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I. INTRODUCTION

The purpose of this paper is to illustrate how the specification

of Bayesian priors in a vector autoregression (VAR) can dramatically

alter the results of the estimation of such a model. A new approach

is used in this paper to modify the traditional use of Bayesian

priors in VAR's to fit the needs of a highly seasonal model of the

U.S. turkey market.

A prior knowledge of VAR methodology is assumed in this paper.

Ford [3] presents a cursory discussion of vector autoregression

methodology and provides references to other articles in the

literature. Section II of this paper discusses the mechanics

involved in setting the Bayesian priors and their use in the

estimation technique. Section III compares two VAR's of the U.S.

turkey market; one model with standard Bayesian priors and one model

with the priors adjusted to account for seasonality in the market. A

list defining variables used in this paper and the RATS1 code used in

the estimation of the model presented in this paper appear in the

appendix.

1 Regression Analysis of Time Series by Thomas Doan and Robert
Litterman, VAR Econometrics, Minneapolis, Minnesota.
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II. BAYESIAN VECTOR AUTOREGRESSION

The use of Bayesian priors on parameter values in a VAR simply

involves the incorporation of our prior beliefs about parameter

values and their distributions into the estimation technique. The

exclusion of variables in a structural model really involves the

imposition of our very strong prior beliefs that parameter values on

those variables are zero with certainty. Incorporating such strong

beliefs about parameter values, even if non-zero, opens the model to

criticism of the exclusion of particular variables or of the "known"

value of a parameter. Consequently we wish to make broader, more

general assumptions about the distributions of parameter values.

These priors have sometimes been referred to in the literature as

Minnesota or Litterman priors.

A prior distribution is to be created for each estimated

parameter. With a quarterly VAR of five variables and six lags, this

would involve thirty parameters per equation (assuming no constant)

times five equations for a total of 150 prior distributions to

specify. Although this can be done, it is by no means an easy task.

Also, the individual specification of each parameter's prior could be

subject to critical arguments about its specification. Instead, a

method to specify more general and accessible priors is developed

that alleviates the task of specifying each prior individually,

weakens the basis for criticism of individual priors, and allows

reproduction by other investigators.

The general specification of the Litterman priors revolves

around the assumption that each equation follows a random walk
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process; Yt - Yt-l + vt. That is, the expectation of this period's

value of the dependent variable is simply last period's observation

of that value. The prior mean for the parameter on the first lag of

the dependent variable will be one and the prior mean on all other

variables will be zero.

Since such naive forecasts are restrictive and unsatisfactory

for a variety of reasons, prior distributions are placed around these

means. One assumption of these distributions is that variable lags

further into the past have less explanatory power than more recent

lags. The resulting distributions are illustrated in Figure 1.

Distributions around the prior means must still be quantified.

These distributions are specified with general priors imposed in the

form of standard deviations of the estimated parameters. The

Litterman prior on standard deviations is of the form 2

--- if i j

Sij -

72 ai
if i j j

jal Oj

where 6ij is the standard deviation of the coefficient lag Q of

variable j in equation i.

2 See Litterman [5], and Bessler and Kling [1]. Note that the
RATS manual [Doan and Litterman] is incorrect in its specification of
this prior. The subscripts on the scale factors, ai and aj, are reversed.
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The investigator must specify three parameters (A, 71, 2) to

derive the standard deviations. A is the constant overall tightness

of the prior. 3 As this parameter is set very tightly (approaches

zero), the estimated coefficients in the model approach their prior

means since the distributions around these means become spiked.

'1 is a decay parameter which determines the rate at which lags

farther back receive less weight (become tighter around their means).

Bessler and Kling use a harmonic lag decay of the form g(Q) = Y71

They note, however, that 71 - 0 gives better results than other

values of 71. This means that there is no decay, and that past lags

receive weights equal to more recent lags. This structure would not

look like Figure 1. Instead all lags would have distributions

similar to lag 1 around their respective means.

Finally, Y2 is used to specify the relative weights of variables

in each equation. Own lags of dependent variables typically carry a

weight of 1.0. Other variables would be assigned weights ranging

from 0.0 to 1.0. Other variables can receive the same weight in each

equation or the weights can be more finely tuned to each individual

3 A is described by Litterman and Bessler and Kling as the
"constant standard deviation on the first lag of the dependent
variable in each equation." For higher lags, A is then adjusted by
the decay term and the appropriate weights, 72. This interpretation
is correct in the true form of the Litterman prior. However, as the
prior structure is altered so that the random walk assumption is
changed (as will be done in section III) A should be reinterpreted as
a general prior standard deviation for all lags which is modified for
individual sets of parameters.
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equation (Bessler and Kling [1]).4

Before estimation, priors are scaled by a ratio of standard

errors of univariate autoregressions of the same lag length to be

estimated in the VAR. ai is the standard error of residuals from

such an autoregression for variable i. This scaling is to ensure

that individual variables do not receive inappropriate weights in

their contributions to the VAR merely because of the magnitude of

their units of measurement.

Once the prior means and standard deviations of the parameters

are specified, the equation coefficients can be estimated using a

form of Theil mixed estimation (Theil [8]). This is a method of

incorporating prior information about the equation parameters into

the estimation procedure.

Let y = XP + u be the general linear statistical model, and let

our series of "dummy observations" on the parameter values be

described as r = RE + v. (var(u) = var(v) = a2 .) The Theil mixed

estimator is

pm = (X'X + R'R)-1 (X'y + R'r).

Given the prior on an individual parameter as pi ~ N (bi,e8), a

restriction on an individual pi is ri - Ripi where R i = a/e and ri =

(a/ei) bi . b is the prior mean. For a set of these restrictions, in

matrix notation, R becomes a diagonal matrix with a/Oi in the iith

entries along the diagonal. With mean 1 on the first lag of the

4See the RATS manual [Doan and Litterman] for "symmetric" and
"general" prior specifications.

6



dependent variable, r becomes a vector with a/e as the entry in the

(,*(i-l)+l)th cell and zeros everywhere else, where this would be the

entry for the first lag of the dependent variable in equation i.5

Since a2 is unknown, we substitute s2, where s2 is the variance

of the residuals from a univariate autoregression of the same lag

length as the VAR. We have specified our O's previously using the

i S.
notation 5 ij. The entries in the R and r arrays then become s/6ij.

This is a slightly different approach taken from that appearing in

Litterman [5] or Bessler and Kling [1]. 6 The R and r arrays as

specified above are then used to derive the Theil mixed estimation

parameter estimates.

One further comment is necessary to clarify the degrees of

freedom in VAR's. Since dummy observations are added for lags of

each system variable, the number of observations increases. The

degrees of freedom are no longer T-K, where T is the number of

observations and K is the number of regressors. Instead they are T-

D, where D is the number of deterministic or non-system variables.

5This notation is for single equation estimation. The arrays
R, r, and b would expand if we thought of this procedure as
estimating the system simultaneously.

6 However, it is consistent with the RATS manual and the way
RATS computes the priors. Bessler and Kling have misspecified the
array r; in their paper. r is not simply the vector of means (ones
and zeros). That vector is b. With the use of Litterman priors, the
calculation of the Theil mixed estimators remains the same. However,
if the priors are generalized to account for seasonality, more care
is required in the specification of the R and r arrays.
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III. MODELING THE U.S. TURKEY MARKET WITH SEASONAL PRIORS

The U.S. turkey market has an important seasonal component.

Traditionally, turkey production was primarily for the holiday season

in November and December. However, changes in consumer demand for

turkey meat over the past two decades have made turkey production

relatively less seasonal.

Because of the seasonality in the market, the use of true

Litterman priors may be inappropriate. This section of the paper

discusses the turkey market in slightly more detail, presents results

of a Bayesian VAR of the turkey market using Litterman priors, and

finally compares that model to one which alters those priors to

reflect the seasonality in the market.

A. The U.S. Turkey Market

The U.S. turkey industry has evolved from a highly seasonal

industry geared primarily for the traditional holiday season to one

that produces year round. This is primarily due to shifts in

consumer preferences away from red meat consumption. Aggressive

marketing of turkey products has also contributed to this shift in

preferences. Non-seasonal consumption is also supported by the wide

variety of turkey products now available. In 1980, 39% of U.S.

turkey production was marketed as processed products (hot dogs, ham,

sandwich meat, etc.) 28% as cut up parts, 28% as whole processed

birds (smoked, basted, etc.) and only 5% as plain whole birds. Table

1 illustrates shifts in consumer demand for turkey since 1960.
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Table 1: Per Capita Turkey Consumption by Quarterl

Year 01 02 03 Q4 Total

---.--.- - - - pounds - - - --

1960 .6 .8 1.3 3.4 6.1
1965 .7 .8 1.8 4.1 7.4
1970 .9 .9 2.2 4.2 8.2
1975 1.1 1.4 2.0 4.0 8.5
1980 1.8 2.0 2.7 4.0 10.5
1983 2.1 2.2 2.5 4.4 11.2

1Source: Lasley, Henson, and Jones.

Changes in relative meat prices have also contributed to this

shift in demand. Table 2 shows how turkey prices have fallen

relative to pork and beef prices while roughly remaining on par with

chicken prices.

Table 2: Amounts of Other Meats Equal to the Cost of One Pound of
Turkey Meat at Retail1

Years Pork Beef Chicken

- -- - pounds

1960-64 .86 .63 1.22
1965-69 .70 .57 1.21
1970-74 .70 .51 1.31
1975-79 .59 .51 1.31
1980-82 .59 .39 1.28

1 Source: Lasley, Henson, and Jones.

Note, however, that fourth quarter per capita turkey consumption

is still about twice that of each of the first two quarters. To meet
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this seasonal demand, production still takes place in late summer and

early fall, and cold storage inventories are built up prior to the

holiday season. Table 3 illustrates 1983 quarterly slaughter and

hatch relationships and Table 4 shows cold storage inventories.

There is also some seasonality in turkey price although it is not as

pronounced. This is shown in Table 5.

Table 3: Quarterly Percentages of 1983 U.S. Turkey Hatch and
Slaughter1

Quarter Slaughter % Hatch %

I 18.0 26.29
II 22.6 33.88
III 29.7 21.91
IV 29.7 17.92

Total Poults Hatched - 182,122,000
Total Turkey Production = 2,563 million pounds RTC

1 Source: Lasley, Henson and Jones.

Table 4: U.S. Beginning of Quarter Turkey Stocks1

Year

Quarter 1970 1975 1980 1985

- - ---- million pounds RTC -------

I 191.9 272.0 240.0 203.9
II 101.1 207.3 208.9 185.3
III 94.7 193.2 286.6 255.7
IV 343.0 409.8 398.8 432.2

1 Source: Lasley, Henson and Jones.
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Table 5: Average Quarterly Turkey Pricel

Year

Quarter 1980 1981 1982 1983 1984 1985

- - - --- cents per pound, 1984 dollars ---

I 77.6 72.5 60.7 58.3 68.7 67.5
II 68.0 73.4 63.7 60.0 67.2 63.1
III 85.1 70.5 69.5 62.4 71.9 74.9
IV 88.6 61.1 67.5 71.2 89.3 85.9

1 Source: Lasley, Henson and Jones.

B. A Bayesian VAR of the U.S. Turkey Market with Litterman Priors

A quarterly Bayesian VAR of the U.S. Turkey Market was estimated

with five system variables of six lags each. The system variables

are turkey production measured in million pounds RTC (Ready To Cook),

the New York wholesale turkey price for 8-16 pound hens measured in

dollars per pound, beginning of quarter cold storage inventory in

million pounds RTC, turkey poult hatch levels in 1,000 poults, and

per capita disposable income. In addition, non-system "exogenous"

variables were included. These are two lags each of wholesale beef

and chicken prices, six lags each of corn and soybean meal prices, a

constant term, a trend term, a dummy term for late 1972 and 1973, and

seasonal dummy variables. All prices are in 1984 dollars inflated by

the CPI, and income is also in 1984 dollars adjusted by the PCE price

deflator.

Input and substitute commodity prices are included as exogenous

to the system because the turkey market does not produce enough

information to adequately model these prices. These prices would be
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better modeled with levels of these commodities included as well to

generate capable forecasting equations for these series. It is

important to have good equations for these price series since

forecasts of these prices are used in generating forecasts of the

turkey market variables through the chain rule of forecasting. These

variables are treated exogenously to keep this model as small as

possible while still maintaining the influence of these exogenous

commodity prices. As the model stands now, actual historic values of

chicken, beef, corn and soybean meal prices are fed into the within

sample forecasts for the turkey market instead of forecasts of these

exogenous prices.

The prior means placed on the estimated parameters are one for

the first lag of the dependent variable in each equation and zero

elsewhere. A relatively loose overall tightness of A - .2 was used

with this model. The decay parameter is 71 = 1.0. These values of A

and l7 correspond to those used in the model adjusted for

seasonality. These values were chosen after some experimentation

with the model and their choice was based on the forecasting ability

of the model. A loose value or A seems reasonable in that it allows

for greater deviation from the previous period's (year's) value of

the dependent variable resulting from changes in the other variables.

Finally, the weights of other variables in each equation are

given in Table 6. These weights were chosen in a rather ad hoc

manner based on prior knowledge of the market. Note that these

weights are specified so that per capita income is not really

influenced by the turkey market and is essentially a six lag

12



Table 6. General Specification of the Prior, 72.

Dependent Independent Variable Lags
Variable PROD PRICE STORE HATCH PCDI

PROD 1. .8 .8 .9 .1
PRICE .9 1. .9 .8 .1
STORE .9 .9 1. .8 .1
HATCH .8 .9 .8 1. .1
PCDI .001 .001 .001 .001 1.

PROD = turkey production, PRICE = turkey price, STORE = turkey
stocks, HATCH = turkey hatch, PCDI = per capita disposable income.

univariate autoregression. No priors are placed on the deterministic

variables.

The seasonality inherent in the turkey market suggests that the

decay factor, 71, should not be very large. A large decay would

drive the coefficient on the fourth lag of the dependent variable

toward zero. We would expect, however, that this coefficient would

be close to one. This same model was estimated with 71 - 0.0. This

specifies there is no decay on the lag structure.

Table 7 compares these two models. Note that when 71 - 0.0 the

equations seem to fit the data much more closely based on R2 and

standard error (SEE) criteria. However, 71 - 1.0 seems to do a much

better job of forecasting as shown by the root mean squared forecast

errors for the various step-ahead forecasts listed. Perhaps, then,

the first equation is overfit to the data. Although it will be shown

later that the priors placed on the model with 71 = 1.0 are

intuitively wrong, it is important to understand that through the

manipulation of, and the experimentation with the values of the

parameters that make up the priors, it is very easy to increase the

13



Table 7: Comparison of the Bayesian VAR's With Different Decay
Structures

71 - 1.0 71 - 0.0

R2 SEE* DW R2 SEE DW

PROD .9976 13.14 1.77 .9990 8.53 1.63
PRICE .9785 .0392 2.29 .9885 .0287 2.85
STORE .9947 10.48 2.22 .9974 7.32 2.69
HATCH .9975 995.0 2.40 .9986 728.5 2.38
PCDI .9908 21.74 2.02 .9910 21.43 2.14

Root Mean Squared Forecast Error:

71 - 1.0 71 - 0.0

EQUATION STEP

PROD 1 40.42 52.40
2 48.19 72.23
4 61.89 92.38
8 71.20 143.84

PRICE 1 .151 .182
2 .214 .280
4 .208 .298
8 .224 .599

STORE 1 37.80 48.28
2 45.75 59.38
4 51.31 100.50
8 91.16 156.91

HATCH 1 4480 5475
2 4600 6139
4 4702 7138
8 8793 11501

PCDI 1 36.28 39.40
2 51.46 55.75
4 60.98 66.64
8 73.40 69.48

* SEE - Standard Error of Estimate
DW - Durbin-Watson Test Statistic
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R2 and reduce the standard error. The resulting estimated equations,

however, generally will not give accurate forecasts.

C. A Bayesian VAR of the U.S. Turkey Market with Seasonal Priors

The seasonality in the turkey market raises serious concerns

about the assumption of the random walk process underlying the VAR

methodology. Rather than specify the random walk process as

Yt = Ytl- + vt in a quarterly model, a more appealing specification

would be Yt - Yt-4 + vt. Under this assumption the prior mean would

be one on the fourth lag of the dependent variable in each equation

and zero elsewhere. Distributions around the means must also change

so that variance decays immediately on the first lag but remains at

full value on the fourth lag. The resulting distribution would look

like that in Figure 2.

The same model described in B. above was estimated with seasonal

priors. Means on lags of the dependent variables are one on the

fourth lag and zero everywhere else. The per capita disposable

income variable retains the Litterman prior structure, however. The

decay structure is:

r(R+1)- a 5 1,2,3

g(Q) = l =4

(e-3) f = 5,6

where 71 = 1.0. Everything else in the model remains as it appears

for the previous VAR's.

15
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Table 8: A Comparison of Seasonal and Litterman Priors in VAR's
of the U.S. Turkey Market

EQUATION PROD PRICE STORE HATCH PCDI

R2

SBVAR .995 .943 .986 .995 .990
BVAR .999 .989 .997 .999 .991

SEE
SBVAR 19.18 .064 17.2 1439.7 23.08
BVAR 13.14 .039 10.48 995.0 21.74

RMSE THEIL U

EQUATION STEP SBVAR BVAR SBVAR BVAR

PROD 1 13.14 40.42 .058 .179
2 36.72 48.19 .124 .162
4 45.50 61.89 .994 1.352
8 61.29 71.20 1.109 1.289

PRICE 1 .040 .151 .422 1.579
2 .112 .214 .868 1.665
4 .120 .208 .930 1.609
8 .138 .224 .759 1.231

STORE 1 12.87 37.80 .085 .249
2 34.38 45.75 .186 .247
4 39.71 51.31 .747 .965
8 47.99 91.16 .7719 1.464

HATCH 1 941 4480 .057 .272
2 2598 4600 .114 .202
4 2448 4702 .906 1.741
8 4027 8793 1.142 2.494

PCDI 1 18.38 36.28 .645 1.274
2 37.24 51.46 .793 1.096
4 55.77 60.98 .696 .739
8 77.38 73.40 .537 .510
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Table 8 compares the VAR with seasonal priors (SBVAR) to the

model with Litterman priors (BVAR). Note that the model with

seasonal priors outperforms the other model based on the forecast

statistics RMSE and THEIL U. The THEIL U statistic is greater than

one only twice for the steps listed. 7 This statistic has little

meaning for steps 1 and 2, however, because of the seasonality of the

data. It can be useful for the comparison of two or more models, but

the low values for these steps is to be expected since the model

hopefully does a better job accounting for seasonality than the naive

forecast of no change.

These forecast statistics are for out of sample forecasts from

within the sample data. The model is first estimated over a

subperiod of the data; in this case from third quarter 1971 to first

quarter 1979. Forecasts are then made and compared to the data not

yet included in the estimation. One more observation is then added

and the model is reestimated using the Kalman filter. Forecast

statistics are again computed. This process is continued until

7 The Theil U statistic is the ratio of the RMSE of the model tothe RMSE of the naive forecast of no change. It is specified for ak-step ahead forecast as:

U_ + (Ft+k - At+k)2 1/2

\ (At - At+k)2

where Ft - forecast value of the dependent variable

At - actual value of the dependent variable.

This statistic is convenient because it is independent of units ofmeasure. Values of U > 1.0 indicate the naive forecast outperforms
the model. They are not very impressive.
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fourth quarter 1984. This process, then, generates forecast

statistics which evaluate the specification of the model in terms of

variables, lags, etc., instead of evaluating final parameter values.

The improvement in the forecast statistics shown in the SBVAR

model is quite dramatic. The most improvement is in the PRICE

equation. The model with seasonal priors forecasts price reasonably

well, while the model with Litterman priors forecasts PRICE very

poorly.
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IV. SUMMARY AND CONCLUSIONS

This paper has presented a brief discussion of the use of

Bayesian priors in vector autoregression models. Three models of the

U.S. turkey market are presented. The first two used standard

Bayesian VAR techniques and differed only in decay structure. The

last model altered the standard use of the Litterman priors to

account for seasonality in the market. That procedure dramatically

improved the forecasting performance of the model.

The results discussed in the previous section indicate that the

intelligent use of Bayesian priors in a manner appropriate to the

problem at hand can yield significant improvement in the model

results. If one remembers that the Bayesian priors represent what we

know about the model a priori, then the priors can be tailored to a

wide variety of problems. This method has the flexibility to be

useful in a great many applications.

More work needs to be done in this area in a number of places.

A standard method of putting priors on the deterministic variables is

needed. The method to deal with seasonality presented in this paper

needs to be refined. _The method to determine the relative weights of

variables (72) in the equations needs more work. Perhaps these needs

can be met as VAR's are applied to more economic problems.
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APPENDIX

List of Variable Definitions:

6 ij the prior standard deviation of the estimated parameter of

lag Q of variable j in equation i (referred to also as 6i)

A = the lag length of a particular variable

A = overall tightness parameter in the prior standard deviation

1 =- the decay parameter in the prior standard deviation

Y2 = weights of lags of the non-dependent variables in prior

standard deviation

a = standard deviation of residuals

3 = estimated parameter vector

r,R - restrictions on p

b = vector of prior means

S = estimate of true residuals in the model (a)

T = number of observations over time in the data set

K = number of regressors in an estimated equation

D = number of deterministic variables in the VAR system

(those not having estimated equations)
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** THIS PROGRAM IS TO CALCULATE THE THEIL MIXED
** ESTIMATION PARAMETERS FOR A BAYESIAN VAR AND
** COMPUTE THE APPROPRIATE FORECAST STATISTICS
**

** THIS PROGRAM IS WRITTEN FOR MAINFRAME RATS
**

** CHANGES MUST BE MADE ONLY IN LINES MARKED WITH
** @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

** THIS SECTION OF CODE SETS UP THE RATS WORK SPACE
** AND READS IN THE DATA
**

CAL 70 1 4
ALLOCATE 40 88,1 10 150
EQV 1 TO 27
USDA XPORT STORE HATCH SMEAL CORN PROD DIS PRICE $
CHICK PORK BEEF PCDI WTPRC Q2 TREND DUM73 $
El E2 E3 E4 E5 Fl F2 F3 F4 F5
CLEAR
DATA(ORG-VAR) 70,1 85,4 1 TO 14
LIMITS ERRORS 100 WARNINGS 1000
**

** THIS SECTION OF CODE DEFINES THE DETERMINISTIC
** VARIABLES TO BE INCLUDED IN THE VAR
**

SEASONAL Q2 70,1 85,4 4 70,2
SET TREND 70,1 85,4 - T
ZEROS DUM73 70,1 72,2
UNITS DUM73 72,3 73,4
ZEROS DUM73 74,1 85,4
** THIS SECTION OF CODE READS IN THE FOLLOWING
** PARAMETERS:
**

** DETER - NUMBER OF DETERMINISTIC VARIABLES
** LG - NUMBER OF LAGS
** NUMV - NUMBER OF SYSTEM VARIABLES
** DK - DECAY PARAMETER
** TGHT - TIGHTNESS PARAMETER
**

DECLARE INTEGER DETER LG NUMV
DECLARE REAL DK TGHT
**@@@@@(@@@@@@@@@@@@@@@@@@@@@@@@
INPUT DETER LG NUMV DK TGHT
22 6 5 1. .2
**@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
**

** THIS SECTION OF CODE PREPARES THE VECTORS
** OF DECAY PRIORS GIVEN DK
**
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** VDK = VECTOR OF DECAYS BY LAG

DECLARE VECTOR VDK(LG)
DECLARE VECTOR VDKB(LG)
**

** ROWS = NUMBER OF ROWS IN PRIOR MATRIX
**

IEVAL ROWS=NUMV*LG+DETER+1
DO I = 1,3
EVAL VDK(I)=(I+1)**(-DK)

END
DO -I = 4,LG

EVAL VDK(I)=(I-3)**(-DK)
END
DO I = 1,LG

EVAL VDKB(I)=I**(-DK)
END

**

** THIS SECTION OF CODE INPUTS THE ARRAY OF WEIGHTS
** TO BE USED IN THE PRIORS
**

** PGEN = MATRIX OF GENERAL PRIORS
**

DECLARE RECTANGULAR PGEN(NUMV,NUMV)

**@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
INPUT PGEN
1. .9 .9 .8 .001 .8 1. .9 .9 .001 .8 .9 1. .8 .001 $
.9 .8 .8 1. .001 .1 .1 .1 .1 1.

**@@@@@6@@@@@@@@@@@@@6@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@
**

** THIS SECTION OF CODE COMPUTES THE UNSCALED PRIORS
**

**

** PRIR = INPUT MATRIX OF NON-SCALED PRIORS
**

DECLARE RECTANGULAR PRIR(ROWS,NUMV)
EWISE PRIR(I,J)=0.0
DO I-1,NUMV

DO J=1,NUMV
DO K-1,LG
IF I.EQ.5
EVAL PRIR(((J-1)*LG+K),I)=1/(TGHT*VDKB(K)*PGEN(J,I))

ELSE
EVAL PRIR(((J-1)*LG+K),I)=1/(TGHT*VDK(K)*PGEN(J,I))

END
END

END
**

** THIS SECTION OF CODE DEFINES THE VAR SYSTEM WITH ALL
** PRIOR PARAMETERS SET EQUAL TO ONE. THIS WAY RATS
** WILL DO THE SCALING. THIS METHOD IS USED BECAUSE OF
** A BUG IN THE FULL OPTION OF SPECIFY IN MAINFRAME RATS.
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SYSTEM 1 TO NUMV
**

**@@@@@@a@@@@@@@@@@@@@@@@@@@@@@@@@@
VARIABLES PROD PRICE STORE HATCH PCDI

**@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
**

LAGS 1 TO LG
**

**@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
DET CONSTANT -CHICK 1 2 -BEEF 1 2 -CORN 1 6 -SMEAL 1 6 -Q2 0 2 $
TREND DUM73

**@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@
**

SPECIFY(TIGHT-1.,DECAY-0.0,TYPE-SYMMETRIC) 1.0
END(SYSTEM)
**

**

** THIS SECTION OF CODE IS TO PERFORM THE ESTIMATION
** AND CALCULATE THE FORECAST STATISTICS
**

**

** SCPRIR - OUTPUT MATRIX OF SCALED PRIORS
**

DECLARE RECTANGULAR SCPRIR(ROWS,NUMV)
DECLARE RECTANGULAR SCPRIR2(ROWS,NUMV)
IEVAL NREG-ROWS-1
DECLARE REAL PTEMP
DECLARE VECTOR SMALLR(NREG)
DECLARE VECTOR SMALLR2(NREG)
DECLARE SYMMETRIC CMOMXX(NREG,NREG)
DECLARE VECTOR CMOMXY(NREG)
DECLARE RECTANGULAR LPRIR(NREG,NREG)
**

**

** THE ESTIMATION OF THE MODEL IS PLACED INSIDE THE
** THEIL LOOP
**

**

THEIL(SETUP) 5 20 85,4
#1 TO 5
DO DATE-(79,1),(84,4)
**

** THE ESTIMATE IS PLACED HERE TO ENABLE RATS TO SCALE
** THE PRIORS PROPERLY WITH EACH ADDED OBSERVATION
**

**

ESTIMATE(DUMMY-SCPRIR,NOPRINT,NOFTESTS) 71,3 DATE
EVAL PTEMP-O.0
**

** THE PRIORS ARE CALCULATED HERE
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DO I = 1,NU LG

DO I = 1,NUMV*LG)
DO J = 1,NUMV

EVAL PTEMP=SCPRIR(I,J)*PRIR(I,J)
EVAL SCPRIR2(I,J)=PTEMP

END
END
**

** SMALLR = VECTOR OF PRIOR MEANS
**

**

**C

** CMOMXX = NEW X'X PORTION OF CMOM
** CMOMXY - NEW X'Y PORTION OF CMOM

** LPRIR - TRANSFORMATION OF SCALED PRIORS
** TO USABLE DIAGONAL PRIOR MATRIX
** SMALLR2 = SCALED PRIOR MEAN VECTOR
**

**

** THIS IS THE ACTUAL THEIL MIXED ESTIMATION ROUTINE
**

**

DO K=1,NUMV
EWISE LPRIR(I,J)=0.0
EWISE SMALLR(I)=0.0
IF K.NE.5
EVAL SMALLR((K-1)*LG+4)=1.0
ELSE
EVAL SMALLR((K-1)*LG+1)=1.0
DO J-1,NREG
EVAL LPRIR(J,J)=SCPRIR2(J,K)

END
MAT SMALLR2-LPRIR*SMALLR

**

**

** THE ESTIMATION TAKES PLACE IN TWO STAGES. THE MOMENT MATRIX
** IS FORMED FROM THE DATA. IT IS THEN ALTERED ACCORDING TO
** THE THEIL MIXED ESTIMATION PROCEDURE AND THE REGRESSION IS
** COMPLETED.
**

CMOMENT(EQUATION=K) 71,3 DATE
OVERLAY CMOM(1,1) WITH CMOMXX(NREG,NREG)
OVERLAY CMOM(NREG+1,1) WITH CMOMXY(NREG)
MAT CMOMXX=CMOMXX+TR(LPRIR)*LPRIR
MAT CMOMXY=CMOMXY+TR(LPRIR)*SMALLR2
REGRESS(EQUATION=K,DFC=-NUMV*LG,NOPRINT)

END
THEIL DATE
END
THEIL(DUMP)

~~~~***~26
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** THE THEIL MIXED ESTIMATION IS REPEATED AGAIN HERE
** FOR THE WHOLE SAMPLE TO ENABLE THE PRINTING OF THE
** ESTIMATION RESULTS FOR ONLY THE FINAL UPDATE. THIS IS
** AN INCONVENIENCE OF RATS. ANY SUGGESTIONS REGARDING
** ALTERNATIVES ARE WELCOME.
**

**

DO K-1,NUMV
EWISE LPRIR(I,J)-O.O
EWISE SMALLR(I)-O.O
IF K.NE.5
EVAL SMALLR((K-1)*LG+4)-1.0
ELSE
EVAL SMALLR((K-1)*LG+1)-1.0
DO J-1,NREG
EVAL LPRIR(J,J)-SCPRIR2(J,K)
END
MAT SMALLR2-LPRIR*SMALLR
CMOMENT(EQUATION-K) 71,3 84,4
OVERLAY CMOM(1,1) WITH CMOMXX(NREG,NREG)
OVERLAY CMOM(NREG+1,1) WITH CMOMXY(NREG)
MAT CMOMXX-CMOMXX+TR(LPRIR)*LPRIR
MAT CMOMXY-CMOMXY+TR(LPRIR)*SMALLR2
REGRESS(EQUATION-K,DFC--NUMV*LG)
END
**

END
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