

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.
sumo AGRICULTURAl G ECONOMICS
GIBRAN
30126.1989

An Analysis of Participation Options
in the Feed-Grain and Wheat
Government Programs

$J i 11$ M. Wade
Steven K. Riggins

by

Jill M. Wade and Steven K. Riggins

The options available uncer the 1987 Feed Grain and Wheat Government Programs are similar to last year's with some revisions. Target prices remain fixed at $\$ 3.03$ for Corn and $\$ 4.38$ for Wheat. Effective loan rates fell only slightly, from $\$ 1.84$ for Corn to $\$ 1.82$ and from $\$ 2.30$ for Wheat to $\$ 2.28$, assuming there are no Gramm-RudmanHollings cuts in the 1987-1988 rate.

The major differences in this year's program include the following:

1. The mandatory Acreage Conservation Reserve (ACR) for wheat has been increased form 22.5% of base to 27.5% of base. The mandatory ACR for corn has been ralsed from 17.5% to 20% of base acreage.
2. The Paid Land Diversion (PLD) provisions of both the corn and wheat programs have also been changed. Last year, farmers participating in the wheat program received $\$ 1.10$ per program bushel on 2.5% of their base. Corn producers receıved $\$ 0.73$ per program bushel on 2.5% of corn base. There will not be any paid land diversion for wheat producers this year. The opportunity to set aside an additional 10% of the wheat base in order to recelve payment at the rate of $\$ 2$ per program bushel has NOT been extended into the 1987-88 crop year and the 2.5% minimum PLD has been dropped.

[^0]3. There WILL be an optional 15% set aside for Corn growers this year. Setting aside an additional 15% of corn base will qualify farmers for payment at the rate of $\$ 2$ per program bushel on those acres. The entire land diversion payment is subject to the \$50,000 payment limitation.

PARTICIPATION IN THE FEED GRAINS PROGRAM
There are five options available for farmers planning to produce corn this year.

1. Do not participate in the government program for feed-grains. This option, of course requires no set-aside and no government restrictions. It also provides no price protection. Given the probability that corn prices will remain well below the target price for the 1987-88 crop year, this will not be an attractive option for most producers.
2. Participate at the 80-20 level. The producer need set aside only 20% of his base acres and will be eligible for loan protection and deficiency payments.
3. Participate at the $80-20$ level and set aside an additional 15% in the paid land diversion. Again, the producer is eligible for price and income protection but on fewer acres - only 65% of the total base will be planted. The advantage to this option is that the producer will receive \$2 per program bushel on 15% of the base without incurring any production costs and with no price risk on that 15%.
4. Participate at the 50-92 level. Under this option, the producer may elect to set aside up to 50% of the remaining eligible base and will receive deficiency payments on 92% of those acres. In
order to take full advantage of this option, the minimum 50% of remaining acres would be planted.
5. Participate at the $50-92$ level and set aside 15% in the pald land diversion. Again, 15% of the base would receive a guaranteed price of $\$ 2$ on the program yield and deficiency payments would be receıved "as if" 92% of the remaining eligible base had been planted. Table 1 illustrates how a corn producer with 100 acres of corn base would be affected by each of the above options.

PARTICIPATION IN THE WHEAT PROGRAM

Because there is no longer a paid land diversion in the wheat program, there will be only three options for the wheat producer this year. They are:

1. Do not participate in the government program for wheat. The disadvantage to this option is the same as for nonparticipation in the feed grains prog،am. Prices are not likely to rise above the target price for wheat and most producers will want to be eligible to receive loans and deficiency payments.
2. Participate at the $72.5-27.5$ level. By setting aside 27.5% of the wheat base, producers will be ellgible to receive price and income protection.
3. Participate at the 50-92 level. As with corn, wheat producers may devote up to 50% of the remalning base to a conservation use and recelve deficiency payments "as $1 f$ " 92% of the remaining eligable base were planted.

Table 2 illustrates the options available to a producer with 100 acres of wheat base.

Table 1-- 1987-88 Feed-Grain Options on 100 Acres of Corn Base

${ }^{1}$ This table assumes the producer puts the maximum acres in the addıtıonal set asıde.

Table 2-- 1987-88 Wheat Program Options on 100 acres of Wheat Base

	ACR	ADDITIONAL OPTION	PLANTED	ELIGIELE FOR:
NP	0	0	100	No government payments
72.5-27.5	27.5	0	72.5	Deficiency payments and loan rate on 72.5 acres

Given the many options available, it is important for producers to assess the options and the impact of each upon the farm's income earning potential. A falrly simple method of analysis is partıal budgeting. Only those factors that will be affected by the decision to participate, or at what level to participate, are included in the partial budget. A producer need only compare total cash recelpts from all sources minus total variable cash production expenses for each alternative level of participation. This modified contribution to overhead (CTO) method allows rapid consideration of several "what if" questions. Since only variable cash production expenses are considered, the net cash remaining, referred to as CTO, is actually a return to operator labor and management, and all capital assets. Thus CTO can also be thought of as the cash left over to pay property taxes, insurance, famıly living expenses and debt service on land, buildings and machinery. Remember, it is the CTO that should be maxımızed when deciding at what level to participate, NOT the total level of government payments.

RESULTS OF ANALYSIS

The following analysis looks at a sample farm to determine the general impact of certain factors upon the optimum level of participation. While this is useful in drawing some general conclusions about the wheat and feed grains program, each farm operation $1 s$ unique and needs to analyze the options independently. Worksheets are provided at the end of this publication to do that.

Table 3 looks at the effect of a change in the price of corn upon the sample farm. It assumes an expected yield of 100 bushels, an ASCS program yıeld of 90 bushels, and a varıable cost on planted acres of \$150. Clearly, the CTO per acre of corn base is lowest for the nonparticipation option at price levels likely to exist for the 1987 crop year. It does not outperform the other alternatives until the price reaches $\$ 2.80$.

The $80-20$ option, with the additional 15% paid land diversion, returns the haghest CTO for all price levels below $\$ 2.80$. The $80-20$ option wathout the 15% diversion $1 s$ not considerably below this, however, the risk of that option is higher. There are both production costs and risk on 15% more acres under the $80-20$ option without the 15% diversion.

Notace the CTO on both 50-92 options increases as the price falls from $\$ 2.80$ to $\$ 1.82$ and then decreases from $\$ 1.82$ to $\$ 1.50$. This is because the value of deficiency payments is a large part of the CTO in these cases. As the price falls to the loan rate, the magnitude of the deficiency payments increases. Once the price reaches the loan rate, deficiency payments do not increase further and the low price on fewer bushels of corn reduce the CTO under these two options.

Table 4 looks at the impact of variable costs of production on the optimum level of participation. here, the price is assumed to be \$1.75. Again, the CTO from nonparticıpation is the lowest of all alternatives. For variable costs of production ranging from $\$ 120$ to \$170 per acre, the $80-20$ option with the 15% optional diversion is the best option. If the variable cost of production is very low (and expected yield remains at 100 bushels/acre), the CTO for the 80-20

Table 3: CTO per acre of Corn Base for alternative levels of participation at varying price levels ${ }^{1}$

Corn	--15\% Diversion--				
	NP	80-20	50-92	30-20	50-92
2.80	130	122	74	120	61
2.70	120	122	76	119	63
2.60	110	121	78	119	66
2.50	100	120	80	118	69
2.40	90	120	83	117	71
2.30	80	119	85	116	74
2.20	70	118	87	116	77
2.10	60	118	89	115	79
2.00	50	117	91	114	82
1.90	40	116	93	113	84
1.82	32	116	95	112	87
1.80	30	115	94	111	86
1.70	20	108	91	103	82
1.60	10	102	88	95	78
1.50	0	95	85	87	74

${ }^{1}$ Expected yield $=100$
Program yıeld $=90$
Variable cost on planted acres $=\$ 150 /$ acre
Mowing cost on mandatory set-aside = \$2/acre
Establishment cost on optıonal set-aside $=\$ 15 /$ acre

Table 4: CTO at different variable cost of production levels ${ }^{1}$

	- -15\% Diversion--				
Varıable Cost	NP	$80-20$	$50-92$	$80-20$	$50-92$
110	65	137.39	105.72	138.72	99.75
120	55	130.89	102.47	130.72	95.75
130	45	124.39	99.22	122.72	91.75
140	35	117.89	95.97	114.72	87.75
150	25	111.39	92.72	106.72	83.75
160	15	104.89	89.47	98.72	79.95
170	5	98.39	86.22	90.72	72.25

${ }^{1}$ Expected yleld $=100$
Program yield $=90$
Price $=\$ 1.75 / \mathrm{bu}$.
Mowing cost $=\$ 2 / a c r e$
Estab. cost $=\$ 15 /$ acre
Table 5: CTO per acre of corn base at varying levels of

		--15\% Diversion--		80-20	50-92
Yield	NP	80-20	50-92		
120	60	166.73	134.80	163.76	124.47
110	60	155.87	124.57	154.08	115.56
100	60	145.00	114.33	144.40	106.66
90	60	134.14	104.10	134.72	97.75
80	60	123.27	93.86	125.04	88.84
70	60	112.41	83.63	115.36	79.94
Expected yield $=120$					
Prıce $=\$ 1.75 / \mathrm{bu}$.					
Variable production cost $=\$ 150 /$ acre					
Mowing cost $=$ \$2					
Estab. cost $=\$ 15$					

option without the 15% diversion becomes slightly higher because actual production on those acres can return more than the $\$ 2$ per program bushel payment returns. However, the difference (\$1.33/acre) probably does not justify the assumption of more risk.

Neither of the 50-92 options yıelds a higher, or even reasonably close, CTO than the 80-20 options.

Table 5 considers the case where program yield differs substantially from actual expected yield. This may be the case for farmers that have not been participating in the program and have not updated their ylelds with the ASCS. For this table, the expected yield is 120 bushels/acre. The 80-20 options are clearly superior, once again, to elther nonparticipation or the 50-92 options. The 8020 option with the 15% paid land diversion is the best option for program yields ranging form 120 to 100 . The $80-20$ option without the paid land diversion becomes only slightly hagher ($\$ 0.58 /$ acre) when program yield falls to 90 bushels. In this case, therefore, the $80-20$ option with the paid land diversion is the best option even when program ylelds are almost 30 bushels lower than actual yield. For differences much higher than that, it would pay to consider NOT taking part in the paid land diversion.

The final table for corn, TABLE 6 looks at the impact of the number of base acres upon the CTO for alternative levels of participation. When a producer begins to be affected by the $\$ 50,000$ payment limitation, levels of participation which do not include the 15\% pald land diversion return a higher CTO. At 800 base acres, this producer's payments are limıted. Since the entire diversion payment is subject to this limit, options which include that payment reach the limit first. Therefore, producers that are likely to hit the payment
limatation will find that the $80-20$ opt-on without the 15% diversion may be their most profitable option.

In general, across a wide range of conditions, the $80-20$ option with the 15% pald land diversion will be preferred for those producers NOT subject or just barely subject to the payment limitation. Produces who do expect to hit the payment limitation may well receive the highest CTO by participating at the $80-20$ level. The 50-92 options did not return an attractive CTO on this sample farm.

WHEAT
Analysis of the results for different levels of program participation yielded results similar to those for corn - without any optional land diversion. The sample wheat producer has 100 acres of wheat base with an expected yield of 40 bushels/acre, a program yıeld of 35 bushels/acre, double-crop soybean yields of 30 bushels/acre, a soybean price of $\$ 4.60$, and a variable cost of production on wheat/bean acres of $\$ 150$.

Table 7 shows the effect of varying prices on the CTO for different levels of participation. Neither the 50-92 option nor the nonparticipation option appear to be viable alternatives in this situation. The CTO for these is considerably below that for the 72.527.5 option.

Table 8 assumes a fixed price for wheat of $\$ 2.30$ and shows the effect of increasing the variable costs of production on wheat/soybean acres. At the lowest cost of $\$ 110$ to the high cost listed of $\$ 170$, the "basic" participation option - 72.5-27.5 is the best choice.

Finally, Table 9 shows the effect of a difference between actual expected yield and program yield. Even when the producer reasonably

Table 6: CTO per acre of corn base at different levels of total base ${ }^{1}$

Total Base	NP	$\begin{aligned} & -15 \% \\ & 80-20 \end{aligned}$	$\begin{array}{r} \text { Diversion-- } \\ 50-92 \end{array}$	80-20	50-92
500	25	111.39	92.72	106.72	83.75
600	25	111.39	92.72	106.72	83.75
700	25	111.39	92.72	106.72	83.75
800	25	103.01	87.86	106.72	83.75
900	25	96.07	80.91	106.72	83.75
1000	25	90.51	75.36	102.72	83.75
$\widehat{\text { Expected yield }}=100$					
Program yield $=90$					
Prıce $=$ \$1.75					
Variable cost $=\$ 150$					
Mowing $=\$ 2$					
Estab, = \$15					

Table 7: CTO per acre of wheat base at varying price levels ${ }^{1}$

\$/bu.	NP	72.5-27.5	50-92
2.10	72	104.94	69.14
2.20	76	107.84	70.59
2.30	80	110.23	71.57
2.40	84	110.59	70.69
2.50	88	110.96	69.80
2.60	92	111.32	68.92
2.70	96	111.68	68.03
2.80	100	112.04	67.15
2.90	104	112.41	66.26
3.00	108	112.77	65.35

Table 8: CTO per acre of wheat base at different levels of variable cost

Variable Cost	NP	$72.5-27.5$	$50-92$
110	120	139.23	86.07
120	110	131.98	82.45
130	100	124.73	78.82
140	90	117.48	75.20
150	80	110.23	71.57
160	70	102.98	67.95
170	60	95.73	64.32

Table 9: CTO per acre of wheat base at varying levels of program yield

Program Yield	NP	$72.5-27.5$	$50-92$
40	80	117.77	78.51
35	80	110.23	71.57
30	80	102.69	64.63
25	80	95.15	57.70
20	80	87.61	50.76

For a large range of conditions, wheat producers will maximize their CTO by setting aside the minimum amount of wheat acres-27.5\%.

SUMMARY

While each producer faces a unique set of conditions and needs to analyze all avaılable optıons for their own operation, this analysis does yield some general conclusions. The results of this analysis show that most corn producers who do not expect to be affected by the $\$ 50,000$ limitation and who have a program yield, no more than 25-35 bushels below their actual expected yield will maximize their returns by particlpating in the feed grains program at the 80-20 level WITH the optional paid land diversion. Producers who do expect the $\$ 50,000$ payment limitation to affect them will probably be better off with the 80-20 option and NO particlpation in the optional land diversion. However, this will depend heavily on to what degree the producer is impacted by the $\$ 50,000$ payment limitation; the larger the farm base, the greater chances are that the $80-20$ option without the 15% diversion, will be the superior option. Wheat producers will generally be best off by participating in the "basic" wheat program, setting aside 27.5% of their base acres.

EVALUATING PARTICIPATION IN THE 1987 FEED GRAINS PROGRAM

1. The Corn Program Worksheet allows five options:

No participation in the 1987 Corn Program.
80-20: Set aside the mandatory 20% of Corn base.
$80-20+15 \%$: Set aside the mandatory 20% of Corn base plus enter an additional 15% into the Paid Land Diversion.

50-92: Set aside the mandatory 20% of Corn base, enter 15% into the paid land diversion, and plant at least 50% of the remaining base to receive 92% of the defrciency payments.

* Note: The worksheet assumes that corn will not rise above the loan rate of $\$ 2.28$. If you think that prices may rise above that level, substitute ($\$ 3.03$ - Expected U.S. Corn Price) for $\$ 1.21$ on lines E3 and E4.

2. The Wheat Program Worksheet allows three options:

No particlpation in the 1987 Wheat program.
72.5-27.5: Set aside the mandatory 27.5% of Wheat base.

50-92: Set aside the mandatory 27.5% of wheat base and plant at
least 50% of the remaining base to receive 92% of the deficiency payments.

* Note: The worksheet assumes that Wheat prices will not rise above the loan rate of $\$ 2.85$. If you think that prices may rise above that level, substıtute ($\$ 4.38$ - Expected U.S. Wheat Prıce) for $\$ 2.10$ on lines E2 and E3.
NP $\quad 80-20 \quad 80-20 \quad 50-92 \quad 50-92$

$+15 \%+15 \%$
A. Planted Acres

1. Total Corn Base
2. Mandatory Set Aside (. 20 x Al)
3. Optional Set Aside (.15 x A1) xxxxx
4. Additional CUA Acres (A1 - A2 - A3) $\times 0.50$
5. Planted Acres (A1-A2-A3-A4)

B. Crop Returns

1. Expected Market Price
2. Expected Corn Yield
3. Total Returns
(A5 x B1 x B2)
C. Variable Cash Costs
4. Variable Cost on Corn Acres (\$_/acre x A5)
5. Variable Cost on Mandatory

Set Aside (\$_/acre x A2)
3. Variable Cost on Optional and/or CUA Acres (\$ /acre x (A3 + A4)
4. Total Cash Costs $(C 1+C 2+C 3)$
D. Crop Returns

1. Returns Above Cash Costs (B3-C4)
E. Government Payments
2. ASCS Program Yield
3. Diversion Payment
(A3 x E1 x \$2.00)
4. Deficiency Payment (80-20 option) (A5 x E1 x \$1.21)
5. Deficiency Payment (50-92 option) (A1 - A2 - A3) x
$0.92 \times \mathrm{E} 1 \times \mathrm{x}$.21)
6. Total Government Payments
$(E 2+E 3+E 4)$
F. Payments Subject to Limit*
7. Under 80-20 Option [E2 + (A5x

E1 x \$0.75)] Xxxxx
2. Under 50-92 Option $[E 2+$ (A1-

A2 - A3) $\times 0.92 \times E 1 \times 0.75]$
3. Total Payment Subject to Limit

Enter the nonzero value F 1
or F2
xxxxx
xxxxx

XXXXX

xxxxx

XXXXX \qquad

XXXXX

XXXXX
XXXX

XXXXX

\qquad

\qquad XXXXX XXXXX

\qquad
\qquad
G. Payment Received

1. If $\mathrm{F} 3<\$ 50,000$: Enter E5 xxxx
2. If $\mathrm{F} 3>\$ 50,000$:

E5 - (F3 - $\$ 50,000$) xxxxx
3. Total Payment Receıved Enter the nonzero value G1 or G2 xxxx

NET CASH RETURN
D1 + G3)
*Note: If $E 5<\$ 50,000$, it is not necessary to complete this section. Simply enter the value from Line E5 on Line G3.

NP $\underset{75.5-27.5}{ }$| BASIC |
| :---: |
| $70-92$ |

A: Planted Acres

1. Total Wheat Base
2. Mandatory Set Aside
(0.275 x A1)
3. Additional CUA Acres
(A1 - A2) $\times 0.50$
4. Planted Acres
(A1 - A2 - A3)
B. Crop Returns
5. Expected Market Price for Wheat
6. Expected Wheat Yield
7. Expected Market Price for Soybeans
8. Expected Double Crop Soybean Yield
9. Total Crop Returns ($\mathrm{A} 4 \times \mathrm{B} 1 \times \mathrm{B} 2)+(\mathrm{A} 4 \times \mathrm{B} 3 \times \mathrm{B} 4)$
C. Variable Cash Costs
10. Varıable Cost on Wheat/Bean Acres (\$_/acre x A4)
11. Variable Cost on Mandatory Set Aside ($\$$
12. Variable Cost on Addıtional CUA Acres (\$__/acre x A3)
13. Total Cash Cost $(\mathrm{C} 1+\mathrm{C} 2+\mathrm{C} 3)$
D. Crop Returns
14. Returns Above Cash Costs (B5-C4)

E: Government Payments

1. ASCS Program Yield
2. Deficiency Payment: 72.5-27.5 Option
(A4 x E1 x \$2.10)
3. Deficiency Payment: 50-92 Option (A1 - A2) $x 0.92 \times$ E1 $\times \$ 2.10$
4. Total Government Payments
(E1 + E2 or E3)
F. Payment Subject to Limit*
5. Under 72.5-27.5 Option:
(A4 x E1 x \$1.53)
6. Under 50-92 Option:
($\mathrm{A} 1-\mathrm{A} 2$) $\times 0.92 \times \mathrm{E} 1 \times \$ 1.53$
7. Total Payment Subject to Limit
(Enter the nonzero value F1 or F2)

xxxxx	$=$	xxxxx
xxxxx	xxxxx	-
xxxxx	-	

G. Payment Received

1. If F 3 < $\$ 50,000$: Enter E4 xxxxx
2. If F3 > $\$ 50,000$
[E4 - (F3 - \$50,000)] xxxxx
3. Total Payment Received (Enter nonzero value G1 or G2)

NET CASH RETURN
(D1 + G3)
*Note: if $E 4<\$ 50,000$, it is not necessary to complete this section. Simply enter the value form Line $E 4$ on line $G 3$.

[^0]: The Authors are Extension Associate and Associate Extension Professor, respectively at the University of Kentucky

