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Sustained Development of a Population and a Resource

Abstract. The dynamics of a population and a resource are investigated in a

maximin model based on Brander and Taylor’s stylization of Easter Island, in or-

der to consider the sustainability of the society represented. There are continua of

both regular and non-regular maximin solutions, the type depending on the initial

conditions. A non-regular maximin steady state corresponds with the steady state

in Brander and Taylor’s model. All solutions are time consistent and Pareto opti-

mal. For the regular paths, a partial analytic characterization and a simulation are

provided. The non-regular paths involve two regular sections and one degenerate

solution in which the maximin constraint is not effective. The high degree of mathe-

matical subtlety of the solution to this ostensibly simple problem calls into question

the likelihood of a planner’s being able to devise and follow a program of efficient,

sustained development.

JEL Classifications: Q20, D63, C62

Keywords: Sustainability, Intergenerational Equity, Maximin, Regular Path,

Population.
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INTRODUCTION

The literature on the simultaneous determination of optimal population and opti-

mal stock levels for renewable natural resources has been dominated by discounted-

utility maximization, in which social welfare is expressed as a weighted sum of utility

levels. Adding utility levels across individuals and generations, however, whether

with equal or unequal weights, is objectionable to some thinkers.

According to Rawls (1971), social welfare should be the utility or consumption level

of the least advantaged individual. His maximin principle suggests trying to level the

consumption of all individuals in society. Extending it to an intertemporal program,

Solow (1974) shows that, if manufactured capital and an exhaustible resource are

sufficiently substitutable, it is possible to sustain a constant level of consumption

by depleting the resource stock toward zero and accumulating capital indefinitely.

Although it is derived from an unconventional economic objective, a maximin path is

suited to expressing what Solow called intergenerational equity and what has come to

be known as economic or weak sustainability. (Compare Pezzey and Toman 2002-03:

168, 176-7.) Still, Solow’s model constitutes the only example of a completely solved

maximin problem.

The present paper characterizes the maximin path of another simple economy.

Much of what is known from a sparse anthropological record of Easter Island is

distilled by Brander and Taylor (1998) into a model of an economy with a renewable

resource and endogenous population growth. Easter Island is of more than theoretic

interest, as it is a frequently cited prototype of a society that was not sustained

because of a human failure to live within environmental constraints. One’s conclusions

about human failings may be different depending on whether the island was, like some

other Pacific islands mentioned by Brander and Taylor, unsustainable or whether it

was sustainable but not sustained. It is of some interest, therefore, to study conditions
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relating to sustainability in their model, even though it is very abstract, on the

assumption that a planner strove consistently to attain it.

We find that, for certain initial values of the resource stock and population, there

exist so-called regular maximin paths. Unlike in discounted-utility models where

typically there is a unique steady state, there is a continuum of maximin steady

states; which is approached depends on the initial conditions. We characterize the

solutions for regular paths and simulate one of them. For other initial values there are

non-regular approach paths to a steady state that involve an intervening period when

the maximin constraint is not effective. Our analysis is indicative of the subtle issues

that would have to be confronted by even a simple society attempting to sustain its

economic well being.

THE MAXIMUM PRINCIPLE IN A MAXIMIN PROBLEM

Consider a dynamic system with n state variables si (i = 1, 2, ...n) and m control

variables cj (j = 1, 2, ...,m), where m can be greater than, equal to, or less than n.

The state variables represent stocks such as natural resources, manufactured capital

and population. The control variables represent the rates of harvesting, of investment,

of consumption, etc. A set of n differential equations describes the dynamics of the

system:

ṡi = fi(s, c) for i = 1, 2, ..., n. (1)

Let s = (s1, s2, ..., sn) and c = (c1, c2, ...cm).

An individual’s utility at time t is represented by

u(t) = U(s(t), c(t)).

It is convenient to imagine that the individual is born at time t, enjoys the utility level

U(s(t), c(t)), and immediately dies. We assume that all functions are continuously

differentiable.
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The planner’s objective is to achieve the highest level of utility that can be sustained

for all time, or to

max
[c(t)]∞t=0

ū (2)

subject to the initial conditions si(0) = si0, the differential equations (1), and the

maximin constraint,

U(s(τ), c(τ)) ≥ ū for all τ ≥ t. (3)

We follow Cairns and Long (2006) in treating ū as a control parameter. The Hamil-

tonian is

H(s, c,π) =
X
i

πifi(s, c), (4)

and πi is the shadow price of si.1 The corresponding Lagrangian is

L(s, c,π, µ, ū) = H + µ [U(s, c)− ū] .

We denote optimal levels by an asterisk. The following conditions are necessary:

• The vector c∗ maximizes H(s∗, c,π∗) subject to constraint (3):
∂L∗
∂cj

=
X
i

π∗i
∂f∗i
∂cj

+ µ∗
∂U∗

∂cj
= 0, j = 1, ...,m. (5)

• The multiplier µ∗ satisfies the complementary slackness conditions:

µ∗(t) ≥ 0, U(s∗(t), c∗(t))− ū ≥ 0, and µ∗(t) [U(s∗(t), c∗(t))− ū] = 0.

• The vector π∗ satisfies the differential equations

π̇∗k = −
∂L∗
∂sk

= −X
i

π∗i
∂f∗i
∂sk
− µ∗∂U

∗

∂sk
, k = 1, ..., n. (6)

1See also Leonard and Long (1993, esp.Theorem 7.11.1) and Cairns and Long (2005). The

objective function is not an integral; in a loose sense, the integrand is identically zero.
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• Along the optimal path,
d

dt
L(s∗(t), c∗(t),π∗(t), µ∗(t)) = ∂

∂t
L(s∗(t), c∗(t),π∗(t), µ∗(t)) = 0. (7)

Thus, L(s∗(t), c∗(t),π∗(t)) and a fortiori H (s∗(t), c∗(t),π∗(t)) are constant.

• The optimal choice of the control parameter ū maximizes the expression

π0ū+
Z ∞
0
L(s∗, c∗,π∗, µ∗, ū)dt,

where π0 is a non-negative constant. Hence,

π0 −
Z ∞
0
µ∗(t)dt = 0. (8)

• The following transversality condition, first proved by Michel (1982), has been
extended to this type of problem by Cairns and Long (2006):

lim
t→∞H(s

∗(t), c∗(t),π∗(t)) = 0. (9)

• Along the optimal path,

the vector (π0,π1, ...,πn, µ) is not identically zero. (10)

Conditions (7) and (9) imply that

X
i

π∗i (t)fi(s
∗(t), c∗(t)) = 0. (11)

At all times on an efficient maximin path the value of net investment is zero. Condi-

tion (11) is the converse of Hartwick’s rule (Hartwick 1977).

Consider the following regularity condition:

µ∗(t) > 0 for all t.

If this condition holds then the shadow prices can be normalized by setting π0 to

unity. In a regular problem, condition (8) implies that, at least for large enough
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t, µ̇ (t) < 0. The shadow value µ (t) is a measure of the tightness of the maximin

constraint (3). If µ (t) decreases over time, a marginal relaxation of the constraint at

time t adds more to the objective if t is nearer to the present.

It is also possible to normalize π0 to unity if µ∗ (t) = 0 for some values of t, provided

that µ∗ (t) > 0 over a non-degenerate interval. In this case, we call the problem non-

regular.

We define a steady state of a regular maximin problem as a point (sss, css) such

that, if the system ever attains that point, it will remain there forever. Let ρ (t) =

−µ̇ (t) /µ (t) and ψi (t) = πi (t) /µ (t). For a steady state, it is consistent with all of

the necessary conditions to let the ψi (t) be constants. Division of condition (6) by µ

yields that

−ρψk +
X
i

ψi∂fi/∂sk + ∂U/∂sk = 0, (12)

so that ρ is also constant. By condition (8), µ̇ < 0 and hence ρ > 0 in a steady state.

Also, by equation (12),

ρssψkss −
X
i

ψiss
∂fi
∂skss

− ∂U

∂skss
= 0, for k = 1, 2, ..., n. (13)

A steady state is a point (sss, css,ψss, ρss) in R2n+m+1 that satisfies equations (13)

and the following:

∂U

∂cj
+

nX
i=1

ψiss
∂fi
∂cj

= 0, for j = 1, 2, ..,m;

fk (sss, css) = 0, for k = 1, 2, ..., n.

Since there are 2n+m equations and 2n+m+ 1 unknowns, we expect a continuum

of steady states.

A MAXIMIN MODEL OF EASTER ISLAND

In this section we adapt Brander and Taylor’s (1998) model of Easter Island. There

are two state variables, population or labor force L(t) and a stock of a renewable
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resource, S(t). A part of the labor force harvests the resource and the remainder

produces a composite good. The average product of labor in harvesting is αS and in

producing the composite good is unity. Let consumption per capita of the two goods

be h and m. Then

m(t) = 1− h(t)

αS(t)
≥ 0.

Each individual has the utility function,

U(h,m) = hβm1−β = hβ

Ã
1− h

αS

!1−β
, where 0 < β < 1. (14)

If h(t) = αS(t) then U(h (t) ,m (t)) = 0, a level which is clearly not optimal. For any

S(t) > 0, the planner must ensure that

h(t) < αS(t). (15)

Let the natural birth rate, the natural death rate and the effect of consumption

of the resource good (food) on the net rate of reproduction all be constant and be

represented by b, d and φ, respectively, and let d > b. Then the growth rate of

population is

L̇(t) = [b− d+ φh(t)]L(t). (16)

The growth rate of the resource stock is

Ṡ(t) = rS(t)

"
1− S (t)

K

#
− h(t)L(t). (17)

Following Brander and Taylor, we assume that

0 <
d− b
αφ

<
K

2
<
d− b
αβφ

< K.

Below, we show that the assumption that (d− b) / (αβφ) < K is necessary for the

existence of steady states with µ̇ < 0, as is required by condition (8).
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In a steady state, since L̇ = 0, equation (16) requires that h = (d− b)/φ = hss. We
obtain from equation (17) with Ṡ = 0 that

L =
rφ

d− bS
µ
1− S

K

¶
. (18)

Equation (18) traces a concave, quadratic curve in the space (S,L), with L tending

to 0 as S tends to K. Let the set of feasible stationary points with strictly positive

population be represented by X . Since αSss > hss = (d− b)/φ,

X =
(
(S,L) :

d− b
αφ

< S < K and L =
rφ

d− bS
µ
1− S

K

¶)
.

Below, we show that the steady state approached in Brander and Taylor’s model is

not a regular maximin point. The set of steady-state, regular, maximin points is,

then, a proper subset of X .
We now modify the model by introducing a social planner whose objective is to

maximize the minimum level of utility, ū, over all times t ≥ 0, subject to conditions
(16) and (17) with initial values

L(0) = L0 and S(0) = S0, (19)

and to the maximin constraint, that for all t ≥ 0,

[h(t)]β
"
1− h(t)

αS(t)

#1−β
− ū = U (h (t) ,m (t))− ū ≥ 0. (20)

The Lagrangian for this problem is

LE = π1

·
rS

µ
1− S

K

¶
− hL

¸
+ π2 [b− d+ φh]L+ µ

hβ

Ã
1− h

αS

!1−β
− ū

 .
The necessary conditions are:

(π1 − φπ2)L = µ

Ã
βαS − h
αSh

!Ã
αSh

αS − h
!β

; (21)

π̇1 = −rπ1
·
1− 2S

K

¸
− (1− β)µ

h

αS2

Ã
αSh

αS − h
!β

; (22)
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π̇2 = π1h− π2 [b− d+ φh] ; (23)Z ∞
0
µ(t)dt = 1; (24)

(π0,π1,π2, µ) 6= (0, 0, 0, 0) ; (25)

µ ≥ 0, hβ

"
1− h

αS

#1−β
− ū ≥ 0, µ

hβ

Ã
1− h

αS

!1−β
− ū

 = 0;
π1

·
rS

µ
1− S

K

¶
− hL

¸
+ π2 [b− d+ φh]L = 0. (26)

Furthermore, conditions (16), (17) and (19) are satisfied.

REGULAR MAXIMIN PATHS

Since µ > 0 in a regular problem, let ψ1 = π1/µ and ψ2 = π2/µ. Conditions (21),

(22), (23), and (26) can be re-expressed as:

(ψ1 − φψ2)L =

Ã
βαS − h
αSh

!Ã
αSh

αS − h
!β

; (27)

ψ̇1 = ρψ1 − rψ1
·
1− 2S

K

¸
− (1− β)

h

αS2

Ã
αSh

αS − h
!β

; (28)

ψ̇2 = ρψ2 + ψ1h− ψ2 [b− d+ φh] ; (29)

ψ1

·
rS

µ
1− S

K

¶
− hL

¸
+ ψ2 [b− d+ φh]L = 0. (30)

This set of necessary conditions can be used interchangeably with the more general set

of conditions from which they are derived whenever µ (t) > 0, even in a non-regular

program. The necessary conditions imply the following.

Proposition 1 (i) There is a continuum of steady-state, regular maximin points

(Sss, Lss) with
d− b
αβφ

< Sss < K.

Corresponding to each value of Sss there is a unique value of Lss. As Sss varies from
d− b
αβφ

to K, the value of ρss decreases and the maximin utility level increases.
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(ii) For each regular steady-state pair (Sss, Lss), where Sss ∈ ( d−bαβφ
,K), there exists

a neighborhood of (Sss, Lss) in which there is a regular maximin path converging to

(Sss, Lss). The path is monotone, with both S and L either increasing or decreasing.

(iii) The line h = βαS forms a barrier to regular paths in the space (h, S) and the

segment of the line L = r
αβ
(1− S/K) for S ∈

³
d−b
αβφ
, K

´
is a barrier to regular paths

in the space (S, L).

(iv) A regular maximin path is stable in the saddle-point sense.

(v) The limit point of the maximin paths, (L, S) =
³
r
αβ

³
1− d−b

αβφK

´
, d−b
αβφ

´
, is not

regular.

Proposition 1 is proved in the Appendix. It tells us that the continuum of steady-

state regular paths corresponds to the subset of X in which Sss > (d− b) / (αβφ).
Greater values of Sss (and lower values of Lss) correspond to higher utility levels

ū and to lower values of ρss. The value of ρss increases as we move along the arc

of X to approach the limit of the regular paths, where S = (d− b) / (αβφ). There
is a dense set of maximin paths that converge to these steady-state paths. Each

path is truncated in the interior of the space (S, L) at the line L = r
αβ

³
1− S

K

´
. A

representative path is shown in Figure 1 as (depending on the initial point) DE or

FE.

PLEASE PLACE FIGURE 1 HERE

We can interpret Proposition 1 by re-writing equation (14), with U (h,m) = ū and

m = 1− h/ (αS), as
S =

h/α

1− (ūh−β)1/(1−β) (31)

PLEASE PLACE FIGURE 2 HERE

Equation (31), at a given level of utility ū, is depicted in Figure 2. By equation (37)

in the Appendix, when h = βαS, dS = 0 and hence Ṡ = 0. At point d, on the

line S = h/ (αβ), the slope dS/dh is zero. The curve def corresponds to DEF in
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Figure 1. (The curve for a higher utility level is upward from and to the right of

def .) The steady-state point is at e, where h = (d− b) /φ and dS/dh < 0. Near

point e there is an iso-utility path leading to the steady state. (a) If S0 < Sss the

path is de. The corresponding path in Figure 1 is DE. Since h > (d − b)/φ, the
population is increasing. (b) If S0 > Sss the path is along fe; because h < (d− b)/φ,
the population is decreasing. The corresponding path in Figure 1 is FE. Although

the path FE reaches the line S = K, it is not possible to extend the path DE to

lower resource-stock sizes. In order to achieve the utility level ū, the resource stock

must not be less than it is at point d in Figure 2 or at D in Figure 1.

Regular maximin trajectories DEF (def) are bounded by the curve YW (yw).

The region in which there are regular paths is the semi-open regionWYDZF (wydzf),

which is closed when S = K except atW (w) and Z (z).

We are unable to obtain an analytic solution to the problem, giving the path to

the steady state as a function v (S, L) = 0. Numerical solutions using the parameters

assumed by Brander and Taylor (1998: 128) confirm our theoretical conclusions.

Along the approach path to the steady state, dL/dS > 0 when Sss ∈
³
d−b
αβφ
,K

´
.

Among the regular steady states, a higher stock level entails a higher utility level and

a lower value of ρ. Since µ (t) = ρe−ρt in a steady state, the latter result implies that,

for higher stock levels (and the corresponding lower population levels) the tightness

of the maximin constraint (2.3) is initially lower and declines more gently. In a sense,

achieving a maximin solution is less onerous if there is a higher stock. Along the

approach path to the steady state, the shadow price of the population is negative and

ρ varies in the opposite direction to the population size. For example, along the path

DE, the value of ρ (t) decreases toward its steady-state value.

We summarize the simulation of the approach to a particular maximin steady

state in Table 1. Price variables show substantial variation and are reported to two

significant digits; real variables adjust comparatively slowly and are reported to four
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significant digits. The level of accuracy is not spurious as this is a simulation exercise.

t S (t) L (t) h (t) ψ1 (t) −ψ2 (t) ρ (t)

(103) (103) (10−2) (10−4) (10−3) (10−2)

-1 7.997 4.259 2.500 0.65 3.2 2.1

-6 7.996 4.257 2.501 1.5 3.0 2.7

-11 7.995 4.254 2.501 2.2 2.8 3.0

-16 7.994 4.251 2.502 2.7 2.7 3.6

-21 7.992 4.247 2.503 3.2 2.6 4.0

-26 7.990 4.242 2.505 3.6 2.5 4.3
Table 1: Simulation of a Path Approaching a Steady State

NON-REGULAR MAXIMIN PATHS

Non-regular maximin paths have not been studied extensively but are an important

feature of the present model.

PLEASE PLACE FIGURE 3 HERE

Consider an initial point a to the west of region wydzf in Figure 2. Corresponding

to it is pointA outside the region of regular pathsWYDZF in Figure 3. We propose

paths ab (AB) on which L̇ < 0 (so that h < (d− b) /φ) and Ṡ < 0: with the high
population, even the limited harvest per capita causes the resource stock to fall. Since

h < βαS, by equation (37) in the proof of Proposition 1, Ṡ/ḣ = dS/dh < 0, and so

the (per-capita) harvest is increasing (ḣ > 0).

Our reasoning is as follows. By a theorem due to Leonard (1981), the resource stock

is a ‘good’ stock (π1 > 0) and the population is a ‘bad’ stock (π2 < 0). Therefore,

(π1 − φπ2)L > 0 and hence by condition (21) µ > 0. Except at point b, equation

(14) gives two values of h which, for a given value of S, yield the same value of utility

ū. One value of h, for which h > αβS, is inefficient, as it needlessly uses up more of

the resource stock. Optimal points must lie in the region to the northwest of the line
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S = h/ (αβ) in Figure 2. Along the iso-utility curve ab, h < αβS and

∂u

∂h
=

αβS − h
αSh

Ã
αSh

αS − h
!β

> 0.

Current utility would be higher with h = αβS; sustaining utility has a current cost

(µ > 0).

At point b, h = αβS and ∂u/∂h = 0. By equation (37) in the proof of Proposition

1, Ṡ = 0. Since h = αβS, equation (16) gives that L = r
αβ

³
1− S

K

´
, a point on the

line segment VY in Figure 3. Therefore, Ṡ = 0 at point B. Still, h < (d− b) /φ and
L̇ < 0. At B, dL/dS is infinite. The path then passes into the region below the line

VY.

At point B, since utility is being maximized myopically, the maximin constraint

is no longer effective. If after point B the harvest remains at the myopic maximum,

h = αβS, then by equation (14),

U |t = hβ

Ã
1− h

αS

!1−β
= (αβS)β (1− β)1−β . (32)

Again by equation (16), Ṡ > 0 and so U̇ > 0. Since current utility is now greater

than the maximin level (attained along AB), the maximin constraint does not bind:

µ = 0. In Figure 2, the path passes upward along the line S = h/ (αβ) from point b.

Along the path h = αβS, both h and S are increasing but h < (d− b) /φ and
hence L is decreasing. In Figure 3, if the path reaches one of the non-regular steady

states in the interior of χ, it is not absorbed by that steady state but passes through.

It is unusual to see a dynamic path pass through a steady state. Stopping at such

a steady state, however, would entail lowering current utility, which is maximized

when h = αβS and is increasing, and hence would violate the maximin criterion.

Eventually the harvest rises to (d− b) /φ, so that S = (d− b) / (αβφ). At this point
L̇ = 0. But the population is lower than at the non-regular steady state Y; therefore,

Ṡ = rS
µ
1− S

K

¶
− Lh = αβS

"
r

αβ

µ
1− S

K

¶
− L

#
> 0,
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so that dL/dS = L̇/Ṡ = 0. The planner can continue to allow the harvest, the

resource stock and the utility level to grow (to let h = αβS) without violating the

maximin constraint. Since now h > (d− b) /φ, the population grows as well. All
variables continue to grow, but equation (17) implies that the rate of growth of the

stock is curtailed as the population and harvest grow. The path eventually reaches

the line L = r
αβ

³
1− S

K

´
at pointD, where Ṡ = 0 but L̇ > 0, so that dL/dS is infinite.

From point D, the program crosses into the regular region. Utility does not jump

with the change of regime, and so at point D exceeds that at any previous point on

the non-regular path. At a reference point before point D, at all future times, even

in the regular region, the shadow value of equity, µ, is zero and hence π0 = 0. After

the change in regime (after point D), however, when society looks forward, all the

shadow values are as described in Proposition 1.

This argument above does not use the necessary conditions from the maximum

principle to derive the solution along BD. Indeed, those conditions tell us nothing

about the solution. By condition (21), along the line S = h/ (αβ) the maximum

principle would hold that (π1 − φπ2)L = 0, and hence that π1 − φπ2 = 0. Since

π1 ≥ 0 ≥ π2, we have π1 = π2 = 0. (The values make intuitive sense since the

resource stock is greater than and the population is less than the levels required to

maintain the maximin utility, attained along AB.) Furthermore, µ = 0 along the

path so that π0 =
R∞
0 µ (t) dt = 0. Therefore, condition (25) is violated. The path

is degenerate, in the sense that having maximin as objective has no effect on the

choice of harvest level; the harvest is equal to the level that maximizes current utility

without regard for the future. The path BD corresponds to a part of a path in

Brander and Taylor’s model.

Since µ = 0, it is not possible to relax the maximin constraint (20) at or after point

B in order to increase utility before point B, when the constraint is effective (Cairns

and Long 2006). Along BD, the shadow value µ, being zero, cannot be interpreted
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as a discount factor and ρ (t) is not defined.

There is also a path leading to the steady state at Y. Along WY, π1 > 0 > π2,

µ > 0 and π0 > 0. (It would be costly in terms of the attainable level of ū to deviate

from WY to follow the myopic path for a short time before adopting a maximin

policy.) Point Y, where h = d−b
φ
, S = h

αβ
= d−b

αβφ
and L = r

αβ

³
1− d−b

αβφK

´
and

ū = (αβS)β (1− β)1−β =

Ã
d− b
φ

!β

(1− β)1−β > 0,

is the steady state of Brander and Taylor’s decentralized, myopic economy. It is

also the limit of the set of regular maximin steady states. In this steady state,

utility is positive since access is not completely open; the population is limited by

the demographic constraint (16). Since Easter Island consisted of a cohesive, limited

society with given institutions, it is more accurate to view the resource as common

property than open access. Utility is sustained at point Y. By Proposition 1 (iv),

however, this steady state is not regular: looking forward from any time s at which

the economy is in this steady state, the planner sets µ (t) = 0 for all t ≥ s. It is clear
that a small perturbation in the resource stock would lead to a change in the path

and a change in utility in the same direction, so that, at Y, π1 > 0; the solution is

not degenerate.

In another paper on this model, Pezzey and Anderies (2003) consider the effect on

a decentralized economy of specifying a subsistence food requirement per capita,

h ≥ h0 > 0.

In a maximin model, the implications of the subsistence level of harvest can easily

be seen. In Figure 2, the region to the left of h0 is eliminated, and with it some non-

regular paths. But “man does not live by bread alone.” Suppose also that there is

also a minimal level of non-food goods: 1− h/ (αS) = m ≥ m0, or h ≤ (1−m0)αS.

This condition would affect our results if 1 −m0 < β: the solutions would have to
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stay northwest of the line S = h/ [(1−m0)α] rather than of S = h/ (βα). There

would be no non-regular maximin paths, and the regular paths would be curtailed

near the line L = r
αβ

³
1− S

K

´
.

CONCLUSION

Depending on initial conditions, this stylized economy has two dense families of

maximin paths. One is a continuum of regular paths converging to a steady state.

For the pairs (S,L) lying on a maximin trajectory and some function v, utility is given

by ū = v (S, L), where ∂v/∂S > 0 > ∂v/∂L . The steady states are conditionally

stable in the saddle-point sense. Regular maximin paths are confined to the semi-open

regionWYZ in Figure 3.

Brander and Taylor’s stylization saw about forty people arriving at Easter Island

when the resource stock was equal to the environmental carrying capacity, K. A

(regular) maximin path beginning at the date of arrival would have had the population

and resource decrease to reach the stationary state along a path like FE in Figure 3.

That the population increased some 250-fold indicates the divergence of laisser faire

from sustaining per-capita utility. The steady state to which Brander and Taylor’s

economy was tending was the limit of the set of maximin steady states and is a

non-regular maximin steady state. If it had been attained, the economy would have

continued in this state forever, irrespective of whether its myopic, common-property

regime was maintained or a new, maximin objective was adopted.

Along the other set of paths, utility remains constant until it passes into a second

regime, consisting of a path with increasing utility, not constrained by the maximin

objective, until passing into the regular region with constant utility and eventually

attaining a regular steady state. A representative of this family is ADE. One path,

WY, is the boundary of these two families; utility is constant throughout the path,

with the maximin constraint effective at all points up to a non-regular steady state
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at Y, where it is not effective.

All paths are time consistent. Furthermore, they are Pareto optimal. By the second

theorem of welfare economics, they can be decentralized using competitive prices.

Some authors have perceived the decentralization by viewing the shadow value of

equity, µ, as tantamount to a discount factor in a virtual utilitarian maximization.

Such a decentralization is possible for a regular maximin problem. Looking forward

from a point on either type of non-regular path, however, the planner assigns a shadow

value of µ = 0 when the maximin constraint is not effective, so that discount factor

is zero and the force of interest, ρ = −µ̇/µ, is not defined. The appropriate discount
factor for the virtual utilitarian problem in the non-regular cases is not µ.

Brander and Taylor show, and Pezzey and Anderies confirm, that a common-

property regime may lead ultimately to a sustained level of utility. But if sustainment

is the objective, a common-property regime in even a primitive society may be far

from efficient. Pezzey and Anderies find that implementing a policy of sustainment

in a decentralized economy can be extremely difficult. Our examination suggests that

one reason for this difficulty may be the high degree of subtlety, even in this ostensibly

simple problem, of the maximin solution itself.
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APPENDIX:PROOF OF PROPOSITION 1.

(i) Substituting the steady-state value Lss = rSss (1− Sss/K) /hss into equation
(27) gives thatÃ

βαSss − hss
αSss

!Ã
αSsshss

αSss − hss

!β

= (ψ1ss − φψ2ss)
·
rSss

µ
1− Sss

K

¶¸
. (33)
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Setting ψ̇i = 0 (i = 1, 2) in equations (28) and (29) yields that

ψ1ss

·
ρss − r + 2rSss

K

¸
= (1− β)

Ã
hss
αS2ss

!Ã
αSsshss

αSss − hss

!β

> 0 (34)

and

ψ2ss = −hss
ρss

ψ1ss. (35)

Equations (33), (34) and (35) determine (ψ1ss,ψ2ss, ρss). Since the resource is a

‘good’ stock in the sense of Léonard (1980), and the population is a ‘bad’ stock,

ψ1ss > 0 > ψ2ss. There is a function v (S,L) for which ū = v (S,L), and our argument

implies that ψ1 = ∂v/∂S > 0 throughout the program.

Since ψ1ss > 0, equation (35) implies that ψ1ss − φψ2ss > 0. Since all the other

factors in equation (27) are positive, βαSss − (d− b) /φ = βαSss − hss > 0, or

Sss >
d− b
αβφ

.

Differentiation of equation (34) yields that dρss/dSss < 0.

(ii) Since ψ1ss > 0 > ψ2ss and the shadow values are continuous, in a neighborhood

of the steady state by equation (30),

dL

dS
=
L̇

Ṡ
= −ψ1

ψ2
> 0.

(iii) Along a regular path,

[h(t)]β
"
1− h(t)

αS(t)

#1−β
= ū, or (36)

(βαS − h) dh+ (1− β)
h2

S
dS = 0. (37)

Now we are going to show that, at any point that is not a steady state (so that ḣ 6= 0)
and where Ṡ = 0 it must be that L = r

αβ

³
1− S

K

´
and that L̇ > 0, so that the slope

of the trajectory at that point is infinite. The argument is as follows. By equation

(37),

Ṡ = −S (βαS − h)
(1− β)h2

ḣ = 0,
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so that, given that ḣ 6= 0, Ṡ = 0 iff h = βαS. Also,

Ṡ = rS
µ
1− S

K

¶
− hL = S

·
r
µ
1− S

K

¶
− αβL

¸
.

Therefore, L = r
αβ

³
1− S

K

´
whenever Ṡ = 0. For S ∈

³
d−b
αβφ
, K

´
,

h = βαS > βα
d− b
αβφ

=
d− b
φ
,

and hence L̇ = (b− d+ φh)L > 0. Therefore,

dL

dS
=
L̇

Ṡ
→∞ as L→ r

αβ

µ
1− S

K

¶
.

For L > r
αβ
(1− S/K), Ṡ/L̇ = −ψ2/ψ1 > 0 by equation (30).

By equations (23) and (26),

π̇2 = π1h− π2 (b− d+ φh) = π1h− π2
L̇

L
=

π1
L

³
Lh+ Ṡ

´
= π1

rS

L

µ
1− S

K

¶
, (38)

so that sgnπ̇2 = sgnπ1.

Now suppose that we move backward along a maximin path in Figure 1, from a

point near a steady state such as E to a point on the line L = r
αβ
(1− S/K), such as

point D, where Ṡ = 0 and L̇ > 0. We shall argue that at D, π1 (t) and µ (t) are both

infinite. First, along the path ED (excluding point D), condition (25) holds that

(π0,π1 (t) ,π2 (t) , µ (t)) 6= 0.

Second, we show that, as we move backward along ED, π2 (t) must approach a

limiting value that is less than zero. For, suppose that π2 does approach zero. Since

π1 > 0 and Ṡ > 0 on ED except atD, the right-hand side of equation (38) is positive,

and thus π̇2 > 0. This, together with the supposition that π2 approaches zero near

D, implies that π2 > 0 near D. Bearing in mind that Ṡ > 0 and L̇ > 0 along ED

(though not at D), having π2 > 0 implies that

π1Ṡ + π2L̇ > 0,
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contrary to condition (26). Furthermore, since all of π1, Ṡ and L̇ are postive, π2 < 0.

From equation (26),

π1 = −π2 L̇
Ṡ
.

Since L̇ > 0 and π2 6= 0, as Ṡ → 0 (approaching point D) it must be that π1 → ∞.
Since ψ1 (t) = π1 (t) /µ (t), it must be that µ (t)→∞ as we approach point D.

(iv) Along the stable branch of the saddle point associated with the steady-state

pair (Sss, Lss) and the maximin utility level ū, let h = θ (S; ū). To find the slope of

the stable branch at a point such as E in Figure 1, we first divide equation (16) by

equation (17) to obtain

dL

dS
=
L̇

Ṡ
=

(b− d+ φθ (S; ū))L

rS (1− S/K)− θ (S;u)L
.

At the steady state (Sss, Lss), we use L’Hôpital’s rule and the fact that b − d +
φθ (S; ū) = 0 at (Sss, Lss) to get

dL

dS
=

d
dS
[(b− d+ φθ (S; ū))L]

d
dS
[rS (1− S/K)− θ (S;u)L]

=
Lφ dθ

dS

r (1− 2S/K)− θ dL
dS
− L dθ

dS

, or

Ã
dL

dS

!2
+

Ã
L

h

dθ

dS
− r
h

µ
1− 2 S

K

¶!Ã
dL

dS

!
+
Lφ

h

dθ

dS
, (39)

a quadratic equation in dL/dS. Since Lφ
h
dθ
dS
< 0 by equation (37), the two solutions

are of opposite signs. We take dL/dS > 0 because Figure 1 indicates that the slope

of the stable branch of the saddle point is positive.

Now let ε be a small, positive number and consider S = Sss+ε. The corresponding

value of L is Lss + εdL
dS
. Since we do not have an explicit functional form for θ (S; ū),

we replace the function θ (S; ū) by its linear approximation,

θ (S; ū) = θ (Sss; ū) + (S − Sss) dθ (Sss; ū)
dS

.
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Having solved for θ (S; ū), we have a system of two differential equations conditional

on h = θ (S; ū). We analyze the stability of this system by linearizing the system (16)

and (17):  L̇
Ṡ

 =
 0 φLssθS

−h∗ −LssθS + r (1− 2Sss/K)


 L− Lss
S − Sss

 , (40)

By equation (37),

θS = − (1− β)h∗2

(αβSss − h∗)Sss .

Let the matrix on the RHS of equation (40) be represented by J , its determinant,

h∗θSφLss, by det J and its trace, −LssθS+ r (1− 2Sss/K), by trJ . Its two character-
istic roots are

λ1,2 =
1
2

·
trJ ±

³
(trJ)2 − 4 detJ

´ 1
2

¸
.

The product of the roots is detJ and the sum of the roots is trJ . If det J < 0, there

are a negative and a positive root, and the steady state has the saddle point property:

there is a path converging to it. Since for all Sss ∈
³
d−b
αβφ
,K

´
, θS < 0, it follows that

det J < 0 in that interval. This proves stability in the saddle-point sense.

(v) At the point
³
r
αβ

³
1− d−b

αβφK

´
, d−b
αβφ

´
, S = (d− b) / (αβφ). This is not a regular

steady-state point by the proof of part (i) above.
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