

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

University of Kentucky • College of Agriculture Lexington 40546

The Theory of the Firm and the Concept of an Elasticity of Substitution of Product Space

David L. Debertin

The Theory of the Firm and the Concopt of an Elasticity of Substitution in Product Space
by
David L. Debertin

Nuch of the theory of the firm in product space is not nearly as well developed as the thoory of the firm in factor spacc. For example, both general and dericulturial economists heve devoted considerable cffort to diviloping funcilonul forms represcnting production processes in fuctor spacc, but the companion effort in product space has been very limitcd. The purpose of this papur is to preseni som product-space concepts analogous to ihose commonly usid in factor' space. Concepts not specafically cited in pasi resuarch, to the author's knowledge, ure ncw. While suvural of these concepis have appearcd proviousiy in eated economics licer.ulure, the usifulncss to agricultural economics rescarch his not priviously been made clear. Moreover, the author is not atrare of any other single referenue to these ideas.

In faccor space, an equation for a producition process involving n inputs and a sincie output is $y=f\left(x_{1}, \ldots, x_{n}\right)$ with an isoquant representine a fixed constant oucput is $y^{0}=f\left(x_{1}, \ldots, x_{n}\right)$. In produci spach, the anilogous equalion linking the production of m outputs to the use of e single input (or bunale of anpuis), is $x=h\left(y_{1}, \ldots, y_{m}\right)$, and the product irunsform-uion function reprosenting possible combinetions of the y_{1} that can be produced from a fixed quantily of a single input (or inpui bundle, with ino quentacics of ouch inpui being held in fiyed proportion to , ach other) is $x^{0}=h_{(}\left(y_{1}, \ldots, y_{m}\right)$. Althoush i considerable cffort has bean devoled to the devclopment of explict specafications for production funclions (Fuss, ileFadden and lundiak, Diewert, 1971), titcmpts at developıne explicit produci space countorparts have usually brin simple modificilions of produavion functions replacing the x_{1} with y_{1}, and substituinge for the quantacy of x in the product space modis, a singl input (or anput vator $x=\left\{x_{1}^{0}, \ldots, x_{n}^{0}\right\}$ for y^{0} in the fictor space modil. Efforts to dirivi producu spur functions by makine ussumptions woul che specific form of the underlying production funcians break doun if the undurlying production functions are not monotonil. Even if the underilyine production functions are monotonic,
the competition between products for inputs are normally not adequately represented with such on approach (Beattic und Taylor; Debertin) The standard presencation of the ncoclassical theory of the firm usually specifies isoquants in factor spacc with a diminishing (or possibly constant) marginal rates of substitution. The standard prosentation in product space specifies product transformation functions with an increasing (or possibly constant) rate of produci transformation. A simple interchange of outputs and inputs may be inadequate, and the parameters of and in some cases the explicit form of the product space function (h) needed to gencrate product transformation functions consistent with neoclassicul theory will ba quite different from the pirameters and form of the factor space production function (f).

Duality in Product Space
In product spack, the totel revenue function can play a role analogous to the cost function in factor space. Suppose that products (d) are either supplonentul or competitive but not complementary with cuch other for the available resource bundle x^{0}, and (b) rates of product transformation between output pairs are non-decreasing. These assumptions in product space are inalogous to the free disposal and non increasing marginal raic of substitution assumpions (McFadden, 1970, pp. 3-9) in factor space.

Given the product space funciion $x=\sigma\left(y_{1}, y_{2}, \ldots, y_{m}\right)$, the corresponding totsil revenue function that maximizos total revenue for a given input bundlc x^{0} is $r=\max \left[p^{\prime} y ; g(y) \leq x^{0}\right]$. If conditions (a) and (b) are met, then the revenue function exisis, is continuous, is nondocreusing in each price in the product price vector p, is linearly homosencous in i.ll produci prices $\left\{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}\right\}$ (and in all outputs $\left\{y_{1}, \ldots, y_{m}\right\}$ and is convex in each output price for a given level of input x^{0} (Hanoch, p. ¿'g2).

The product transformation functions needed for the existence of a corresponding dual revenu: function are not neeessarily more plausible
in an economic sctting than other procuct iransformation functions, but are rather a mathematical convenience. A Cobb-Douglas like funtion in product space will not generate pioduct iransfomation functions consistent with (d) and (b), while under cartain parameter assumptions, a CES like or translog like function in product space will gonerate product transformetion functions consistent with these assumptions.

Cobb-Douglas Like Product Space
Consider rirst a Cobb-Douglas likc analogy in product spacc. A Cobb-Douglas like two product one input model suggested by Just, Zilbermin ind Hochman (p. 771) from Klein is $y_{1} y_{i}^{\delta}=\operatorname{fin}_{1}^{\alpha}{ }_{1}^{\alpha} x_{2}^{\alpha}{ }_{2}^{\alpha} x_{3}^{\alpha} 3$. Now suppose there is but one input to the production process, and $A x^{\alpha} 1=$ $y_{1} y_{2}^{\delta}$. Solvine for input $x=(1 / A)^{1 / \alpha_{1}} y_{1}^{1 / \alpha_{1}} y_{2}{ }^{\delta / \alpha_{1}}$. The purumeters a_{1} and δ would normally ba non-ncgative, since additional units of y_{1} or y_{i} can only be produced with additicnal units of the input bundle, and additional units on the input bundle produce diditional units of ouipuis y_{1} and $y_{2} \cdot$

Rewriting in a slightly more sencral form, the produce space function is $x=B y_{1} \Psi_{1} y_{i}{ }^{i} 2$. However, with positive p.irumeters, in no case will this cquation generate product trunsformation curves Comacifo the orisin, for ihe Cobb-Douglas like function is quisi-conceve for any set of positive purameier valuce. f Cobb-Douglas likr function in product space cannot generate product transformition functions consistent wilh neoclessicil theory and the usual constriined optimization ravenue muximization conditions.

CES Like Functions in Product Space
Jusi, Zilbermen and Hochmin ilso suggest .. possibl: CES like function in product spoce. A version of this function with one input and two outpuis is $\left.x=C L \lambda_{1} y_{1}^{-\eta}+\lambda_{2} y_{2}^{-\eta}\right]^{-1 / \eta}$. The product irunsform..ition funciions EEnurated from the CES like function in product spice aro downsloping so long as λ_{1} und λ_{2} are positive, irrespective of the value of the purimeter n.

The curvature on the product trinsformation funciton is given by the sign on $d^{2} y_{2} / d y_{1}^{2}=-(1+\eta)\left(-\lambda_{1} / \lambda_{2}\right) y_{2}^{1+\eta_{2}} y_{1}-(2+\eta)$. Since $y_{1}, y_{2}, \lambda_{1}$, $\lambda_{2}>0$, the sign is dependent on the sign on $-(1+\pi)$. In factor space, the valucs of ρ that ure of interest are those that lie between -1 and +s, for these are the values that generate isoquants with a diminishing marginal rato of substitution on the input side. If the value of η is exuctly -1 , thon the product transformation functions will bo diagonal lines of constant slope $\lambda_{1} / \lambda_{2}$ und products are perfect substitutes.

However, the CES like function can generale product transformation functions with an increasing rate of product transformation. The five CES Casos outlined by Henderson and Quandt in factor space include only values of ρ that lie butwon -1 and $+\infty$. In product space, the values of η that lic between -1 and $-\boldsymbol{i}$ generate produci iransformation functions with an increasing rate of product eransformation, since the second derivative is negutive when $\eta<-1 . \operatorname{ns} \eta \rightarrow-\infty$, the product transformation functions approuch right angles, concuve co the origin. Small negative values for n generate product transformition functions with a sligit bow away from the origin. As the valuc of n becomes mone negative, the outwerd bow becomes more cxtrcme. In the limiting casc, when $\eta \rightarrow-y_{2}$ is iotally supplemental to y_{1} when y_{1} exceeds y_{c}; conversely y_{1} is coinlly supplementul to y_{2} when y_{2} exceeds y_{1}. This is equivalcnt to the joint product (beef and hides) case. If n is a fairly large nc: \therefore ivive number (purhaps <-5) there sxist many combinulions of y_{1} and y_{2} where one of the products is "nearly" supplemental to the other. As $n \rightarrow-1$, the products beconc more nearly compititive ihroughout the possible combinisions, with che diagonul product transformetion functions when $\eta=-1$ the limiting oase. Resions of product complomentarity are not possible with a CES liku product transformation function. Product transformation functions axhibiting a constant or an increasing rate of product trunsformation musi neocssiorily intersect the y axes. Thus, there is no product space countarpart to the asymptotic
isoquants gencrated by a Cobb-Douglas type function in factor space.
Alternative Elasticity of Substitution Measures in Product Space
Diewert (1973) extended the concept of an elasticity of substitution (which he termed elasticity of transformation) to multiple product-multiple input space. Hanoch also suggests that the elasticity of substitution in product space can be defined analogously to the elasticity of substitution in factor space. In the casc of product spi-ce, revenue is maximized for the fixed input quantity x^{0}, is substituted for minimization of costs it a fixed level of ouiput y° (p . 292) in fuctor space. The elasticity of substitution in two product one input space (Debertin) is defined as $\varepsilon_{s p}=\ddot{\sim}$ change in the ratio $y_{2} / y_{1} \div$ i) change in the RPT or is $\varphi_{s p}=\left[d\left(y_{2} / y_{1}\right) / d R P T\right]\left[\operatorname{RPT} /\left(y_{2} / y_{1}\right)\right]$.

Another way of looking ai the elasticity of substitution in product space is in terms of its linkage to the rate of product transformation for CES like two-product space. Suppose that $Y=y_{2} / y_{1}$, or the output ratio. The rate of product transformation for CES like product space is defined as RP' $=Y^{(1+\eta)}$. The elusticity of substitution in product space is then (dlog Y)/(dlog RPT). Taking the natural log of both sides yields log RPT $=(1+n)$ los Y. Solving for log Y and logarithmically diffurentiating gives (dlog $y) /(d l o g ~ R P T)=1 /(1+\eta)$. Assuming that $\eta<-$ 1, the elasiacity of substilution in product space for a CES like function is clearly negative, but $\rightarrow 0$ as $\eta \rightarrow-a$.

The conccpt of en elasificity of substitution in product space is of considerablc importance to agricultural economists, for it is a pure numbur that indicates the extent to which the agricultural products which can be produced with the seme inpul bundle can be substitutod for each other. Assuming compeitive equilibrium, the inverse product price rutio p_{2} / p_{1} can be substituted for the RPT, and the elasticity or substituition in product spacic can be rewritien as $\dot{\psi}_{\mathrm{sp}}=$ $\left[d\left(y_{2} / y_{1}\right) / d\left(p_{1} / p_{i}\right)\right]\left[\left(p_{1} / p_{i}\right) /\left(y_{1} / y_{2}\right) J\right.$. As PicFadden (1963) hus indicated, there is no neturcal exneralization of the two input elasticity of
substitution when whe number of factors is greater than 2. The elasticity of substitution will vary depending on what is assumed to be held constant. However, the Allen, Morishima (Koizumi), and Shadow (McFadden) elasticities of substitution in factor space all collapse to the same number when n equals \dot{c}. Similarly, there is no natural Eeneralization of product space elasticity of substitution when the number of products exceeds two.

In the case of farmine, the elasticity of substitution in product spice is a pure number that indicates the extent to which the revenuemaximizing farmer is able to respond to changes in relative product prices by altering ine product mix. An elasticity of substitution in product space near zero would indicate that the furmer is almost colally unable to respond to chances in product prices by aliering the mix of products that ure produced and is the joint-produci case. An elasticity of subsiitution in produci space of - es indicates that the farner nearly cilways would be specializing in the production of the commodity with the fivorable relative price. As relative prices change toward the other commodity, a completc shift would be made to the other commodity.

For most agricultural commoditics, the elasticity of substicution in product space would be expected to lis between 0 and $-\infty$, indicating that to a cortain degrec, farmers will respond to changes in relative product prices by altering the produci mix. Commoditics which require very similar inputs would be expected to have very lurge ncgativo elasificities of product substitution. Examples include Durum wheat versus Hard Red Spring wheat in Nortin Dakotw, or corn vorsus soyboons in the corn belt. Conversely, two dissimilur sommodities requiring very different inpuis would be expceicd to have cidsticitics of substitution approaching zoro, and \because change in relative prices would noi significanily alier the oulput combination. In mproduct space, when $m>2$, the cluslicity of substitution is $\varepsilon_{s p}=\left[d l o g y_{k}-d l o d y_{i}\right] /[d l o g$ $p_{i}-d o_{0} p_{k} J$. This measure is reprosentative of a iwo outpui two price
(or TOTP) ©lasticity of product substituition analogous to the two input two price (TTES) cilasticity of substitution in factor space, with the quantitios of outputs other than i and k held constant.

The concept of an clasticity of substitution in product space is one mechanism for resolving the problems with the joint and multiple product terminology. The output elasticity of substitution is zero when outputs must be produced in fixed proportions (joint) with each other. The output elasticity of substitution is -* when procucts are perfect substitutes for each othor.

Other elasticity of product substitution concepts can be defined, each of which is analogous to a similar concept in factor space. For cxample, the one output one price (or OOOP) concept is Allen like and symmetric, or $\varepsilon_{\text {spi }}=\beta\left(d \log y_{i}\right) /\left(d \log p_{k}\right)$. The one intput one price (or OOES) concept in factor space is proportional to the cross price input demind alasticity cvaluated at constani output. Similarly, the OOOP conccpt is proportional to the cross output price product supply clasticity cvaluated at a constant level of input usc. An own price 000P can also be defined, that is proportional to the own price elasticity of product supply.

In factor space, the Allen elasticity of substitution is proportional to the cross price input demand elasticity evaluated at consiant output. llormally, as the price of the jth input increases, more of the ith input, and less of the jth input would be used in the production process, as input x_{i} is substituted for input x_{j}, evaluated at constant output. Thus, the sign on the Allen clasticity of substitution in factor space is nornally positive if inputs substitute for each Other. However, in proauct space, the Allen like elasticity of substitution is proportional to the cross output price product clesticity of supply evaluated at a constant levcl of input use. Normally, as the price of the jth output incereases, the amount of the jth output produccd would increase, and the amount of the ith output
produced would decrease, the oppositc relationship from the normal case in factor spacc. Thus, while the Allen elcisticity of substitution in factor space would normally have a positive sign, the Allen like clasificity of substitution would normally have a negative sign in product space. The negative sign is also consistent with the sign on the product clasticity of subsititution for the CES like function derived earlier.

In the n input setting, Hanoch (p. 290) defines the optimal (cost minimizing) share for input x_{j} as a share of total variable costs as $S_{j}=w_{j} x_{j}^{*} / C$, where $C=\sum w_{i} x_{i}, w_{i}=$ the price of the ith input, and output is constani. On the product sicie, cierine the revenue maximizing revenue share $\left(R_{k}^{*}\right)$ for output y_{k} ireainge the input x^{0} (or input vector bundle \mathbf{x}^{0}) constunt us $\mathrm{R}_{\mathrm{k}}^{*}=\mathrm{p}_{\mathrm{k}} \mathrm{y}_{\mathrm{k}}^{\dot{k} / R}$, wher'c $\mathrm{p}_{\mathrm{k}}=$ the price of the kth outpuc, $\mathrm{R}=$ $\sum p_{i} y_{i}, i=1,,, m$ and $y_{k}^{*}=$ the revenue maximizing quantity of output y_{k} from the fixed input bundle x^{0}. Invoking the revenue counterpari to Shephard's lemina (Beaticie and Taylor, p. 235) gives $\partial R / \partial p_{k}=y_{k}^{*}$. The shere of total revenue for optimal quantity of the kth output can then bo rewritten as $R_{k}=$ diog $R / d i o g p_{k}$.

In the m output cise, the Allen like elasticity of substitution (or transformation) ($A_{i k}^{p}$) in product sp.acc bctween input x_{i} and x_{j} evalucited ati a constant input price w_{j} is dofined as $A_{i k}^{p}=\left(1 / R_{k}\right)\left(E_{i j}^{p}\right)$, where $E_{i j}^{p}=$ dlog $y_{i} /$ dlog p_{k}, the cross price clasticity of supply for output y_{i} with respect to the kth product price. The Allen-like clasticity of substitution may be rowricten as $A_{j j}=$ dlog $y_{i} / d \log R=A_{k i}=d i o g$ $y_{k} / d l o g h$, since the inverse of the Hession mutrix for the underlying: function h in product space is symmetric. In this contoxi the Allen like elasticity of substisution in product space is the clasticity of y_{i} with respect to toicil revonuc R, for a change in another price p_{k}, holdine the quantity of the input (or input bundle) constant.

Yel another way of looking et the A.len like elusticity of substitution in product space is by analogy ic tho Alien elasticity of
substitution defined in factor space defined in terms of the cost function and its partial derivatives. The Allen elasticity of substitution between the ith and jth input ($A_{i j} f$) in factor space can be defined as in lorms of the cost function and its partial derivatives, $A_{1 j}^{f}=\left(C C_{i j}\right) /\left(C_{i} C_{j}\right)$, wherc $C=h\left(w_{1}, \ldots, w_{n}, y^{*}\right) ; C_{i}=\partial C / \partial w_{i} ; C_{j}=\partial C / \partial w_{j} ;$ and $C_{i j}=\partial^{2} C / \partial w_{i} \partial w_{j}$. The corresponding revenue function definition in product space is $A_{i j} p_{j}=\left(R R_{i j}\right) /\left(R_{i} R_{j}\right)$, where $R=h\left(p_{1}, \ldots, p_{n}, x_{k}\right) ; R_{i}=$ $\partial R / \partial W_{i} ; R_{j}=\partial R / \partial W_{j}$; and $R_{i j}=\partial^{2} R / \partial w_{i} \partial w_{j}$.

The two output one price (or TOOP) elasticity of product substitution is analogous to the two output one price Morishim: or TOES elasticity of subsititution in factor space. Tine Morishima like elusticity of substitution in product space (Koizumi) is $\varepsilon_{s p m}=\left(d \log y_{i}\right.$ - dlog y_{k})/dlog p_{k}. Like its factor-space counierpart, the Morishima like elasticity of substitution in product space is nonsymmetric. Fuss and MicFadden (p. 241) note that in factor spece, sach elasticity of subsititution can be evaluated bascd on constant cost, oulput or marginal cost. In product spece, the total revenue equation is analogous to the cost equation in facior spece. Hence, each elasticity of substitution in factor space may be evalusted based on constint total revenue, marginal revenue, or level of input bundle use. Generalization of the various product clasticity of substitulion measures to m outputs involves making assumptions with regard to the prices and/or quantities of outputs other than the ith and jth output. A shadow like elasticity of subsiitution in product space is, like its factor space counterpart (McFadden), a long run concept, but in this casc, ill quantitics of outputs other than i and j are allowed to vary.

Translog Like Functions in Product Spacc
The scond order Tuylor's series expansion of log y in log x_{i}, or translog production function (Christensen Joreenson and Lau, 1971,1973), has received wicuprcad use as a basis for cost-share equations used in the cmpiricil estimition of clasticities of substitution in factor
spacc. The slope and shape of the isoquants for the translog production function arc dependent on both the estimated parameters of the function and the units in which the inputs are measured. Given the two input translog production function
$y=A x_{1} \alpha_{1} x_{2} \alpha_{2} e^{\gamma_{12}} \log x_{1} \log x_{2+} \gamma_{11}\left(\log x_{1}\right)^{2}+\gamma_{22}\left(\log x_{2}\right)^{2}$. The important parameter in determining the convexity of the isoquants is γ_{12}. The parameter γ_{12} is closely linked to the alasticity of substitution in factor space. A two output translog function in product space can be written is

$$
x=A y_{1} \beta_{1 y_{2}}^{\beta_{2}} e^{\theta_{12} \log _{1} \log _{2}+\theta_{11}\left(\operatorname{logy}_{1}\right)^{2}+\theta_{22}\left(\operatorname{logy}_{2}\right)^{2}} \text {. In two }
$$ product space, the purameter θ_{12} would normally be expected to be negative, just as in factor space, γ_{12} would bc expeciced to be normally positive. The indircet two output translof revenue function that represents the maximum amount of revenue obtainable for a specific quanticy of input x°, allowing the size of the input bundle to vary is $\log R^{*}=\log D+\delta_{1} \log p_{1}+\delta_{2} \log p_{2}+\delta_{11}\left(\log p_{1}\right)^{2}+\delta_{22}\left(\log p_{22}\right)^{2}$ $+\delta_{1} \log p_{1} \log p_{2}+n_{1 x} \log _{1} \log x+n_{2 x} \operatorname{logp}_{z} \log x+n_{x} \log x+n_{x x}(\log x)^{2}$

Beatic and Taylor (p. 235-6) derive the revenue counterpart to Shephards lemma. They show that $\partial R^{*} / \partial p_{j}=y_{j}^{*}$. Thus, if the firm's revenuc function is known, systems of product supply equations can bc derived by differentiating the revenue function and performing the indicated subsiitution. Fuctor prices are treated as fixed constants in such an approdch. Differentisting with respcct to the jth product price, say p_{1}, yields dlogR*/dlogp $R_{1}=\delta_{1}+2 \delta_{11} \log p_{1}+\delta_{12} \log p_{2}+\eta_{1 x} \log x$. Economic theory imposus a number of resiricions on the values that the parameters of such a function in the m output cuse. These restrictions are similar to those imposed on the purameicrs of cosi sharo equations in fuctor space. First, tolal revenut from the sule of m diffurent products is $R=\sum R_{i} i=1, \ldots$, m. Thus, if the revenue from $m-1$ of the revenue sharc equations is known, the remaining revonue shore is known with eertainty, ind onc of the revenue share cquations is redundant.

Young's theorem holds in product just as it docs in factor space. Thus, $\delta_{i j}=\delta_{j i}$, which is the same as tho symmetry restriction in factor space. Any revenue function should be homogencous of degree one in all product prices. This implies that $\sum \delta_{i}=1$, and $\sum \delta_{i j}=0$. In product space, the assumption corresponding to constant roturns to scale in factor space is that there is a constant increase in revenue associated with an increase in the sizc of the input bundle. This implies $d R^{*} / d x=$ $\delta_{x}=1, \quad \sum \delta_{i x}=0$ for $i=1, \ldots, n$; and $\delta_{x x}=0$. These assumptions are as plausible in product space as the analogous assumptions are with regard to indirect cost functions in factor space.

Brown and Christensen derive the constant output Allen elasticities of substitution in fuctor space from $\sigma_{i j}=\left(\theta_{i j}+S_{i} S_{j}\right) / S_{i} S_{j}$, where $S_{i}, S_{j}=$ the cost shares attribuled to factors i and j, respectively.
$U_{i j}=$ the resiricted regression coefficient from the $\operatorname{logr}_{i} \operatorname{logr}_{j}$ term in the cost share equation. The analogous formula for deriving the Allen like clasticitios of substitution in product space is $\sigma_{i j p}=\left(\delta_{i j}+\right.$ $R_{i} R_{j} / / R_{i} R_{j}$. As indicated earlier, the parameter $\delta_{i j}$ will usually be negative, and the Allen like elasticity of substituicion in product space ($\sigma_{i j p}$) for most commoditics is negative.

Concluding Comments
Many possibilities cxist for empirical analysis linked to agriculture based on the models doveloped in this papur. One of the simplest approachos would be to estimate estimite rovenue share equations for major commodities in U.S. agriculture for selected time periods (following the approach used by Aoun for estimating cost share cquations for acriculturil inputs in factor space) and derive various clasticity of substitution measures in product space. These revenue share parameior esimates would be used to estimate product elasticity of substitution mGasures for the various major agricultural commodities in the United Statos. Such an empiricul analysis could stross the implications for current ag policy in terms of determining how farmers
alter their product mix over time in the face of changing government price support programs such as those contained in the 1985 farm bill.

Another possibility is to estimate changes in the product space elasticity of substitution measures over time. Some thirty years ago Heady and others discusscd the impacts of specialized versus flexible facilities using a product space model. One way of looking at a facility specialized for the production of a specific commodity is that it represents product space in which the elasticity of substitution is near zero. A flexible fcicility is represented by a product space elasticity of substitution that is strongly negative.

It is also possible to think in ierms of an cinalogy to a Hicks' like technologicil change in prociuct spacc. In product space, tochnological change occurring over time may favor the produciion of one commodity at the expense of another commodity. If, as the state of technology improves over time, and no shift is observed in the proportions of the y_{i} to y_{j} over time, incn the technology is regarded as Hicks like neutral in product space. Technology that over time shifts the output expension path toward the production of the j th commodity, then the technology is regarded as Hicks like fovoring for produci y_{j}. If technological change causes the output expansion path to shift away from the production of commodity y_{i}, then the technological change could be referred to as y_{i} inhibiiing technological change. As Lichnological changt occurs for a specific agricultural commodity, presumably that commodity is fevored relelive to others in a product space model. For cxample, has technological change over the past thirty years tended to fuvor the production of soybuans relative to other erains? Such an approach might bo uscful in asscssing the woononic impacts or genctic improvements in specific crops or elasses of livestock.

Allen, R.G.D. Mathematical Analysis for Economists New York: Macmillan Co.(1938).

Aoun, Abdessalem. "An Econometric Analysis of Factor Substitution in U.S. Agriculture 1950-1980." Unpublished PhD Dissertation. Univ. of Ky. Dept. of Agr. Economics, 1983.

Beattic, Bruce R., and C. Robert Taylor. The Economics of Production. New York: Wilcy (1985).

Brown, R.S., and L.R. Christonsen. "Estimating Elasticities of Substitution in a model of partial Static Equilibrium: Am Application to U.S agriculture 194% to 1974." in Modeline and Measuring Natural Resource Subsiitution. cds. E.R. Bornat and B.C. Field. The MIT Press, Cambridge fiass., 1981.

Christunsen, L.K., D.W. Jorgenson, and L. J. Lau. "Conjugate Duality and the Transcendental Logarithmic Production Function." Econometrica 39:4 (1971). pp. 2'55-256 (Abstract).

Christensen, L.R., D.W. Jorgenson, and L. J. Lau. "Transcendental Lot rithmic Production Fronticrs." Review of Economics and Statistics 55:1 (1973). pp. 28-45.

Cobb, Charles W., and Paul h Douglas "A Theory of Production." American Economic Review. 18:Supplement (1928) pp. 139-156.

Debortin, David L. Agricultural Production Economics. New York: Memillian, 1986.

Diewert, K.E. "An Application of the Shephard Duality Theorem, A Gencralized Lcontif Production Function. Journal of Political Economy 79:3 (1971). pp. 481-507.

Dicwert, W.E. "Functional Forms for Profit and Transformation Functions." Journal of Economic Theory 6:3 (1973)pp. 284-316.

Fuss, M., and D. McFüdden, eds. Production Economics: A Dual Approach to Theory and Application, Vol 1. Amsitrdam, North llolland (1978).

Fuss, Mclvyr, Daniel McFadden, and Yair Mundlak. " A Survey of Functional Forms in the Economic Analysis of Production." in M. Fuss and D. McFadden eds. Production Economics: A Dual Approach to Theory and Application, Vol 1. Arnstcrdam, llorth Holliand (1970).

Hanoch, Giora. "Polar Functions with Constant TOES." in M. Fuss and D. HoFadden eds. Production Economics: A Dual Approach to Theory and Application, Vol 1. Amsterdam, North Holland (1978).

Henderson, James li., and R.E. Quandt. Microcconomic Theory: A Mathematical Approach ind Ed. New York: NcGraw Hill, 1971.

Hicks, J.R. Thcory of Wages 1 st cdicion, London, Micmillan, 1932.
Hicks, J.R., and R.G.D. Allen. "A Reconsideration of the Theory of Value Par't II, A mathematicuil Theory of individual Domand Functions. Economica $1 \mathrm{~ns}(1934) 198-21 \%$.

Just, R. E., David Zilborman, and Eithan Hochman. 'Estimation of Multicrop Production Functions. Am. Journ. Agr. Econ. 65 (1983) pp. 77080.

Klein, L. R., "The Use of Cross Scction Data in the United States with Application to a Study of Production of Railroad Services in the United States. Mimeo. Washington, D.C., N.B.E.R., 1947.

Koizumi, T. "A further Note on the Definition of Elasticity of Substitution in the Many Input Case." Metrocconomica 28 (1976) pp. 152155.

McFadden, Daniel, "Constant Elasticity of Substitution Production Functions." Review of Economic Studies 30(1963) pp. 73-83.

McFadden, Daniel, "Cost, Revenue and Profit Functions" in in M. Fuss and D. McFadden eds. Production Economics: A Dual Approach to Theory and Application, Vol 1. Amsterdam, Vorth Holland (19to).

Mundlak, Yair. "Elasticities of Substitution and the Theory of Derived Demand." Review of Economic Studies 35:2(1968) pp. 225-236.

Sato, K. "A Two Lovel CES Production Function." Roview of Economic Stuciies 34-2:98 (1967). pp. 201-218.

Shephard, R.W. The Theory of Cosis and Production Princeton: Princeton University Pross. (1970).

Varian, Hal. Bicroeconomic Aralysis. New York, NY. W.W. Norton, 1978 Co.(1938).

