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1. Introduction

Country elevators play a vital role in the grain

marketing system. Most of the grain in marketing channels

originates in country elevators, and prices set by elevators

are a critical link between world grain markets and the

decisions of individual producers. Curiously, the

price-setting behavior of country elevators has received

little attention in the literature. A few studies have

examined issues of spatial equilibrium (Lytle and Hill) and

market efficiency (Farris), and there is some published

evidence (Thompson and Dziura) on the determinants of

marketing margins for a cross section of elevators.

However, there have been no attempts to analyze elevator

price-setting in terms of an explicit, dynamic optimization

problem.

The manager of a grain elevator makes difficult

marketing decisions. His objective is to maximize returns

from grain marketing over some time horizon. In each

period, he must decide what prices to offer producers (for

both spot and forward delivery) based on the size of his

current grain inventories and purchase plans. He must also

decide how much grain to sell (spot and forward), taking

prices in terminal markets as given. Returns from marketing

will depend on the prices and quantities of grain bought and

sold, and on costs associated with grain handling. If unit

handling costs are positively related to the volumes shipped
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or delivered, the manager will have an incentive to reduce

fluctuations in elevator throughput. The manager may also

wish to keep the elevator's own grain inventories near

specified levels. This will influence marketing decisions,

since purchases and sales alter current and prospective

inventory positions.

The problem is complicated by uncertainty about

producer behavior and prices in terminal markets. The

manager decides how much grain he wishes to purchase and

chooses bid prices accordingly. The response of producers

to elevator bid prices can be forecast by the manager, based

on past experience and current market conditions, but the

forecasts are subject to error. Hence, the amounts of grain

purchased by the elevator and resulting inventory positions

are uncertain. In addition, the manager will base his

marketing decisions on expected price changes in terminal

markets. Prices in future periods are not known, but may be

forecast.

This paper presents a model that can be used to derive

rules for optimal marketing decisions. The optimization

problem is characterized as the maximization of a quadratic

objective function over a finite time horizon subject to a

set of linear difference equations. The objective function

in this case represents net returns from grain marketing,

and the constraints include linear forecasting equations and,

inventory accounting identities. The linear-quadratic

structure is computationally tractable and yields a set of
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linear decision rules for variables under the control of the

elevator manager.

In the next section, we briefly review some important

features of linear-quadratic control problems. We then

develop the elevator's marketing problem within this

framework. The paper concludes with some comments on

empirical application of the model.

2. Linear-Quadratic Control and Certainty Equivalence

The marketing model presented in this paper is based on

a special formulation of the linear-quadratic control

problem, due to Chow. Let yt be a (pxl) vector of

variables, and let xt be a (qxl) subvector of y . The

variables in xt are subject to the control of a

decision-maker. The vector yt is assumed to evolve

according to:

yt = A ye + C x + b + u (1)

where A and C are matrices of coefficients, bt is a vector

of constants, and ut is a vector of random errors. This

equation is quite general, since yt may be defined to

include lagged, as well as current, endogenous and control

variables; (1) could thus represent the reduced form of some

higher-order autoregressive system. The vector bt may

include the effects of exogenous variables not subject to

control.
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The problem is to minimize a criterion of the form:

T

Z = E (t - a K - at) ( - 2)
t=1

subject to (1). Eo is the expectations operator,

conditional on information available in period 0; a is at
vector of known constants; and Kt is a known, symmetric,

positive semidefinite matrix. (For maximization problems,

Kt must be negative semidefinite.) The vector at may

represent a preferred time path for variables in the

criterion. When Kt is diagonal (as it often is in macro

economic applications), the objective is to minimize squared

deviations of selected variables from their target paths.

The solution to the problem is a linear feedback rule,

specifying optimal values of the control variables xt in

terms of the known "state" values, Yt-. Under certain

conditions, the derivation of the feedback rule is

relatively simple. Suppose A and C are known matrices (not

subject to uncertainty). If the errors ut have zero mean,

known covariance, and are serially uncorrelated, the

optimization problem can be solved as though it were

deterministic, with errors evaluated at their means. This

is the property of "certainty equivalence" originally

introduced by Simon. The feedback rule is of the form

xt = Gt Yt- + gt (3.)

where Gt is a (qxp) matrix and gt is a (qxl) vector. The

coefficients are given by
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Gt = -(C HtC) (C HA)t ti t

gt = -(C HtC)C (Htb - ht)t t t t, 

where Ht and ht are defined by the Ricatti equations

H t = K_ + A Ht(A + C G )

ht_ = Kt_ at- + (A + C Gt) (ht - Ht b)

with terminal conditions H = K and h = K a . TheT T T T T

feedback rule (3) is calculated recursively, starting in the

terminal period and working backward to the initial period.

If the planning horizon is sufficiently long and if A and C

satisfy the convergence conditions described by Chow (pp.

170-72), the same feedback coefficients can be applied in

successive periods. Optimal control settings would still

change from period to period, however, because of the random

shocks ut that become embodied in the state vector.

This modeling approach has a number of advantages. It

can handle large problems, and generates feedback rules that

are simple to apply. As new information becomes available,

the state equations can be reestimated and the decision

rules revised. However, the solution procedure does not

anticipate any updating of the state equations; matrices A

and C are assumed to be known. Other, less restrictive

approaches to the linear-quadratic problem (discussed by

Chow and others) address learning behavior explicitly, but

are difficult to solve.
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3. The Elevator's Problem

Within the linear-quadratic control framework, the

elevator manager's control variables include prices paid to

farmers for spot and forward delivery, and contracted sales

(spot and forward) to buyers in terminal markets. The

manager's objective is to maximize the difference between

grain sale receipts and purchase costs, less quadratic costs

associated with grain handling, and with deviations of

inventories from some target path. The dynamics of the

model are determined by forecasting equations and a set of

accounting identities.

Underlying the model are certain assumptions about

elevator management. First, it is assumed that the manager

exercises some discretion in the prices he offers to

producers and is not simply deducting a fixed margin from

prices received in terminal markets. Put another way,

marketing margins are variables to some degree. Second, the

elevator is willing to carry inventories in its own

account--i.e., grain is not necessarily sold the same day it

is purchased. It is recognized that much of the price risk

associated with holding inventories can be eliminated

through hedging; the manager may, nevertheless, wish to keep

the elevator's own inventories near specified levels.

For simplicity, the model presented here does not

capture income from storage rental, and no attempt is made

to account for inventories stored but not owned by the

elevator. The manager's targets for elevator-owned
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inventories may, however, reflect available storage

capacity, which is determined by unowned inventories. It is

also assumed that the elevator buys and sells only one type

of grain. These simplifying assumptions can be relaxed in a

more complete formulation of the model. A further

simplification, imposed by the modeling framework, is to

require all price changes to occur at discrete time

intervals.

The planning horizon is of length T. For concreteness,

the time intervals can be interpreted as weeks. Forward

contracts, for sale and purchase, may be made up to m weeks

in advance of delivery. Let Qj denote a quantity of grain

purchased by the elevator, contracted in week t for delivery

j weeks hence; and S j denote a grain sale contracted in t

for delivery j weeks hence. Spot purchases and sales are

denoted Q.o and Sto. Let Qt and St denote (m+l) vectors:

Qt = (Q t, Qtl ... Qt )
t t,0 t,t

St = (S S ... M tmS t = (St, o Stai --- St.m)

Two price vectors are associated with these transactions.

Pq is the vector of prices bid by the elevator; and Pt is

the vector of prices bid by buyers in terminal markets:

p = (pq P, . .* )'t t,O t,i t,mn

Po = (t, P ..., P-t,'
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The vectors S and Pq are control variables for the

elevator's marketing problem; Qt will be specified as a

linear function of Pq and other variables. Sale prices, Pt,
t 

are net of transport costs and are exogenous to the

elevator.

Gross marketing returns (GMR) in week t are given by:

GMRt = Pt A St P_ P Qt

where A is a diagonal (m+1) matrix of discount factors:

6 0
62

A = . ; with (0<6<1).

0
6M

This formulation is possible only in the absence of

defaults, since discounted returns on forward transactions

are treated as current income. It eliminates the need to

retain lagged price and quantity variables in the model.

At the end of each week t, the elevator's net ownership

position is described by a vector of inventories:

Nt = (Nt N ... N )
t to t,i t,m

The first element, Nto is the elevator's spot position at

the end of week t, Ntl is the one-week forward position

(purchase commitments less.sales commitments), Nt,2 is the

two-week forward position, and so on. Inventories increase
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by the amount of purchase commitments (spot or forward)

entered in each period, and decrease by the amount of sales

commitments, as follows:

NN t = N NtL + Qt - S

Nt = Nt- + Qt - St,

(4)

N = N + 0 - S
Nt,m- i Nt-i,m + t,m-i t,m- 1

Nt = Q - Stt.,m t tm

with initial condition No given. In matrix notation,

1 1 0 ... 0
0 0 1

Nt = D Nt_* + 0t - St where D .10
N = D N + Q S where D = 0

0 ... 00

(m+l)x(m+l)

Target levels for inventories are denoted Nt (an m+l

vector); these may reflect space availability or prudential

interests, and are predetermined by the elevator manager.

In order to incorporate handling costs in the model, it

is necessary to keep track of cumulative sale and purchase

volumes by date of shipment or delivery. Let VS j denote

prospective shipments from the elevator, j periods hence.

Shipments in the current period are denoted V . Shipment
tvolumes evolve according to:,

volumes evolve according to:
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V- = Vs + S
t,O t-i,1 t,O

V' = V" + S
t,i t-1,2 t,,1

(5)

V = V + S
t,m-1 t-1 m t,m-1

V = S
t,m t,m

or in matrix notation,

0 1 0 ... 0
001

V = F V 1 + St where F = . 10
0 1

0 ... 0 0

(m+l)x(m+l)

Similarly, let Vq denote a vector of current and prospective

purchase volumes, cumulated by delivery date:

V = F Vq_ + Qt (6)

Actually, the handling costs incurred each week depend on

current shipments, V , and current deliveries, Vq .t,o' to'
These can be approximated by a quadratic function:

HCt = a [V ]2 + b [Vtq ] + c [V ]2
tC tao taO tO

A IC+ d Vo + e V'q + f

where a through f are estimated coefficients. Note that

forward purchases and sales can only affect handling costs

in future periods. For modeling purposes, it will be useful

to have a discounted measure of handling costs--one which

closely parallels the definition of gross marketing returns
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but does not reflect the timing of actual cash flows. The

discounted measure is given by:

DHC = [2St n V - S n S ]
t t t t t

+ [2Q e - st e Q ]
t t t t . t

+ (2Qn Vt - O I + 2X + 2Sa + 2 Qt

where n= a A, e = b A, 0 = c A, and X and X are vectors of

appropriately discounted linear cost coefficients. In this

formulation, all current decisions have immediate cost

effects.

In addition to handling costs, quadratic costs attach

to any deviations from desired net inventory levels. These

*1 *
are represented by (Nt - N t) W (Nt - Nt), where W is a

diagonal (m+l) matrix. The first diagonal element of W may

reflect the cost of failing to meet a current sales

commitment; other diagonal elements may reflect subjective

preferences for future net inventory positions. If the

manager wishes to balance forward purchase and sale

commitments, the corresponding targets for net inventories

will be zero.

Forecasting equations for Qt and Pt complete the

description of system dynamics. It is assumed that Qt can

be forecast with the following reduced-form equation:

Qt = o + a P + O Pt (7)

+ P r_ + f3 to + b + 
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where a , o', , ^, and { are square (m+1) matrices of

coefficients, bq is a vector of constants, and t is at t

vector of error terms. The inclusion of P' and Pt is
t I-i

justified if the elevator's market share is related to

changes in its marketing margin. For simplicity, Pa is

assumed to follow an autoregressive process:

P'+= y P + bP + t (8)

where y is a matrix of coefficients, bp is a vector of

constants, and v t is a vector of errors. Note that the

dependent variables in (8) have a different time subscript

than the error terms. This reflects an informational

assumption: that errors in the price forecasts are revealed

before any decisions are made. That is, the elevator

manager will fix his control variables Pq and S after he
t t

knows the prices bid in terminal markets. Finally, it is

assumed that the errors in (7) and (8) have zero mean, known

covariance, and are serially independent. This makes it

possible to invoke certainty equivalence.

The optimization problem can now be stated. It is to

maximize (over choice of controls, Pq and S ) the discounted
t t

sum of marketing profits over the planning horizon
T

Eo 56 t [GMRt - DHCt - (Nt -Nl ) W (N - Nt)
t=1

subject to equations (4) through (8), which encompass the

system dynamics. (A matrix representation is given in the
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appendix.) The recursive solution procedure outlined in the

previous section applies to this problem, with Kt = 6t K,

provided that certain definiteness conditions are satisfied.

The feedback rules express optimal levels of the choice

variables--spot and forward bid prices, and spot and forward

grain sales--as linear functions of the known state

variables.

4. Requirements for Empirical Application

Before the model presented here can be applied

empirically, it will need to be modified in several

respects. First, the treatment of contract periods is

unrealistic. Elevators change their bid prices daily, and

forward price bids typically apply to a contract month.

Ideally, the model should generate rules for daily pricing

and sales decisions based on daily spot inventories, monthly

forward inventories, and other state variables. The timing

of deliveries on forward contracts is subject to

uncertainty, but may be predicted to some extent. These

features will complicate the dynamics of inventory change.

In addition, it may be necessary to incorporate storage

rental in the model--particularly if (as seems likely)

producers who incur storage costs respond differently to

elevator bid prices.

The forecasting equations for Qt and Pt may also

require modification. As specified in (7) and (8), the
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forecasts are based on a small set of explanatory variables.

These include price and quantity variables that are recorded

by elevators as part of normal business operations. Other

explanatory variables could be introduced. For example,

futures prices might contain relevant information for

predicting prices in terminal markets. However, given the

recursive nature of the solution procedure, including such

variables would require specifying additional forecasting

relationships--e.g., it would be necessary to know how

futures prices evolve over time.

Predicting the response of producers to elevator bid

prices may prove especially difficult. Supply response will

depend to some extent on a seasonal pattern of grain sales

outside the control of any individual elevator. Elevators

compete for market share through their pricing policies. If

the elevators in a marketing region face the same terminal

market bids, marketing margins should determine their

respective market shares. This suggests that careful

consideration be given to assumptions about competitive

behavior in future periods.

The assumption that forecast errors are serially

independent is not limiting. If the forecast errors are

correlated but follow a finite-order ARMA process, the state

equations (1) can be augmented in a way that will satisfy

the statistical conditions for certainty equivalence (see

Pagan).
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Various coefficients in the objective function also

have to be estimated. The coefficients associated with

handling costs may be estimated on the basis of historical

cost data. Other coefficients--in particular, those

reflecting subjective preferences over future net inventory

positions--have to be elicited from the elevator manager,

along with the values of any target variables. In practice,

it may be necessary to modify objective function

-coefficients and target values and derive the corresponding

decision rules until the decision maker is satisfied that

his preferences are well represented.

Despite these problems, the framework presented here

can be the basis for a model that is simple, yet realistic

enough to be applied in a practical setting. Country

elevators will be under greater pressure to earn

satisfactory marketing returns in the next few years as CCC

stocks are liquidated and storage income is reduced. In

this environment, support systems for marketing decisions

will be increasingly important.
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APPENDIX

The elevator's control problem can be formulated in a

way similar to equations (1) and (2). Following Chow's

notation, define the vectors Yt, xt and at as follows:

qr Vq' Vf 1Yt = ( Nt t S P P P V V 

x = ( S Pt)PI

X *

a = ( Nt 0 ... ... 0

Note that Yt includes a scalar one. This will allow the

criterion to include linear cost terms. The optimization

problem is to maximize (over choice of control variables,

xt)

N-N -W 0 0 0 0 0 0 0 0 N-N

Q0t o n e -A/2 0 o -n -e/2 - Qt

st o e n 0 A/2 0 -e/2 -n - St

T .E Pq 0 -A/2 0 0 0 0 0 0 0 Pt
E6 t t

P- 0 0 A/2 0 0 0 0 0 Pt

Pv o - O O O O O O O . P

ti. t t

V" 0 -0 0 0 0 0 0 0 p

Vq O -n0 -/2 0 0 0 0 0 V0t t

Vt o -e/2 -n 0 O O O O O Vat _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ t

_ 1 -0 1 I o Xh.I 0 I ... 0 0 1 

t8(m+l) + 11 x (8(m+l) + 11
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subject to the system dynamics:

Nt D fl 0 xi ' o0 0 0 0 Nt- ~

t ° 0 ° OI a 01 0o ° 0 Qt-

Pt 0 0 0 0 0 0 0 0 pt-
st o o o o o o o o s

Pt O O O O O I O O P-

Ptvq O O O O O 0 O O pt -t--

Va 0 0 0 0 0 0 0 F 0 V0

____ ___ ___ ____ ___ ___ ____ ___ __110t t-i

-1 0 ... 0 1 _ _1

[8(m+l)+1] x 1 [8(m+l)+ll x [8(m+l)+ll

o_ t

I 0 2(m+l) xl ° 0

1+ 0 + 0 + 0

0 0 0 0

0 0 bp t t
0 C I

I 0 0 0

0 ... 0 0 0

[8(m+l)+ll x (2(m+l)l [8(m+l)+l] x 1
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If the number of forward contracts is not too large (say, m

< 9), this problem is small enough to be solved on a

personal computer, using the solution algorithm outlined in

section 2.


