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UNCERTAINTY, INFORMATION, AND
IRREVERSIBLE INVESTMENTS

by

Theodore Graham-Tomasi-

Introduction

A large literature has developed concerning the evaluation of the

social desirability of undertaking actions which irrevocably will alter

unique natural environmental resources.

The consideration of uncertainty in this context has led to the concepts

of option value and quasi-option value (QOV). The former concept concerns

2/
the relationship between ex-ante and ex-post welfare evaluation measures.-

The latter concept, with which this paper is concerned, has to do with

the impact on investment criteria of opportunities for learning which might

eliminate or reduce uncertainty. In particular, Arrow and Fisher (1974)

demonstrated that decisions with learning appropriately are more conserva-

tive than decisions made when learning possibilities do not exist or are

ignored.

While the implications of the analysis are clear, the definition of

QOV is not. Arrow and Fisher identified QOV as "a reduction in net benefits

from development" (1974, p. 315). Similarly, Henry (1974a) defined an

"irreversibility effect," which is a reduction in the expected net benefits

of development when uncertainty and learning are recognized relative to

the certainty case. However, other authors have identified QOV as the

quantity which, if incorporated into the decision rule regarding development

used in the non-learning case, would lead to the same decision rule in the

learning case (Krutilla and Fisher, 1975, p. 72). This approach is taken
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by Bernanke (1983) where there are several possible investments. In this

latter sense, QOV is seen as a "shadow tax" on development which leads to

efficient investment decisions.

Unfortunately, the models employed by Arrow, Krutilla, and Fisher were

simple and such that the relationship between these alternative definitions

of QOV is obfuscated. In particular, they assumed the the area of land

available for development is equal to one and that benefit functions are

linear so that either all of the area or none of it is developed.

In a different setting in which the benefit of holding given stocks

of developed and preserved land is given by a strictly concave function,

and a "zero or one" restriction is not imposed, one is presented by a more

obvious choice between definitions of QOV, and the distinction between the

"net benefits" and "shadow tax" approaches is clear. In this framework,

the former definition is seen to be equivalent to the expected value of

information as defined in utility terms by, for example, Gould (1934).

Conrad (1980) points out that the two ideas are equivalent. Hanemann (1983)

correctly notes that this value is conditional on no development in the

first period.

I propose that the Krutilla/Fisher shadow tax definition be given

the name quasi-option tax (QOT) and that the term quasi-option value (QOV)

be maintained when discussing changes in net benefits. Hence, throughout

the paper, I refer to these two concepts without, I hope, risk of con-

fusion.

First, I explore a fairly general model of investment decisions under

uncertainty with learning and derive an expression that corresponds to the

shadow tax definition offered by Krutilla and Fisher in the linear case.
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I show how this differs from the usual definition of the QOV.-
/ In particu-

lar, I propose an operational definition of QOT when the choice set is the

continuum [0,1], and not equal to {0,1}, as is usual in the literature.

Hanemann (1983) notes the distinction between the QOV and shadow tax con-

cepts (defined differently than is done here) in this context and states

that the concept, therefore, is not well defined. However, that two distinct

concepts exist which are equal in one special case does not obviate their

usefulness. Bernanke (1983) proposed a measure similar to that studied

here. However, he considers a menu of projects which can be either imple-

mented on deferred and considers the problem of choice from among these

alternatives. He incorrectly associates his measure with QOV (this is

noted by Hanemann (1983)).

Second, I investigate the properties of the QOV and what I propose as

QOT. In particular, I am interested in how QOT responds to an increase

in risk as defined by Rothschild and Stiglitz (1970).

The paper is organized as follows. In the next section, I outline

the basic model of QOV following Arrow and Fisher (1974). The simplest

model is presented and the distinction between QOT and the QOV is drawn.

I also show how these can be the same in magnitude in this simple case.

The relationship between the QOV and QOT is obscured in a model with

linear benefit functions. In the third section of the paper, I study a

model with concave benefit functions and many possible realizations of

the state of nature; however, I retain the assumption of two time periods

as well as that concerning perfect information. This section serves two

purposes. First, it serves as a forum for the demonstration of the

intuitively pleasing result that, when benefit functions are strictly
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concave, less of a natural environmental resource is developed when learning

is anticipated than when learning cannot take place. The method of proof

is alternative to that presented in Arrow and Fisher (1974). The mode

of proof used here provides a clear idea of the difference between the

QOV and QOT; this is the second purpose of the section.

The comparison of no information to perfect information is a special

case of the comparison of "better" information. In the fourth section of

the paper, I examine the effect that an ability to obtain better information

has on irreversible investment decisions. In other respects, the model is

the same as that studied in the previous section. The approach taken here

is to apply the concept to a "more informative" experiment as found in

Marschak and Miyasawa (1968) in a dynamic setting via dynamic programming

arguments. The exposition here follows closely that of Epstein (1980).

The fifth section extends the inquiries of the previous section to

a multi-period model. The extension is straightforward and requires only

a change of interpretation. The final section is a discussion.

Quasi-Option Tax and Quasi-Option Value

The existence of QOT and its relationship to quasi-option value (QOV)

in the linear case easily is demonstrated in a model with two periods, two

possible states of nature, and perfect information. The presentation here

follows Arrow and Fisher (1974) conceptually, but the details of their

analysis are modified to provide a closer tie to subsequent investigations

in this chapter.

There is a tract of homogeneous underdeveloped area the size of

which is normalized to one. The amount of new development in period t

is qt for t =1,2. The net benefits of development and preservation per
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unit of area per unit of time are Dt and Pt, respectively. It is assumed

that, while D1 and D2 are known, the values of Pt are not known. As with

models of investment by a competitive firm under uncertainty, the timing

of any resolution of uncertainty relative to the time when input choices

must be made is crucial in the determination of the results of the

analysis. / Here, I assume that P1 is known when ql must be chosen. I

then compare two cases, one in which no information concerning P2 is

forthcoming, and one in which P2 is known with certainty, before q2 must

be chosen.

I assume that ex ante the decision-maker (DM) believes (correctly)

that P2 is "small" with probability I and that it is "large" with

probability 1-E.5/ The realization P2 is small in that D -PS is strictly
2 2 2

positive; Ph is large in that D2-Ph is strictly negative.

2First I examine the case in which no new information about P2 is

available to the DM until after q2 must be decided upon. Then both q

and q2 are chosen at the initial date. The DM is assumed to be risk-

neutral; thus, the objective function is the expected present value of

net benefits. The DM's point estimate of P2, conditioned on information

available at the beginning of the program, is P2, i.e., P2 = IIP2 + (1-n)P2.

The DM solves

max Dlq + (l-ql)P1 + a[D 2 (ql+q2) + (1-ql-q2)P2]

ql q2

s.t. ql£[0,l], q2e[0,1-q]

where a=(l+i)-l and i is the decision-maker's rate of time preference.
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Define V1=D1-P1 and V2=D2-P2. Clearly, the optimal plan includes

for q2

0 if V < 0

q 2 all q1 [0,1], (1)l=q1 if V2 > 0

Turning to the decision in the first period, the decision rule is given by

1 if V2 < 0 V1 > laV21

0 if V2 < 0 V1 < JaV21
q = (2)

1 if V2 > 0 V2 > 0

0 if V > 0 V1 < 0.

Now, suppose that the decision-maker recognizes that the true value of P2

will be revealed at the beginning of period two. In this case, the

decision on q2 can be made after P2 is known. Let V2 denote the true

value of D2-P2. The decision rule on q2 (the superscript on the variable

denotes that it is chosen via a sequential decision procedure) is given

by (1) replacing V2 by V2. The decision rule concerning qI is derived

by comparing the expected payoff with q; > 0 to the expected payoff with

ql 0 when the optimal decision rule for q2 is used. In the former case

the expected payoff is

qD 1 + (l-qs)P 1 + a {ID 2 + (1-I)[qlD2 + (l-ql)P]}. (3)

If, on the other hand, ql-O, the expected payoff is

P1 + a [D 2 + (1-h)P]. (4)

Subtracting (4) from (3) yields

1qD - ql 1 + a(l-E)qD 2 - a(l-lI)qsPh

Clearly, = 1 if (5) is positive, while q = if (5) is negative.
Clearly, q = 1 if (5) is positive, while ql 0 if (5) is negative.
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Rearranging, the rule is

s* = 1 if V1 > a(l-)(P D2) (6)
1 0 if V1 < a(l-I)(Ph - D2 ).

By assumption, a(l-H)(Ph-D2) is a positive number. The existence of QOV

is demonstrated by comparing (2) and (6); i.e., by comparing decision

rules when opportunities for learning are ignored with decision rules

for sequential decisions. Suppose V2 > O. Then from the last two lines

of the RHS of (2) we have

q = 1 if V1 > 0

q* - 0 if V1 < 0

as the decision rule ignoring learning, and (6) in the sequential case.

When opportunities for learning exist, V1 must be higher for development

to be indicated than it must be if these opportunities either do not exist

or are ignored. The amount by which initial development benefits must be

higher is just a(l-fl)(Ph-D 2), the expected present value of the loss if

an irreversible decision is undertaken and the state of nature that

obtains is such that the decision-maker would reverse the decision if

(s)he could; this number is the QOT.

It is apparent that this "shadow tax" approach to QOT bears a

resemblance to the concept of the value of information. Here, I follow

Gould (1974) in defining the expected value of perfect information. A

decision-maker chooses a decision xcX and obtains a payoff of U(x,z) where

zEZ is a random variable with distribution function F(z). In the absence

of information, the decision-maker maximizes the expected payoff, i.e.,

(s)he solves

max f U(x,z)dF(z). (7)
xsX Z
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Let x denote the solution to this problem. Now, suppose that the decision-

maker can obtain perfect information about z before choosing x. Let x*
z

denote the optimal choice in this case. Then, before the information

actually is obtained the expected payoff with information is

/ U(x*,z)dF(z). (8)
z

The expected value of perfect information is defined as the difference

A

between (8) and (7) evaluated at x, i.e.,

VOI - U(x*,z)dF(z) - f U(x,z)dF(z). (9)
Z Z

It is easy to show that VOI > 0 (see Gould, 1974, p. 67). This makes

intuitive sense, as the result says that obtaining information costlessly

can never make the decision-maker worse off.

To compare this definition to the concept of QOT developed above,

I introduce the following notation. Let EoPV(1) be the expected present

value of the payoff in the problem discussed previously when opportunities

for learning are ignored and the decision in the first period is to develop

all of the area. Similarly, define E PVCO) as this present value when

the initial decision is to develop none of the area. When a sequential

decision procedure is used, denote the expected payoffs by EsPV(l) and

E PV(0).

Suppose that E PV(1) > E PV(O) and the "ignorance case" yields full

development of the area at the initial date. The lesson of the previous

analysis is that even if this is the case, it may be that EsPV(.) > EsPV(l),

i.e., even if it is optimal to develop in the ignorance case it may be

optimal to refrain from development in the learning case. Assume that

these two inequalities hold.
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Since the definition of VOI forwarded above uses the expected pay-

offs evaluated at optimal choices, with the assumption of the previous

paragraph, one would define

VOl = E PV(O) - E PV(l). (10)
S 0

Applying this definition to the problem studies in the previous section,

VOI = P + a[ID2 - (l-I)P2] - D1 aD2
(11)

= P - D1 + a(l-II) (P-D2)

Recalling the discussion above, the second term on the RHS of (11) is the

QOT for the problem and it is immediate that, in general, QOTOVOI.

One difference in the two concepts arises from the fact that the QOV

allows the choice variable to take on its maximizing value in both the

learning and ignorance cases. On the other hand, QOT in this linear case

seems to be the difference between the expected payoff with learning and

the expected payoff under ignorance when ql=O in both cases.

In this linear model, QOT restricts the assessment to the choice

ql 0 in both cases, i.e.,

QOT - E PV(O) - E PV(O). (12)

Subtracting (10) from (12),

QOT - VOI - E PV(l) - E PV(O),
o o

or, more suggestively,

QOT - VOI - EoPV(q*) - E PV(O). (13)
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In the linear case, equality will hold in (13) if the optimal choices in

the two cases coincide. Implicitly, Conrad assumed q-*qs*-O and this explains

why he was able to present a numerical example with QOT-VOI even though the

two concepts are distinct.

The two ideas are associated with different questions. The VOI

examines the difference in expected total payoff in the learning and

ignorance cases and hence is concerned with the expected value of the

indirect utility function. QOT, on the other hand, examines the bias

that arises in the decision rule used to make initial development choices,

i.e., QOT is a marginal concept. It seeks the adjustment to initial

development benefits in the learning case that would lead to'the same

level of initial development as in the ignorance case.

One problem here is that, in a linear model, totals and marginals

easily are confused when the upper bound on initial development is chosen

to be one. The difference between QOT and VOI is more readily seen in a

model with strictly concave benefit functions. In the next section of

the paper I study such a model, while retaining the two-period and

perfect information assumptions.

A More General Two-Period Model

In this section I change my notation somewhat. As before, qt is

the amount of new development in period t. Now, define Dt = tq and

Pt-l-Dt; here, D and P are areas of land and not unit benefits as in the

previous section. The net benefits of any given level of development

are given by the function UCDt,Pt,zt) where zt is a parameter that cannot

be observed by the DM. I assume that, for any given value of z, U is
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thrice continuously differentiable, strictly increasing in D and in P,

and strictly concave in (D,P) on all of its domain, the closed unit inter-

val. Moreover, for convenience, I assume

lim aU/aD = X lim aU/aP (14)
D+O P+0

Perfect information is obtained by performing an experiment Y

which provides a message y that is perfectly correlated with z; that is,

observation of y tells the DM exactly what z*, the true value of z, is.

Obviously, this is a special case of an experiment which provides noisy

information about z, the implications of which will be addressed in the

following section of the chapter.

As in the previous section, z* is known to lie in a set Z. The

DM's subjective beliefs about z are summarized by the prior probability

distribution function F(z). Here, the set Z could contain either a finite,

countable, or uncountably infinite number of elements.

Consider first the case with no experimentation in which the message

system Y either doesn't exist, or is ignored. The DM solves

£t-2 t-1
max 2 a U(Dt,l-Dt,z)dF(z)

ql,q2 tl- Z 

s.t. D = Zq

Dt [0,1]

qt >0.

Since the problem is stationary, the DM chooses q to solve

max f U(q,l-q,z)dF(z).
Z
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By assumption, U is linear in z; hence, by Jensen's Inequality, this prob-

lem is equivalent to

max U(q,l-q, f zdF(z)) = U(q,l-q,1). (16)
Z

Let q be a solution to this problem; previous assumptions ensure

that q exists and is unique. The optimal policy for the non-experimenting

DM, then, is to set (ql,q2)=(q,0).

Next, consider the problem in which experimentation reveals z*

before q2 is chosen. In period 2 the DM solves

max U(ql+q2 1,lql-q 2z*). (17)
0 q2 < l-q1

Denote the solution (which exists and is unique) to this problem by q*(ql,z*),

and define the indirect utility function

V(ql,z*) = U(ql+q*(qlz*),l-ql-q2(ql,z*),z*). (18)

Lemma 1. V(q,z) is differentiable and non-increasing in q.

Proof: That V is differentiable follows from the Implicit Function

Theorem, which implies that q*(.) is a C( ) function. To show that V is

non-increasing, note that, by (14) q2 < 1-ql. Hence, the conditions

(necessary and sufficient) characterizing q* are

au
2 q2 (q1 + q2* l-ql - q,z*) = 0. (19b)
q [ qaq - q~,z*)J = 0. (19b)

q.e.d.

Lemma 1 is quite intuitive. If, having inherited ql, more develop-

ment in the second period is undertaken, then a marginal change in ql

does not affect the DM's utility, since ql and q2 are perfect substitutes.
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If, on the other hand, q* is zero given ql, the non-negativity constraint

is binding. Then, increasing ql tightens this constraint making the DM

worse off.

Given that an optimal policy is to be used in the second period,

standard dynamic programming arguments (i.e., the Principle of Optimality)

tells us that the solution to the first-period investment problem is

obtained by solving

max f U(ql,l-ql,z)dF(z) + a f V(ql,z)dF(z) (20)

ql Z Z

Denote the solution to this problem by q*. The key result of this section

is the demonstration that, if learning is anticipated, less development is

undertaken in the first period.

A
Theorem 1. q* < q. Further, if there exists z such that

UD(q,l-q,z) - Up(q,l-q,z) < 0 and F'(1) > O, then q* < q.

Proof: Suppose the contrary, i.e., that q* > q. Since q is the

unique maximizer of first period expected payoffs,

I U(q,l-q,z)dFCz) > f U(qt,l-q*,z)dF(z).
Z Z

By Lemma 1, V(q,z) > V(q*,z) for all z. Hence,

/ V(q,z)dF(z) > f V(q*,z)dF(z).
Z Z

Adding these provides

U(q,l-q,z)+a £ F(q,z)dF(z) > I U(q*,l-q*,z)dFCz)
Z Z

+a I V(q*,z)dF(z).
Z

lk
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But, by assumption, q* is maximal, a contradiction.

To prove the second part, the first order conditions for the problem

(20) are, since q* is interior to [0,1] by (14),

U (q*,l-q ,Z)-U (q*,l-qlz)

(21)
+ a f V (q*,z)dF(z) = 0.

Z q1

By hypothesis the last term on the LHS is strictly negative since

V < 0 for all z and V < 0 for z,where z arises with positive prob-
ql ql
ability. Recalling the definition of q,

UD(q,l-q,z) - Up(ql-qz) = 0.

The result follows from the strict concavity of U.

q.e.d.

Now, consider the Krutilla/Fisher shadow-tax definition of QOT.

Suppose a DM who ignores opportunities for learning when they exist and

who acts myopically to maximize first period expected payoffs must pay

a tax of T per unit of development undertaken. This DM solves

max U(q,l-q,z) - Tq.
q

The solution to this problem is, of course,

UD(q,l-q,z) - UpCq,l-q,z) - T = 0. (22)

Clearly, if the tax is set such that

T = -a Z as (ql'z)dF(z),

the DM who ignores learning is led to an efficient investment decision

since,in this case, (22) and the first order conditions for (20) (given by



15

(21)) coincide. Since U(-) is strictly concave, the solutions to the

problems must coincide as well. Thus, since I propose that QOT be defined

as in Krutilla and Fisher (1975), I propose

QOT - -a a (qlz)dF(z).
Z q1 

It provides some intuition into this definition if it is noted that,

while the integral is taken over all of Z, the derivative under the

integral is zero for a subset of Z and the numerical value of QOT

is unchanged if this set is deleted. Define

Z - {z: UCq,l-qz)-Up(ql-qz) < O}.

The set Z is the subset of Z such that, if z*EZ and the myopically

profitable level of development is undertaken in the first period, then

no new development would be undertaken in the second period. Hence,

-QOT - a q,z)dF(z).
Z q lz)dFz) 

This formulation makes it clear that QOT is the expected present value

of the second period loss if an irreversible decision is implemented at

its myopically profitable level, where the loss is averaged over the

possible states of nature under which the DM would reverse his/her

decision if he/she could. This, of course, is just the interpretation

given in the previous section of the paper. It is apparent that the two

formulations are equivalent.

This also makes clear the role played by the assumption which leads

to the conclusion that q* < q, i.e., that Z has a non-empty subset with

positive measure. Obviously, if it is not possible to find out that an

ex ante decision is incorrect, then the prospect of "learning" will not
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affect that decision. Equally obviously, the VOI in this case is zero

as well.

Further intuition can be gained with the aid of a diagram. In

Figure 1 the marginal benefit functions are depicted. The myopic invest-

ment level qm occurs where expected marginal net benefits of investment

are zero, i.e., where aU/aD = aU/3P. If, in the learning case, there

exists a value of z such that reversing some initial development would

be desired, and this z arises with positive probability, then QOT is

positive. QOT drives a wedge between marginal first period development

and preservation benefits, and it is optimal to develop less of the area

in the first period, as shown.

a
I

\au X

\ 0 /'I

3D

QFG OTI

q* qm 1 D

FIGURE 1. Optimal'and Myopic Investment



17

In the model outlined above, I assumed that the utility function and

unknown parameter of both are stationary. In the context of the determin-

istic natural environments literature discussed in the introduction of the

paper, this assumption may not be warranted. To incorporate the possi-

bility of preferences changing over time, I now allow z to vary through

time. The most important change in the analysis is that, in general, the

optimal policy in the non-learning case no longer is of the form (q,0).

Let the probability distribution on z be denoted by Ft(zt) and define_ t

t= f ztF (z ).
z t

The non-experimenting DM solves

max U(ql,l-ql,z1 ) + aU(ql+q2,1-ql-q2 ,z2). (23)
qlq2

Let (ql,q2) be the solution to (23) and let J(ql,q2 ) be the indirect

objective function. Naturally, the solution vector satisfies (recall (14))

= 0 (24)< 0

° < q2 [[-J-] =0 (25)
2 2

It is important to note that the problem (23) is a two-period version

of the problem considered by Fisher, Krutilla, and Cicchetti (1972). Sup-

pose that q2 > 0. Then, J/3q2 = 0. Using (24) and the definition of J,

it is immediate that

UD(q,l-ql, 1 ) - Up(q,l-'ql,1 ) = 0 (26)
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But this is just the condition satisfied by the 
myopic level of initial

development qm where marginal net benefits of 
first period development

are zero.

This discussion indicates that ql=q if, given qm, it is expected

that more development would be indicated in the 
second period of the

program. One might call this an "expected free interval" 
since the DM

is free to invest at the myopically profitable 
level in the first period.

If, on the other hand, one expects q2=0 given ql=q 
, then

UDvPll-qlzl)-Up(Vqll-1qlZ
) + a/aq2 = 0

and it follows that q < qm Disinvestment (q2 < 0) is desired, but this

action is blocked by the irreversibility constraint. 
Along this "expected

blocked interval" current investment is curtailed to a level smaller than

the myopic level of investment. This is the Arrow (1968) result that it

may be optimal to refrain from myopically profitable 
investment if

disinvestment, which is impossible, would be desired 
in the near future.

Naturally, if the DM is risk neutral and no 
learning is anticipated,

it is not surprising that the DM may replace the 
unknown parameter z by

its expected value in each period and proceed to 
undertake a Fisher, Krutilla,

Cicchetti benefit-cost analysis. The crux of this section of the chapter is

to show that this certainty equivalence result does 
not hold when learning

is anticipated. I wish to show that q* < q1.

There are three possible cases to consider. The first case is trivial:

Suppose that, for all z2 that arise with positive probability, one has

m qm > (27)
UD(q..1 -ql z2) - Up(-ql,1-ql,z2) 

> 0 (27)
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m

where q1 is the myopic investment level for the first period, 
i.e. qi

is defined by

UD(q-lqi,zi) Up(qil-q,z) = 0 i=1,2 (28)

Then, qq = 2 - q for all z and clearly q 
= q This is the case where

there is nothing to be learned and ql = q1
= q. One might call this a

"sure free interval."

The second case is equally as trivial as the 
first; here, assume

q1 < q. Then q1 = ql and Theorem 1 holds, since subscripting z by 
t

appropriately does not affect its proof. This is the expected free inter-

val case.

The third case is more interesting; further, it corresponds to the

situation envisioned by Fisher, Krutilla, and 
Cicchetti (1972). In this

case an expected blocked interval exists, i.e., ql > q2. Now, by the

discussion above, ql < ql. The proof of Theorem 1 no longer applies since

6/
it cannot be concluded that ql maximizes first period 

utility.

I will defer the proof of the proposition that 
q* < ql in this case

until the next section of the paper. There I show that q < ql in a more

general case of less than complete resolution 
of uncertainty when learning

takes place. The third case here naturally holds as a special 
case of that

more general model.-

Imperfect Information

To characterize the uncertainty in the problem 
and the possible

receipt of information, I follow the approach 
of Marschak and Miyasawa

(1968).8/ In particular, I assume that the decision-maker 
holds subjec-

tive beliefs about the true value of the parameter 
zt, beliefs given by

the prior probabilities (t-l ...' H tn) ' where



20

Pti Prob(zt=zti)

The decision-maker is able to perform an experiment Y, which

provides information about the true value of z2. The set of possible

messages corresponding to Y is (Y1, '... Ym). The tie between the

experiment and the parameter is provided by the likelihood matrix

A = [6ij] = Prob(Y=yiz2=z2j),

Then, the posterior probabilities are found via Bayes' Theorem. The

matrix of posterior probabilities is denoted by

e = [9ij] = Prob(z2=z2iY=yj).

Let the joint distribution of Y and z2 be .ij and the marginal distribu-

tion of Y be Aj, i.e., Xj=Prob(Y=yj). Then

j = Zi = Z "2i j

and

ij = 6ij 2i ii j

If a particular message yj is obtained from performing the experiment,

then the conditional distribution of z2 is provided by the jth column of

the matrix [6ij]; this can be obtained via knowledge of either the joint

distribution or the likelihood matrix.

Consider a general decision problem in which a payoff of w(x,z) is

realized if a decision xEX is chosen and the true state of the world is z.

If a message of y is received, the decision-maker chooses x*(y), where

j i w(x*(y),z) Sji > Zj Zi w(x,z) Sji for all x£X,
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i.e., the decision-maker chooses x* to maximize the expected payoff.

Define

U*(a) = z zi wCw*(y),x) B..
J i 'i

By the discussion above,

U*(O) = Zj Aj max Zi 0ij w(x,z).
x

Marschak and Miyasawa (1968) compare the information content of two

alternative experiments Y and Y' and offer the following basic definition:

Y is more informative than Y' if U*(8) > U*(8'). It is worthwhile noting

that comparing "no information" to "perfect information" is a special

case of the general "more informative" comparison defined above. If the

definition of the value of information given in the second section is

extended to the imperfect information setting, one has

VOI(Y) = U* (8) - U*( ° )

VOI(Y') = U* (') - U*(B )

where ° is such that 9eij=2i, that is, the message and the value of the

parameter are independent. The experiment Y is defined as more informa-

tive than Y' if its information content has higher value.

Returning to the development versus preservation problem at hand,

the decision-maker solves

max E {U1(D1,P1,Zl) + aU2(D2,P2,z2)}
ql'q2

s.t. q (0,1), q2 C [0,1-q ).

Consider the development problem in the second period. Given a value of

ql and having observed a message yj, the problem is
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max Z 8ei9 U2 (ql+q2,1-ql-q2,z2i )
q2c[0,1_l] 1 i J

Since I have assumed that the marginal utility of wilderness gets

infinitely large as the stock of wilderness goes to zero, the solution

to this problem is strictly less than 1-ql; however, a zero solution is

admitted. Define the Lagrangean function

L(q2 ,y;qlG j) = Zi ij U2(q+q2'l-ql-q2 z2i) + y q2' (27)

Since the problem is one of concave programming and U is strictly concave,

the first order necessary conditions are sufficient for a unique global

maximum. These conditions are

au2
ri0 ij [ (ql+q*,l-q'-q,1) -ij aD 1 2' 2i)

(28)
au 2

Fp (ql+q*+l-ql-q*z2i)] + Y*= 0

Y* > 0, q* >0, *q2 = 0 (29)

Denote the solution to this second-period problem by q*(ql,0.), i.e., the

function q* solves (28) identically. Further, let

L*(ql,ej ) = L(ql,q(qlj ),j ').

By the complementary slackness condition (19b), L* is identically equal to

the expected value of the indirect utility function.

The development decision in the first period is obtained by solving

qmax 1 i I U(ql,l-qlgzli) + a Zj Aj L*(ql ).
qlc(0,1) 1 1li
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The concavity of L* in ql follows from the concavity of U2; hence,

since U1 is strictly concave, the first order necessary conditions are

sufficient for a unique global maximum. These are

3U1 3U 1

Ei ili [- (ql'l-qlZli) aP (ql'l-qlpzli)]
i "li r7D_ (zlql-qr 2 !) - ap

(30)

+ a E. X. a = 0.
3 J 3q1

Let q* (I,X) denote the solution to this equation. The key to the

analysis of q* is the last term in (30). Note that, by the envelope

theorem,

- L =y > 0.

Hence,

L (ql,ej) < O.

Note that y = 0 if q*(q,,e ) > 0. That is, the shadow price of passing

a marginal unit of undeveloped land to the next period is zero if that

land would be developed in that period.

Let ql be defined by

au au
U1 m 1 m m

i li [- (ql'l-qlzli) - - -(qlml -qm zli)] = O. (31)

If the decision-maker solves a static problem in the first period so as

to maximize the expected value of utility while ignoring irreversibility

and opportunities for learning, the optimal myopic level of development

m
is ql1

So far, the analysis is exactly as in the previous section where z

is non-stationary except that here I have restricted the analysis to a

finite (or countable) number of possible states of nature.
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I next inquire into the effect that the opportunity to perform a

"more informative experiment" has on optimal first period development

decisions, where more informative is defined as in Marschak and Miyasawa

(1968). The key result is the following

Lemma 2. If Y is more informative than Y', then

Ej j p(ej) > E jm p()j=l -- j=l

for any convex function p defined on the set of vectors forming an (m-l)

dimensional simplex.

Proof: Marschak and Miyasawa (1968), Theorem 12.1.

Thus, if it can be demonstrated that aL*/Iq l is concave in .j, the

result q* < q would follow immediately from Lemma 2. Before proceeding,

it is worthwhile pointing out that the number Zj Xj aL*/3ql is the QOT

for the model at hand. Thus, Lemma 2 would indicate that QOT is an

increasing function of the informativeness of the experiment to be

performed.

It is worthwhile pointing out that the value function L* itself

is convex in 8..
3

Theorem 2. L*(ql,,9) is convex in ej.

Proof: Define

Y(q2;qlej) = zi U(q +q2,1-ql-q 2,z2 i),

and let q* solve

max Y(q2;ql, j)

q2

Let xE[O,l] and define Oa = a6j + Cl-a)9k for j # k. Clearly,

(ql;q2,9a) = aY(q2 ;q l ,ej) + (1-a)T(q2;ql,0 k)
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Now, in general,

sup {f+g} <sup sup {f} + sup {g}

Hence,

sup {T(q2;ql,ea} = sup {c(q 2 ;ql,6j) + (1-U)(q2;ql, k) }

C a sup {'(q 2 ;ql, 0)} + (1-a) sup {Y(q 2 ;qlek)}

= a (q*;qlj) + (1-a)Y(q2;qlk) ,

whence

Y(q*;qlx.e + (l-a)9k) < aY(q;qlj) + (1-a)Y(q;ql )

q.e.d

The implication of this is that one could proceed backwards, using Lemma 2

as a definition, and establish that more informative experiments have an

information content that has a higher value as Gould (1974) did for

the special case of perfect information.

The proof that aL*/Aql is concave brings out some interesting

implications of the model of QOT.

Lemma 3. 3L*/Dql is concave in 9..
J

Proof: The envelope theorem informs us that for small perturbations

of q1, the total change in the indirect objective function can be calculated

without accounting for changes through the choice variable, i.e. (ignoring

the time subscript on U),

L*/ql = i ij [UD(ql+q*,l-q-qz2i)- Up(ql+q*,1-ql-q*,z2) ]

From the first order conditions (28) and complementary slackness, if

q* > 0, then 3L*/ql = 0. However, if q* = 0, then

L*/ql =i ij [UD(ql,l qlz2i - Up(q 1,l-qlz 2 i) ] < 0
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This function is linear in 6. Thus, the function aL*/aql is concave

and piecewise linear.

q.e.d.

This lemma is the key step is establishing the basic result of

this section.

Theorem 3. If a more informative experiment is to be performed,

then less of the resource is developed in the first period.

Proof: Since DL*/aql is concave by Lemma 3, QOT is convex by

definition. Thus, by Lemma 2, a more informative experiment raises the

QOT. The optimal first period investment decision is given by

UD - Up = QOT.

Since U is assumed to be strictly concave in (D,P), the result follows.

q.e.d.

This result is congenial to intuition, for it says that as more uncertainty

can be reduced in the future, flexibility becomes more valuable. This is

an obvious generalization of the perfect information result established

in the previous section of the chapter.

It is important to note that if two message systems are compared

and both of these systems give rise to expected values of z2 such that

the non-negativity constraint is either binding or not binding, then no

change in first period behavior is indicated. This follows since both

potential messages lie on the same linear segment of aL*/Iql. By Jensen's

Inequality, such a segment is both concave and convex and, from Lemma 2,

3L*/aql, and hence, q*, is unchanged. If, on the other hand, one message

corresponds to a binding constraint in the second period and one corres-

ponds to a slack constraint, then strictly less development in the first

period is optimal.
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It is of interest to inquire into how both the VOI and QOT

respond to an increase in prior uncertainty regarding the parameter z,

where an increase in uncertainty is defined as a mean preserving spread

(MPS) of the distribution function of z. Formally, an MPS is defined as:

Definition: Let X, Y, and Z be real random variables such

that E(Y[Z) = O. The X is an MPS of Z if X has the same

distribution as the joint distribution of Y+Z.

The key result of the arguments used here has been provided by Rothschild

and Stiglitz (1970):

Lemma 4. Let f(b) be a real valued function. If f is convex

(concave) then the expected value of f is not decreased (not

increased) when its argument is subjected to an MPS, with

strict inequality holding if the curvature is strict.

Gould (1974) has established that if U is linear in z, the VOI

increases when F(z) is subjected to an MPS. Gould's proof is straight-

forward. Recall the definition of the VOI given in (9):

VOI = E[U(X*,z)] - E[U(x,z)].

The last term on the RHS of (9) is linear and, therefore, by Lemma 4,

invariant to an MPS of z. Thus, if the first term on the RHS of (9) is

convex in z, an MPS of z increases its value and, thereby, increases the

VOI as well. If this term is differentiated twice with respect to z,

one finds that it is,indeed,convex.

Regarding QOT, it is immediate from Lemma 3 and 4 that QOT increases

with an MPS of z also. The implication of this is that, if the DM is
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relatively more uncertain regarding social preferences for a particular

wildland tract, then the marginal cost of its development is increased.

In some sense, any particular message system becomes relatively more

valuable when there is more uncertainty to be resolved and, by Theorem 3,

more flexibility in current decisions is more valuable.

The Multi-Period Model

Extending the analysis of the previous two sections to a multi-

period setting is straightforward. The results concerning QOT and the

VOI were derived from a value function which could summarize optimal

behavior in the second period of a two-period model or summarize optimal

behavior over a longer time horizon.

The multi-period problem has the same structure as the two-period

problem: in each time period the DM chooses the level of new development

based on the amount of development up until that period and the DM's

current probability function over z. The DM, after implementing q, observes

the outcome of an experiment at the beginning of the next time period and

updates his/her probability distribution over z using Bayes Rule. This

new distribution forms the basis for the new choice of q.

Denote the probability distribution of z held by the DM at date t

by F . Then

Ft = f(Ft,y+ ),

where f is the map defined by Bayes Rule.

Let the conditional distribution of Y given the true value of the

parameter z be H(ylz). I assume in this section that z is stationary.

Thus, the sequence of observations of y is a sequence of independently
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and identically distributed random variables drawn from the distribution H.

Moreover, the sequence of distributions F forms a stationary Markov process.

This structure allows me to call upon the basic mathematical results con-

cerning stationary Markov decision problems. Toward this end, I introduce

some terminology and notation.

Let the state of the system be seS, where s=(D,F). Define W(D,z) =

t t+l
U(D,l-D,z). Finally, let g(Dt,F ,qt+,y ) be the transition equation,

t+1 t

which gives tomorrow's state (Dt+,Ft+ ) if today's state is (Dt,Ft),

action qt+l is implemented, and tomorrow's realization of the experiment

t+l
is y

The DM wishes to solve

max E Z at W(Dt,z)

qt t (32)

.t Dt+l Dt + qt+l; t > 0; DtE[0,1].

At each date the DM chooses q as a function of the current state,

i.e., qt+l-q(Dt,F ). The function q is called a plan. Given the plan q,

define the expected discounted return by

I(q) (s) = E [W(D° + q(D°,F°)] + Z at W(Dt_ + q(DtF )t- z)].
t=l -l -z

If Q is the set of all plans, the value function for the problem (32) is

V(s) = sup [I(q)(s)].
qEQ

Results concerning the decision problem (32) are stated with regard

to the operator T defined by

TV(s) - sup {/ W(D+q,z) + a f V(g(s,q,y)dH(ylz) dF(z)}. (33)
Z Y

Naturally, g(s,q,y) = (D+q,f(F,y)).
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If, in addition to the assumptions invoked so far in this chapter,

it is assumed that U is bounded above, the transition probability

Prob (Ft+lIFt)

is weakly continuous, and Z and Y are finite, then it may be shown that

T is a contraction map on a Banach space and, hence, has a unique fixed

point, the value function for (32). Moreover, it may be concluded that

the value function is a bounded, continuous, concave function, and that

there exists a unique, stationary, continuous, optimal plan q(s) (Maitra,

1966; Easley and Spulber, 1982). Further, Blume et.al. (1982) show that

the value function is differentiable.

Thus, if the functions V(.) and L*(.) are reinterpreted as value

functions for the infinite horizon problem (32), all of the results

derived above apply to solutions to that problem as well.

Discussion

So far, I have avoided any interpretation of the above model which

would give it "policy relevance." In particular, I have avoided any

statement of what constitutes experimentation. In this section, I offer

some interpretive comments.

In many economic models of Bayesian learning either demand or

technology (or both) is uncertain and experimentation consists of obser-

vations of current market outcomes. Some investigators of QOV have this

type of process in mind in that experimentation consists of observing the

level of benefits obtained from providing certain stocks of developed

and preserved areas. This approach is quite clear in Arrow and Fisher

(1974, p. 314).
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However, if the multi-period, imperfect learning model considered

here is to be non-trivial, this approach is unsatisfactory unless either:

(1) the DM does not know Cand cannot discover) the function form of U('),

or (2) the parameter z varies through time. For, if the form of U is

known and the level of utility achieved can be observed, the parameter z

can be calculated, and the model collapses to the two-period, perfect

learning case.-/ In this case, one naturally wonders what prevented this

learning in any periods before t=O.

If zt varies through time, even if the form of U(-) is known, infor-

mation about past achieved levels of utility does not (necessarily) provide

information about future preferences. However, if past realizations of zt

and future ones are correlated, then experimentation might consist of using

past utility levels to uncover the process governing the movement of z .

One plausible interpretation here is that there exists an unknown distribu-

tion from which the zt are drawn and the DM's problem is to simultaneously

estimate that distribution and choose the level of current investment.

This type of model has been explored in the literature on Bayesian adaptive

control. Note that, unlike the literature oriented toward analysis of

market outcomes where the problem of simultaneity of price expectations

formation and price formation must be confronted, I have avoided this here

in positing the problem as one facing a central authority.

An important point raised by the economic literature in this area

is that I have implicitly assumed that investment choices and the informa-

tiveness of the experiment are independent. Obviously, if the DM can

produce information by choosing a larger investment, then the conclusion

that less of an area is developed may not hold (see Prescott, 1972;
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Grossman, Kihlstrom, and Mirman, 1977; and Freixas, 1981). An analysis

of this issue is beyond the scope of this paper. However, it is worth

pointing out that the two approaches to experimentation, the production

of information approach and that considered here, are applicable in

different decision-making situations.

Consider first the situation in which the development activity con-

sists of energy exploration in potential wilderness.- Obviously, this

is an example of a case where development produces information about the

value of more development. An analysis of this situation would require a

re-examination of the production of information literature in light of the

irreversibility aspect of wilderness development.1 1L

Consider next the situation in which the development activity has

known benefits; for example, the harvest of (known) inventories of timber.

In this case, most of the uncertainty in the problem surrounds the value

of preservation, and it seems unlikely that harvesting more timber con-

stitutes a more effective experiment concerning the benefits of providing

some amount of wilderness.

A plausible interpretation of experimentation in this latter situa-

tion, that adopted in this paper, is that a central authority (e.g.,

a national Forest Service) is acting on behalf of its constituents to

maximize community welfare. The central authority ignores distributional

issues (or uses distributional weights) and conducts a benefit-cost type

analysis of alternative preservation policies. However, since wilderness

is a public good provided by the Forest Service, the benefits

of providing it (the position of the compensated demands for it) are

unknown. The experimenting authority tries to estimate the willingness-

to-pay for wilderness by a variety of means. In particular, it might



33

estimate a demand curve for recreational aspects of wilderness provision

via a travel-cost approach, or undertake bidding-game analyses with a

sample of its constituents, or hold public hearings. All of these consti-

tute experimentation which provides some information to the agency about

the benefits of providing wilderness.

Naturally, there are several questions raised by this interpretation

that are not incorporated into the model above. Specifically, I have not

addressed the menu of experiments that may be open to the DM and how (s)he

might choose experiments over time (see, DeGroot, 1970). Further, I

clearly have avoided any "bureaucratic behavior" interpretation of the

function U(.) and how the preferences of individuals might relate to

preferences of a government agency. And I have not discussed the strategic

implications of experimenting via demand revealing processes (see, e.g.,

Dasgupta, 1982).

There are several further issues that might be addressed in future

research. Suppose that wilderness decisions as well as development

decisions are sufficiently costly to reverse as to be considered

irreversible. For example, declassification of wilderness areas preserved

by law might prove politically impossible. Then, a question arises as to

the amount of information that should be obtained before a decision is

implemented. In this sampling problem (and in the analysis of this paper

as well) consideration should be made of the heterogeneity of the resource

base and possibilities for substitution among wilderness areas both for

wilderness services and the provision of commodities. One might seek,

then, an idea of how wilderness decisions should be structured over time.

Certainly, making all decisions at the initial date, or all decisions

after an equal delay, will not be optimal.



FOOTNOTES

-/Assistant Professor, Department of Agricultural and Applied

Economics, University of Minnesota. Comments on an earlier draft by

Lawrence Blume, Richard Porter, and participants in the Resource Economics

Seminar at the University of Michigan are appreciated. In particular,

I would like to thank Michael Moore for numerous conversations on these

matters. Remaining errors and opacity are the responsibility of the

author. Financial assistance from Resources for the Future is gratefully

acknowledged.

/ The concept was developed by Weisbrod (1964) and has been much

discussed since. For recent summaries of the literature, see Bishop (1982),

Graham (1981), and Smith (1983).

3/ Further confusion is provided by alternative definitions of the

VOI (e.g., Lindley, 1971; Antonovitz and Roe, 1982), which resemble QOV,

especially as the latter is presented by Henry (1974b). This issue is

not explored here. It is worthwhile pointing out that the approach of

Conrad (1981) is the same as that of Gould (1974).

4/ Compare Oi (1961), Sandmo (1971), and Hartman (1976). See

Epstein (1978) for a complete analysis.

5/ Thus, I posit "rational expectations" in that the subjective

distribution of the DM and the true distribution is the same.



6/
- Note that in his proof of a similar proposition, Henry (1974b)

implicitly imposes an assumption that ql=qm, without justification in the

general case.

7/
/ One difference that arises is that in what follows I restrict

attention to the finite or countable case, whereas in this section, I did

not need to impose this restriction. Thus, there is not a perfect relation-

ship between the two sections. However, a key result below (Lemma 2) has

not been proven in this more general setting.

8/
- Much of this material was completed (and presented to the Resource

Economics Seminar at the University of Michigan) before the author became

aware of the analysis of Epstein (1980). The exposition here follows this

latter work; the substance of the two analyses was identical.

9/
- More precisely, it is a multi-period model where the payoff for

future periods is summarized by a {max U(q,l-q,z*}/r.
q

- / For a discussion of this issue, see Runge (1983). Tiesberg (1980)

considers exploration on public lands, but does not analyze the situation

where the opportunity cost of exploration (foregone wilderness services) may

be growing in value over time.

1/ The degree of irreversibility may not be absolute in this instance,

and should even be considered a choice variable. This remark may apply to

many possible wilderness development projects. Porter (1982) discusses this

issue in a model without uncertainty.
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