj  =0. If xk  = 1, 
25---x j -100 as required in (8). An uneconomic-
size herd of, say, 10 head is not feasible because 
xj  =10 violates the first inequality of (9) if xk=0 
and violates the second inequality if xk=1. 

Example 4.—Discrete variables may assume one 
of several values which are not equidistant from 
one another. One might want to consider wheat 
acreages of 0, 15, and 40 acres or consider dairy 
enterprises of 0-, 25-, 60-, and 100-cow herds with-
out examining other activity levels. In the dairy 
example, each herd size may be considered efficient 
for alternative sets of buildings and equipment, 
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qualities of cows, rates of feeding, and require- 
ments of labor. 

A restriction of the form 
(10) xj  =25xk+ 60xm  -I- 100x. 

xk, xm, xn  are integers 
would permit examination of the four dairy alter-
natives. If each of the integer variables were zero, 
x j  would also be zero. 

If, in the profit maximizing process, more than 
one herd appeared in the final solution and at most 
one herd was considered admissible, the further 
restriction would be imposed that 
(11) 1xk  + xm+ xi, 
Forcing the equality in (11) would result in 
exactly one herd and allowing the inequality 
would allow none. Frequently, an equation of 
type (11) will not be violated even when not 
explicitly imposed due to the nature of the cri-
terion function (1) and to other restrictions in 
(2). 

As in prior examples, values for ck, cm, cn, ant, 
aim, and ain  may be incorporated to account for 
lump sum increments in costs, returns, or resource 
use associated with alternative levels of xj. 

Example 5.—If a farm organization could in-
clude either Herefords or Holsteins but not both, 
farrow either one litter of pigs per year or twill, 
litters but not both, or plant either corn or soy-
beans in a field but not both, then a restriction 
of the form 
(12) xi •xj=0 
would require that at least one of the activities 
not enter into the solution. This nonlinear condi-
tion may be imposed by two linear inequalities in 
an integer program. Let al  and a j  be upper 
bounds for xi  and xj, respectively. Such bounds 
are always implied by other constraints in (2). 
Then incorporate the restriction that 

Xi .. aiXk 
(13) xj a j  (1 — xk) 

xk  an integer 
with the understanding that xk  is confined to the 
integers 0 and 1. Should difficulties in computa-
tion arise from xk--2, simply impose the addi-
tional restriction that xk-1. See appendix table 
1, lines 6 and 7, for an illustration. 

Displaying the Discrete Solution 

Let the integer programming problem be stated 
in the form of equations (1) to (4) with (20 

• 



including equations such as (7), (9), (10) and 

W13). The first step in displaying the integer 
olution is to solve equations (1), (2), and (3), 

ignoring (4) to get a first approximation (14). 
The first approximation allows variables which 

are supposed to be integers to take on noninteger 
values and therefore need not be a feasible solu-
tion. For example, one of the (0,1) variables 
might have the value of .90 in the first approxi-
mation. This might mean that only 90 percent 
of a combine or 90 percent of a dairy barn is 
allowed for in the solution. The next step is to 
add an additional equation to the noninteger solu-
tion matrix, incorporating information as to which 
of the variables are to be integers, and to proceed 
with the computations. 

The rules for discrete programming are simpler 
if equation (4) is changed to read "all x1  are in-
tegers." Let us examine first the complete integer 
solution and then take up the partial integer 
solution. 

The Complete Integer Solution 
Let equation (14) represent the ith  of m restric-

tions in the first approximation, or the noninteger 
solution of a linear program for which an integer 

f olution is desired. 

(14) E alixi=b, 	(1 <i<m) 
S=1  

where it is understood that 
au=1 

	

	for the coefficient of the x j  
having the value b1  in the 
current basis, say xk  

(15) au  =0 for coefficients of all other 
xi  included in the current 
basis 

— co <am< co for coefficients of all x j  not 
included in the current 
basis 

Some of the x j  in (14) are real activities, some are 
slack variables and others were introduced 
through equations such as (7). Any of the m 
equations may be chosen for (14) provided bi  is 
not, in fact, an integer in the first approximation. 
See appendix table 1 line 12 for an example. 

The assertion that all x j  are integers requires 
that all bi  in (14) are integers. But (14) was 
derived without imposing the integer restriction. 

4,f, on inspection, the b1  are integers, there is no 

further integer problem. If some bi  are not in-
tegers, an additional constraint is required. The 
additional constraint will expand the solution ma-
trix from an m by n to an m+ 1 by n + 1 matrix. 
The additional constraint is devised by operating 
on equation (14). 

Let [b1] equal the largest integer less than or 
equal to bi  and define Si  such that 

(16) Oi=bi —[bi] 

Substituting (14) into (16), 

(17) 	
jk 

	[bi] —4= — ot 

where xk  is the activity in the current basis as-
signed the value bi. 

Imposing the condition that all xi  are integers on 
(17) implies that a change in any aij  by an integer 
amount changes the product aij  xj  by an integer 
amount. Let a f; equal ai j plus a (positive or 
negative) integer such that 

(18) 0 <at<1 

then, from (17), 

(19) 	—
iok
Ectf1xi+xn+1= —a, 

where, if all xi  are integers, xn+,. is an integer. 
The term x„,., is a collection of the integers [b1] and 
xk  and the integer changes in the aiixj. 

Furthermore, xn+i is a nonnegative integer. In-
asmuch as (20) 

n 

(20) ati >0 j_ * X 

it follows from (19) that 

(21) Si+xn+i > 0 

But since Si  is nonnegative and less than 1 and 

since x„,1  is an integer, it follows from (21) that 
x.+1 is a nonnegative integer. 

Equation (19) contains the information that the 

xj  should be integers and (19) is the additional 
constraint needed to display the integer solution. 

xn+i  is the additional, slack variable. The new 
equation and the new variable are added to the ma-
trix containing (14) and at least one more itera-
tion is calculated. There is not a direct illustra- 
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{

0 for all j such that x j  is in the 
current basis 
4 f ll or a j h th such 	xi  is not in 
the current basis 

tion of (19) in the appendix table because the 
problem there allows some variables to remain 
nonintegers. However, line 13 in the table illus-
trates the analogous restriction for the mixed 
integer problem as per equation (36). 

Equation (19) is not satisfied at the time it is 
added to the system. In the first place, not all the 
xi  are integers as required. In the second place, 
the slack variable xn+i  equals —81  in the current 
basis which violates the nonnegativity restriction 
(3). The first computation should be one which 
re-imposes (3). Then proceed as usual until the 
second approximation is reached. 

With xii.1<0 in the current basis, the usual sim-
plex procedure needs a broader than usual inter-
pretation in order to assure that the negative 
slack is removed from the basis and in order to 
select an xi  to enter the basis which will not drive 
some other xt  negative. This is easy to do if the 
computation is being done with pencil and paper 
or a desk calculator. Most linear program rou-
tines for high speed computers are not designed to 
handle a negative variable properly. An iteration 
to remove the negative variable may precede re-
loading the problem on the machine. Modifica-
tions are needed in existing routines to generate 
the (m+rst ) equation and the (n + 1) et  variable 
and to handle the negative xn+1. Such modifica-
tions are not particularly complicated. 

Alternatively, the expanded matrix may be re-
loaded immediately by multiplying equation (19) 
by —1 and adding a dummy slack with an indefi-
nitely large negative c value in the criterion func-
tion. This procedure adds one equation and two 
slacks to the original matrix and is illustrated by 
line 13, table 1 in the appendix. 

Sometimes it will happen that the second ap-
proximation will satisfy conditions (1) through 
(4) and display the optimal, integer solution. 
However, it also sometimes happens that the sec-
ond approximation contains some unwanted non-
integers as in the example in the appendix. This 
could result when ati  for a nonbasis integer vari-
able in the first approximation is between zero and 
one such that at= atj  as well as when an integer 
variable is already in the basis. In either event, 
the new equation would not contain the required 
information concerning the integer variable. If 
the second approximation fails to display the re-
quired integer solution, generate an additional 
equation (m+ 2) and an additional slack variable 
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(x.+2 ) and proceed as before. 
The method of complete integer programme

may be outlined in three overtly simple steps : 
A. Solve the problem without imposing the 

integer restriction (4). 
B. Add a new slack variable, x„,,, and a new 

equation of the form: 

(22) 	—± foxt+xn+1=—as 
where 

3,=the fractional part of an integer 
variable which assumed a non-
integer value in the current basis 

and where 

and where 
the fractional part of ao  for ati? 0 
one minus the fractional part of 
the absolute value of 
atf  for au<0. 

C. Continue computing until either the optimal, 
integer solution appears or until another non-
integeroptimum appears. In the latter event, 
repeat steps B and C. 

The Partial Integer Solution 
The partial, or mixed integer solution of a pro-

gramming problem requires that some x j  are inte-
gers whereas the complete integer solution requires 
that all xi  are integers (12) . Consider again equa-
tion (14) as the ith  of in restrictions in the first ap-
proximation, or the noninteger solution of an in-
teger problem. The ith  equation may be chosen 
from the m restrictions in any manner provided 
that 131  should be an integer in the final solution 
but is not an integer in the current basis. See line 
12 of the appendix table for an example. Defin-
ing 81  as in (16), the additional restriction required 
for the partial integer solution may be developed 
by operating on (17) 

(17) 	-E auxid-(bii —4= —Bs 

where xk  is the activity in the current basis assigned 
the value bi. 	 • 

= 



Breaking the summation on the left hand size 

Ankof  (17) into two parts according to whether au 

W negative or nonnegative, we have 

(23) E alixi= E auxj+E Tux'  
j,k 	air>0 	aii<0 

For alternative values of the xi, the summation 

on the left hand side of (23) will be either negative 

or nonnegative. If it is nonnegative, considering 

that xk is an integer and that the summation must 

therefore differ from SI by an integer amount, 

it follows that 

(24) j~k 
aiix j> Si  

Or 

(25) E 	ai ,x j> 
ai,>0 	a„.<0 

which implies 

(26) E a,i xi > S i  

If, on the other hand, the summation in (23) is 

negative, it follows that 

(27) Eauxi Si  —1 
JOIc 

or 

	

•(28) 	 E afixj+E atjxj5_31-1 
a;,>0 	a,i<0 

which implies 

(29) E0  aijxj< Si  —1 
aii< 

multiply both sides by —1 

(30) —E aijxj_ 1 — Si 
c:,<0 

and multiply both sides by a constant containing 

Si 

(31) E aiixj> Si 
1— St ao<0 

and rearrange 

0 81_1  ati) Xi > Si  (32)  

Combining (26) and (32) leads to the assertion 

that 

(33) E ccox,-FE 	, aril  xi > Si 
a ,>0 	an<0 (ot— 1 

Si 

and it is on the inequality (33) that the added re-

striction to the partial integer programming prob-

lem is based. Introducing a nonnegative slack 

variable into (33) produces the equation 

(34) —E auxi—  E 	
St

ate xj-Exn+i= —S. 
chi>o 	a:i<o Si — 1 

In obtaining (34), the variable xk was required 

to be an integer. If xi, is the only integer variable 

in the problem, equation (34) is the additional re-

striction required. If some variables in the cur-

rent basis in addition to xk are required to be 

integers, additional restrictions similar to (34) 

need to be generated. Such information can not 

be incorporated in (34) because the au's for x1's 

included in the current basis are each zero. 

If some variables not in the current basis are 

required to be integers, this information can be 

introduced into equation (34) in a manner en-

tirely analogous to the adjustments used to trans-

form equation (17) into (19) in the complete in-

teger problem. The procedure is to adjust the 

left hand side of (33) resulting in a stronger in-

equality. We shall use the property that the 

smaller the coefficient of an xi in (33) the stronger 

the inequality. 

For an integral xj not in the current basis, its 

coefficient au in (23) may be changed by an integer 

amount to ail. Such a change in a coefficient 

would not destroy the fact that when xk is an in-

teger the summation in (23) differs from Si by an 

integer amount. We wish to change the coeffi-

cient of xi in (23) by an integer amount in a way 

which results in the inequality in (33) becoming 

as strong as possible. Among the nonnegative 

numbers differing from ajj by an integer amount, 

a coefficient less than 1 leads to the strongest pos-

sible inequality. Among the negative numbers 

differing from au by an integer amount, a coeffi-

cient greater than —1 leads to the strongest 

possible inequality. 

Therefore, defining ailt as au plus an integer 

amount such that 

(18) 	 0 < ail<1 

as before, the choice for a coefficient for xi in (23) 

narrows to 
either  aj 

(35) or 	ail —1 

whichever leads to the strongest inequality in (33). 

If we choose all for the coefficient of xj in (23), 

xj has the coefficient all in (33). On the other 

hand, if we choose ail —1 as the coefficient in (23), 
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S,  
Si-1 

ai;  

5,  
6,-1 (a''-1)  

x j  has the coefficient o,(4-1)/(51 — 1) in (33). 
It happens that if 4=31, either choice in (35) 

would lead to identical results. Consequently, the 
inequality (33) will be as strong as possible if we 
choose the coefficient of x j  in (23) for x j  an integer 
variable according to the rule: 

If ail < Si, let the coefficient in (23) of x1=aij  
and 

If all >31, let the coefficient in (23) of 
all —1 

The method for partial integer programming 
may be outlined in three overtly simple steps: 

(A) Solve the problem without imposing the 
integer restriction (4) 

(B) Add a new slack variable, x,÷1, and a new 
equation of the form (36): 

and where 

the fractional part of a jj  for au> 0 
A* 

= one minus the fractional part of the 
absolute value of a jj  for a jj<0 

(C) Continue computing until either the op-
timal, integer solution appears or until another 
noninteger optimum appears. In the latter event, 
repeat steps B and C. 

Appendix 
By way of illustrating the integer program-

ming procedure, let us seek to maximize profits for 
a farm producing oats, hay, milk, and beef where 

(37) 	ir=15x1+ 6x2+ 175x3+ 76x4-1000x5  
subject to 

1.50x1 	+ 2.00x3+ .50x4 	+X6 
	 120 

	

.50x2+ 3.00x3+ 3.50x4 	 + 
	

140 

	

(38) 6.00x1+3.50x2+70.00x3+40.00x4+400.00x5 	+x8 	= 3 5 0 0 
1.00x3 	— 44.00x5 	+x9 	= 0 

	

+ 1.00x4+ 40.00x5 	 +x10 = 40 
n 

(36) 
1=1 

 fijx,+x,i+j=-31 

where 

(51=the fractional part of an integer variable 
which assumed a noninteger value in the 
current basis 

and where 

0 	for all j such that xj  is in the 
current basis 

for all j such that x j  is a non-
integer variable not in the 
current basis and a jj> 0 

for all j such that xj  is a non-
integer variable not in the 
current basis and a j1<0 

for all j such that x j  is an in-
teger variable not in the cur-
rent basis and all <S, 

for all j such that xj  is an in-
teger variable not in the cur-
rent basis and arj>51  
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and to 
	 • 

(39) xi> 0 
	

(i=1, 2, . . 	10) 
and to 

(40) x3, x4  x5, x9, and x10  are integers 

where the x's are interpreted as follows : 
xi  is tons of oats produced 
xa is tons of hay produced 
x3  is number of milk cows 
x4  is number of beef cows 
x5  is a (0,1) variable 
x9  is slack acres of crop land 
x, is slack acres of hay and pasture land 
x8  is slack hours of labor 
x9  is slack milk cow capacity 
x10  is slack beef cow capacity 

Equations (37) to (40) are counterparts to 
equations (1) to (4), respectively. In this exam-
ple, we require that livestock units in the solution 
are integers and we require that the solution may 
include either milk cows or beef cows but may not 
include both. The first 2 equations in (38) ensure. 

f I 2—  



that the land used in producing crops and live- 

it
ock does not exceed total land available on the 
arm. The third equation in (38) is the labor 

restriction. This equation indicates that 400 
hours of labor are required for each unit of x6 ; x5  
is a (0,1) variable which is to have the value of 1 
if cows are milked. Thus, if cows are milked, a 
400-hour fixed labor requirement is charged 
against the available supply of labor. At the 
same time, if cows are milked a fixed cost of $1,000 
per year is charged against net revenue for pro-
viding services of specialized dairy equipment, ac-
cording to equation (37). Distributing fixed 
charges in integer programming is discussed in 
connection with example (1), page 51. 

The two final equations in (38) are counterparts 
of equation (13) in example (5) page 52. They 
ensure that the final solution does not contain both 
beef and dairy cattle. These equations recognize 
upper bounds for the dairy and beef enterprises 
of 44 cows and 40 cows, respectively. For the 
dairy cattle, as many as 60 head could be handled 
with the 120 acres of cropland available; as many 
as 46.666 head with the 140 acres of pasture and 

Table 1 shows the steps required to reach the 
mixed integer solution by the ordinary simplex 
method. The upper section of the table shows the 
initial basis. The second section shows an ap-
proximate, noninteger solution which is obtained 
by solving equations (37), (38), and (39) without 
regard to (40). In the first approximation, oats, 
milk, and beef activities are used to produce a net 
revenue of $6,820. Three of the basis variables 
in the approximation, x,, xi, and x, are supposed 
to be integers; x5, the (0,1) variable, has the 
value 0.9328. This means net revenue fails to 
reflect about $67 per year of the fixed cost of spe-
cialized dairy equipment and it means about 27 
hours of the fixed dairy labor requirement are not 
charged against the fixed labor supply. 

Using line (12) in table 1 as the counterpart of 
equation (14), line (13) is generated to incorpo-
rate the information that some variables are to be 
integers. Line (13) is the counterpart to equa-
tion (36). The fractional part of the basis vari-
able in line (12) is Si  = 0.9328. Following the 
rules for mixed integer programming listed on 
page 56: 

12 --=a12 

S4  
118 = (51-1 

a,6 

.118 =a18 

=.0022 

------- (-13.8889) (— .0025) 	=.0345 

=.0006 

si  
fig = as-1 

(0i9-1) = (-13.8889) (.9614-1.000)=.5355 

,i0= 
St 

St-1 (a*n 	=-- o-1) (-13.8889) (.9764— 1.000) = .3282 

hay land available; but not more than 44.2857 
head with the available supply of labor. Thus, 44 
is the largest integer feasible for dairy herd size. 
Similarly, the hay and pasture land available 
limits to 40 head the maximum feasible beef herd. 

The fourth equation in (38) says if x,=-1, the 
number of cows milked (x,) plus the slack milk 
cow capacity (x9) must total the maximum feasi- 
ble dairy herd size. On the other hand, if 	0, 
x3  and x9  must each be zero. The fifth equation in 
(38) says that if x,=0, the number of beef cows 
(x4) plus the slack beef cow capacity (x10) must 
total the maximum feasible beef herd size. If 

ex,-- 1, x4  and x10  must each be zero. 

680439-63 	3 

To avoid a negative basis variable in line (13), 
and thereby to facilitate reloading the problem on 
a highspeed computer, line (13) reflects —1 times 
equation (36) as per the discussion on page 54 of 
the text. x.i is the counterpart of the slack vari-
able xn.,1  in equation (36) and x15  is a dummy 
slack. The $1,000 negative coefficient of x12 in the 
criterion function, line (2), is sufficiently large to 
preclude x,3  from the final solution. 

Line (14) of table 1 shows the derivatives of the 
profit equation. Elements of line (14) are fre-
quently referred to as Ci  —Z1  values in program-
ming literature. Before adding line (13), each 
derivative was negative indicating that the solu- 
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tion was optimal given the restrictions imposed. 
&With the addition of line (13), several of the 
Illirderivatives are positive indicating that, under the 

added restriction, some other feasible farm or-
ganization than the current one would be more 
profitable. 

The third section of table 1 shows the second 
approximation obtained by seeking to maximize 
profits subject to the restrictions represented by 
lines (8) to (13) of the table. In the second ap-
proximation, oats and milk activities are used to 
produce a net revenue of $6,750, x5  is an integer 
as required. However, x5  and x5, also in the basis, 
are not integers. Evidently the counterpart of 
inequality (33) was not strong enough to produce 
the desired integer solution—the process must be 
repeated. 

Using line (17) as the counterpart to equation 
(14), the rules for mixed integer programming 
were used to generate line (21). Line (22) shows 
the Ci  —Zi  values. Solving the expanded, 7 by 
14 matrix led to the solution in the lower section 
of the table in which oats and milk activities are 
used to produce a net revenue of $6,750, the same 
revenue as obtained in the previous approxima-
tion. The derivatives in line (30) are each nega-
tive, indicating that this is the mixed integer 

III/solution which maximizes (37) subject to (38, 39, 
and 40). 

Literature Cited and Selected References 

(1) BEALE, E. M. L. 
1958. A METHOD OF SOLVING LINEAR PRO-

GRAMMING PROBLEMS WHEN SOME 
BUT NOT ALL OF THE VARIABLES 
MUST TAKE INTEGRAL VALUES. 
Statistical Techniques Research 
Group Technical Report No. 19. 
Princeton, N.J. July. 

(2) BENNETT, J. M., AND DAKIN, R. J. 
1961. EXPERIENCE WITH MIXED INTEGER 

LINEAR PROGRAMMING PROBLEMS. 
Technical Report No. 18. Basser 
Computing Department. Uni-
versity of Sydney, Sydney, Aus-
tralia. Oct. 

(3) CANDLER, WILFRED, AND MANNING, RICHARD. 
1961. A MODIFIED SIMPLEX SOLUTION FOR 

PROBLEMS WITH DECREASING AVER- 

AGE COSTS. Journ. Farm Econ. 

Menasha, Wisc. Nov. 43 : 859-
875. 

(4) CHOU, TAO-HSIUNG. 
1961. MIXED INTEGER PROGRAMMING WITH 

APPLICATION OF DYNAMIC AND 
NON-LINEAR MODELS FOR AGRI-
CULTURE. Ph. D. Thesis, Iowa 
State Univ., Ames, Iowa. 

(5) CHOU, T. H., AND HEADY, E. 0. 
1961. APPLICATIONS IN INTEGER PROGRAM-

MING. Canadian Jour. Agr. 
Econ. Ottawa, Canada. 9 : 
54-67. 

(6) DANTZIG, G. B. 
1957. DISCRETE-VARIABLE EXTREMUM PROB-

LEMS. Operations Research, 5, 
Baltimore, Md. 15 : 266-277. 

(7)  
1958. ON INTEGER AND PARTIAL INTEGER 

LINEAR PROGRAMMING PROBLEMS. 
The Rand Corp. Santa Monica, 
Calif. Paper P-1410. June. 

(8)  
1960. ON THE SIGNIFICANCE OF SOLVING 

LINEAR PROGRAMMING PROBLEMS 
WITH SOME INTEGER VARIABLES. 
Econometrica, New Haven, 
Conn. 28: 30-44. Jan. 

(9) EDWARDS, CLARK 
1961. SHORTCOMINGS IN PROGRAMMED SO-

LUTIONS TO PRACTICAL FARM PROB-
LEMS. Jour. Farm Econ. Me-
nasha, Wis. 43: 393-401. May. 

(10)  
1962. NON-LINEAR PROGRAMMING AND 

NON-LINEAR REGRESSION PROCE-
DURES. Jour. Farm Econ. Me-
nasha, Wis. 44 :100-114. Feb. 

(11) GOMORY, R. E. 
1958. AN ALGORITHM FOR INTEGER SOLU-

TIONS TO LINEAR PROGRAMS. 
Princeton-I.B.M. Mathematics 
Research Project, Technical Re-
port No. 1. Princeton, N.J. 
Nov. 

(12)  
1960. AN ALGORITHM FOR THE MIXED INTE-

GER PROBLEMS. The Rand Corp. 

59 • 



Santa Monica, Calif. Research 
Memorandum RM-2597. July. 

(13) 	 
1958. OUTLINE OF AN ALGORITHM FOR 

INTEGER SOLUTIONS TO LINEAR 
PROGRAMS. Bulletin of the 
American Mathematical Society. 
Providence, R.I. Vol. 64, No. 5. 
Sept. 

(14) GOMORY, R. E., AND BAUMOL, WILLIAM J. 
1960. INTEGER PROGRAMMING AND PRICING. 

Econometrica. New Haven, 
Conn. 28 : 521-550. July. 

(15) HIRSCH, WARREN M., AND DANTZIG, G. B. 
1954. THE FIXED CHARGE PROBLEM. The 

Rand Corp., Santa Monica, 
Calif. Paper P-648. Dec. 

(16) LAND, A. H., AND DOIG, A. G. 
1960. AN AUTOMATIC METHOD OF SOLVIN111 

DISCRETE PROGRAMMING PROBLEM 
Econometrica. New Haven, 
Conn. 28 : 497-520. July. 

(17) MARKOWITZ, H. M., AND MANNE, A. S. 
1957. ON THE SOLUTION OF DISCRETE PRO-

GRAMMING PROBLEMS. Econo-
metrica. New Haven, Conn. 
25 : 84-110. Jan. 

(18) MUSGRAVE, WARREN F. 
1962. A NOTE ON INTEGER PROGRAMMING 

AND THE PROBLEM OF INCREASING 
RETURNS. Jour. Farm. Econ. 
Menasha, Wis. 44 :1068-1076. 
Nov. 

60 


	Create a searchable grayscale PDF file_1.PDF
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44




