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Introduction

In studies of probability distributions for variables which are

observed sequentially through time (e.g., production by an individual

firm), it is often necessary to detrend data in order to eliminate bias

due to changes in such factors as technology and tastes. This is

generally accomplished by regressing the dependent variable on some

measure of time using least squares methods. These give maximum

likelihood estimates under the assumption that the error term is

normally distributed. While this may be an attractive simplifying

assumption, empirical tests have found that it often fails to hold for

agronomic and farm-level crop yield data (Day). Moreover, even for

data that are distributed normally, measurement and input errors

commonly "contaminate" the data set.

Robust regression (RR) techniques offer means of coping with data

for which the error term is not normally distributed. They have been

discussed extensively in the statistics literature during the past

20 years and are becoming increasingly available to applied economists

in econometric software packages (e.g., SHAZAM (White et al.), PROGRESS

(Rousseeuw and Leroy)). However, they do not necessarily offer

coefficient estimates that are significantly different from ordinary

least squares (OLS), even when errors are not distributed normally.

This paper will (1) illustrate cases in which several robust regres-

sion methods on an equation having nonnormal errors failed to

give coefficient estimates significantly different from OLS and
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(2) demonstrate how regression diagnostics can identify conditions

under which RR is a useful alternative to OLS for detrending time

series data.

Nonnormal errors and robust regression

In the standard linear model,

Y - X'V + u,

OLS will yield maximum likelihood estimates of model parameters if the

error term, u, is an independently, identically distributed normal

random variable with mean 0 and variance a2 . When the error term is

not distributed normally, the OLS estimator, b, is still the best

linear unbiased estimator, and the OLS variance estimator, s2 , is still

unbiased and consistent. However, neither one is efficient or

asymptotically efficient, since the maximum likelihood estimator is

nonlinear (Judge et al. 1988, p. 888). As a general-purpose alterna-

tive, robust statistics have been proposed that offer a "lack of

susceptibility to the effects of nonnormality" (Mosteller and Tukey,

p. 16), while still offering relatively efficient estimates when errors

are, in fact, normally distributed.

In recent years, two schools of thought have emerged on how to

handle nonnormal errors when they arise in regression analyses: the

regression diagnostics school and the robust regression school. While

both seek to find the best model for the data when distorting outliers

may be present, their approaches are quite different. The key differ-

ences are aptly summarized by Rousseeuw and Leroy (p. 75):
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Regression diagnostics first attempt to identify points that
have to be deleted from the data set, before applying a
regression method. Robust regression tackles these problems
in the inverse order, by designing estimators that dampen the
impact of points that would be highly influential otherwise.

Robust regression methods give less weight to observations which

deviate far from the expected value of the dependent variable than does

OLS. They are classified by their approach to controlling infuential

outliers. M-estimators employ maximum-likelihood techniques for

finding regression coefficients that will minimize some function of the

regression residuals, typically a function that down-weights residuals

large in absolute value. Linear combinations of order statistics, or

L-estimators, calculate regression coefficients for quantiles of the

residuals resulting from a regression model and then combine them with

specified weights. Rank, or R-estimators, constitute a third category

of robust estimator, this based on minimization of a sum of ranks

weighted by corresponding scores. For a survey of RR methods, see

Judge et al. 1985, Huber 1977 or Huber 1981.

Robust regression: Not a panacea for nonnormal errors

Although robust regression techniques are recommended for

obtaining estimates that are more efficient than OLS; the coefficient

estimates will not necessarily be different. This is illustrated by

results from six robust regression methods on three samples of time

series corn yield data. The data came from three farms in Jackson

County, Minnesota, having 15 to 43 years of observations. All series

end between 1985 and 1987. Analysis of OLS residuals showed evidence
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of negative skewness. This finding confirmed results of King and

Benson using similar data in an earlier study.

Due to the nonnormality of the OLS residuals, detrending regres-

sions were performed for each farm using RR methods on the linear model

CORNYLD-f(constant,YEAR)

where CORNYLD denotes the corn grain yield in bushels per acre and YEAR

is the corresponding year. Six different RR methods discussed in

Judge et al. (1988) were considered: the multivariate t M-estimator and

five L-estimators, the least absolute error (LAE), trimmed mean (TRIM),

five quantity weighted regression quantile (FIVEQUAN), the Gastwirth

weighted regression quantile (GASTWIRTH), and Tukey tri-mean weighted

regression quantile (TUKEY) procedures. These were implemented on the

SHAZAM version 6.0 econometrics package (White et al.).

As summarized in Table 1, all estimates of the coefficient on YEAR

lay within one standard error of the estimates from OLS estimates.

Coefficient estimates with RR were insignificantly different from OLS

despite (1) a disproportionate number of large negative residuals, (2)

negative summed residuals for all RR methods used, and (3) a very

different coefficient estimate for Farm C from those of farms A and B.

Regression diagnostics

Regression diagnostics offer some explanations for the special

case of a regressor that is a series with unit increments. Two common

regression diagnostic measures are particularly helpful: (1) the

measure of potential leverage to influence the regression individual
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Table 1: Coefficient estimates compared for YEAR variable in the
linear model: OLS versus six robust regression methods.

Regression method Farm A Farm B Farm C

Parameters

Degrees of freedom (d.f.) 40 41 13
OLS standard error of coef. 0.214 0.242 1.154

Coefficient estimates

OLS 2.034 2.062 6.442
LAE 2.166 2.203 6.943
TRIM-.05 2.039 2.209 --
TRIM-.10 2.049 2.184 -
TRIM-.20 2.129 2.086 7.220
FIVEQUAN 2.073 2.033 --
GASTWIRTH 2.068 2.083 6.929
TUKEY 2.108 2.091 6.226
MULTIT-1 2.133 2.149 6.766
MULTIT-3 2.097 2.127 6.671
MULTIT-d.f. 2.042 2.075 6.527

1 These L-estimates could not be computed due to small sample size
relative to the size of the desired trim quantile.
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observations on the independent variables, hii, and (2) the measure of

what constitutes an influential outlier, the "studentized" residual.

The potential influence, or leverage, of an observation, hii

(Belsley et al., Judge et al. 1988, Weisberg), is defined as follows,

hii - xi'(X'X)- xi

where xi is an observation of the independent variable(s) and X is the

matrix of all observations on the independent variable(s). Key charac-

teristics of hii are (1) it always lies between zero and one, (2) the

hii's sum to k, the number of regressors, and (3) hii is a function of

the independent variables only. As observations on the independent

variables, xi , get farther from the sample mean, they become poten-

tially more influential, and hii grows larger. Finally, there is an

inverse relationship between the hii and the sample variance

(Weisberg, p. 110), since

var(e) - 2 (1-hii).

Since the average value of hii is k/n, a conservative rule of thumb for

observations with high leverage is hii > 3k/n (Judge et al. 1988,

p. 893).

A widely employed, reliable measure of whether an extreme residual

is indeed a statistical outlier is the "studentized" or "externally

studentized" residual (Belsley et al., Weisberg), ei*,

ei* - ei
s(i)*(l-hii)-5
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where ei is the residual corresponding to the ith observation and s(i)

denotes the sample standard error of the estimate calculated omitting

the ith observation. As is clear from its composition, ei* will be

large if one or more of the following conditions obtains: (1) ei is

large, (2) hii is large, or (3) s(i) is small.

The studentized residual follows the central t-distribution with

n-k degrees of freedom. However, since it describes a residual which

represents one of many "draws" from the distribution, the appropriate

test statistic is the Bonferroni t-value, ti, which tests the hypo-

thesis that the residual would be likely to occur with a/n probability,

where a is the probability of mistakenly rejecting the hypothesis that

ei is an outlier, and n is the number of observations in the sample

(Weisberg, p. 116).

Belsley et al. have developed a statistic called DFBETAS to

measure the influence that an observation is likely to have on the

regression coefficient. It measures the difference between estimates

for the jth coefficient with and without the ith observation as

standardized by the corresponding coefficient standard error (in the

denominator) (p. 13):

DFBETASij - bj - bj(i )

s(i)[(X'X)jj-1] 5'

Belsley et al. demonstrate that DFBETAS decreases with sample size at

a rate proportionate to n-5. Hence, they recommend a "size-adjusted

cutoff" of IDFBETASI > 2/(n-5 ) (p. 28).
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Diagnosis of residuals from regressions to detrend time series

A regression to detrend time series is a simple regression in

which the independent variable is a unit of time. In uninterrupted

time series, the time measure will increase by a single unit from one

observation to the next. Even in interrupted time series, with

economic data we tend to encounter fairly small breaks in the series.

This property of time series data has distinct consequences for

regression diagnostics.

First, the measure of potential leverage, hii, cannot become very

large because there are no xi values far from the mass of xi's. The

hii values are greatest at the beginning and end of the series,

following a symmetric U-shaped pattern of decrease from the starting

point to the mean/median value and increase up to the end point. Since

the hii's sum to the number of regressors, in a simple regression they

sum to 2. Hence, as the number of sequential observations increases,

the potential leverage of any one decreases (Table 2). Note that using

the conservative Judge et al. (1988) cutoff value of 3k/n, none of the

hii values in the table indicate that the observation appears to have

unusual potential influence.

Since hii values are constrained from becoming especially large

in regressions detrending a single time series, large studentized

residuals can occur only if (1) s(i) is small, (2) ei is large, espec-

ially if, in addition, (3) n is small (making hii larger). Note that

the first two conditions are not likely to obtain if n is very small,

since the fitted regression minimizes the ei
2 . Moreover, given
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Table 2: Potential leverage coefficients, hit, by observation for
single time series samples ranging from 3 to 40 observations.

Observation Number of observations in sample
number 3 5 10 15 20 30 40

1 .833 .600 .346 .242 .186 .127 .096
2 .333 .300 .249 .195 .159 .114 .089
3 .833 .200 .176 .156 .135 .103 .083
4 .300 .127 .124 .114 .092 .076
5 .600 .103 .099 .096 .082 .070
6 .103 .081 .081 .074 .064
7 .127 .070 .068 .066 .059
8 .176 .067 .059 .058 .054
9 .249 .070 .053 .052 .050

10 .346 .081 .050 .047 .046
11 .099 .050 .042 .042
12 .124 .053 .039 .039
13 .156 .059 .036 .036
14 .195 .068 .034 .033
15 .242 .081 .033 .031
16 .096 .033 .029
17 .114 .034 .027
18 .135 .036 .026
19 .159 .039 .025
20 .186 .042* .025*

* Values continue symmetrically to 30 and 40 observations,
respectively.
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the routine variability of much agricultural data, s(i) and ei often

do not reach orders of magnitude great enough to become significant.

The most reliable regression diagnostic for revealing the

influence of an observation on coefficient estimates is DFBETAS. This

became especially evident in a test of regression diagnostics and

robust methods on a "contaminated" data set.

The test entailed regressions on corn yield data from a southwest

Minnesota farm for various series of 5 to 40 years up to 1984, except

that the 1984 value was replaced by a yield three standard errors below

the expected yield of 122.5 bushels per acre (72.7 bu/ac). The test

was conceived to model the effect that might be expected from low

yields caused by the 1988 drought. Table 3 compares regression

diagnostics from the 1984 observation and presents estimates of the

coefficient on YEAR. Of the three regression diagnostic measures, only

DFBETAS signalled a likely problem with the 1984 observation. The hii

values all remained below the cutoff value, as shown in Table 2. The

studentized residuals were small for small samples, because the large

outlier biased the regression, reducing ei and increasing s(i). None

of the studentized residuals exceeded the Bonferroni critical t-value,

which is dependent on sample size.

Although robust regression has been recommended as a pre-

diagnostic technique (Weisberg p. 253), Table 3 demonstrates that

robust methods are not foolproof. Only the 20 percent trimmed mean

generated coefficients consistently within two coefficient standard

errors of the OLS estimate on the uncontaminated sample (1.88 + 0.23).

However, trimmed mean estimates cannot be computed for sample sizes



Table 3: Comparison of regression diagnostics and robust regression

methods on corn grain yield detrending regressions for Farm A

with a "contaminated"
1 1984 observation.

Studentized

Number of Year residual Coefficient on YEAR

observ. series for 1984 DFBETAS OLS LAE Mt-12 TRIM=.2

5 1980-84 -1.02 -1.02+ -14.32 -- -17.16 --
(5.24)

10 1975-84 -2.30 -1.41+ 1.13 4.61 2.46 1.87*

(2.96)

15 1970-84 -2.10 -1.01+ 1.05 2.59 1.41 1.55*
(1.44)

20 1965-84 -2.52 -1.03+ 2.22 2.67 2.56 1.86*

(0.89)

25 1960-84 -2.53 -0.92+ 1.93* 2.67 2.26* 2.00*

(0.58)

30 1955-84 -2.68 -0.88+ 1.91* 2.51 2.23* 2.07*

(0.41)

35 1950-84 -2.61 -0.79+ 1.84* 2.51 2.13* 2.22*

(0.32)

40 1945-84 -2.63 -0.74+ 1.73* 1.96* 1.92* 1.82*

(0.25)

N.B.: Standard error in parentheses.

1 The "contaminated" 1984 observation was 3 standard errors of estimate

below the expected value for that year.

2 Denotes Multivariate t distribution with 1 degree of freedom.

+ DFBETAS value exceeds size adjusted cutoff of 2/(n-
5).

* Coefficient estimate lies within two coefficient standard errors of

uncontaminated estimate for 1945-84, 1.88 + 0.23.
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too small to allow at least two observations in the quantiles to be cut

from each tail. The least absolute errors (LAE) estimator performed

very poorly, and the M-estimator following the multivariate t distribu-

tion with one degree of freedom did no better than the OLS estimator.

While a significant difference between coefficient estimates with OLS

and with RR may be cause for examining residuals, lack of a difference

between the two (at least as measured by the OLS coefficient standard

error) is not sufficient reason for complaisance.

Conclusion

Cases used to illustrate the value of robust regression methods in

simple regression draw on data which has outliers among the observa-

tions on the independent variable (cf. Rousseeuw and Leroy, Hampel

et al.). However, when the independent variable is a measure of time,

such outliers are rare. In the instance of an extreme value of the

dependent variable at the end of a data series, it has been demon-

strated that robust techniques may fail to outperform OLS. In such a

case, the only reliable indicator that an individual observation has a

significant impact on coefficient estimates is DFBETAS (or a similarly

constructed diagnostic statistic). Unfortunately, this diagnostic

is cumbersome to consult when the sample size is large and/or the

number of regressors large. As sample size grows, the potential

leverage of even an end-of-series outlier decreases, so OLS improves

in reliability.
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