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1. Introduction 17 

The Maximum Principle of Optimal Control Theory (Pontryagin et al., 1962) has been utilised 18 

extensively in economics (Arrow and Kurz, 1970; Seierstad and Sydsaeter, 1987; Kamien and 19 

Schwartz, 1991) because of its intuitive economic interpretation (Dorfman, 1969) and the 20 

significant methodological extensions to this theory developed in other fields of study, such as 21 

engineering. However, despite this broad application, there has been limited treatment of 22 

multiple-phase systems. These consist of multiple alternate regimes, each characterised by its 23 

own dynamical system, of which only one may be active at each point in time. Selecting 24 

between individual crops to plant on a given area of land is one example (Mueller et al., 1999). 25 

Other examples are determining the optimal time to switch between alternative energy sources 26 

(Tomiyama, 1985; Tomiyama and Rossana, 1989) and identifying the optimal time for a 27 

government to abolish a policy, such as a capital control (Makris, 2001). In actual fact, many 28 

economic decisions may be studied more precisely if cast as multiple-phase problems. For 29 

example, in production theory, these are a natural means of representing choices between the 30 

alternative technologies available to a firm, such as the natural and artificial recovery of 31 

petroleum (Amit, 1986).  32 

Switching schedules may be determined through the standard Maximum Principle if individual 33 

stages are represented by piecewise-constant control variables. However, this approach is 34 

inherently combinatorial and complicated significantly through the existence of transition costs 35 

(see Teo and Jennings, 1991, and references therein). These limitations have motivated the 36 

analysis of multiple-phase systems in which the sequence of stages is pre-assigned. This 37 

approach is, in fact, relevant to many important economic problems, such as the alternative crop, 38 

technology, or government policy examples outlined above. Such systems may be studied in a 39 

financial options framework (Dixit and Pindyck, 1994) if no control variables are exercised 40 
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during the duration of a stage. In contrast, generalisation of the Maximum Principle (Pontryagin 41 

et al., 1962; Kamien and Schwartz, 1991) is required if instrument variables are defined within 42 

independent phases. Such conditions have been derived for two-stage systems with costless 43 

transition (Tomiyama, 1985; Tomiyama and Rossana, 1989) and switching costs (Amit, 1986). 44 

The latter framework has also been extended to include three stages (Mueller et al., 1999) and an 45 

infinite horizon (Makris, 2001).  46 

Though this theory is well established, the practical management of multiple-phase problems is 47 

difficult to study given a distinct lack of suitable optimisation algorithms. Gradient-based 48 

methods (Judd, 1998) are difficult to apply to a multiple-phase system incorporating control 49 

variables in each stage because the state and costate equations are piecewise defined and the 50 

performance index has, by definition, discontinuous derivative(s) with respect to the control 51 

variable(s) within each stage (see section 2). Transition costs also introduce step discontinuities 52 

into the adjoint and Hamiltonian trajectories along an optimal path. Moreover, the efficient 53 

computation of optimal strategies for multiple-phase problems of realistic complexity through 54 

dynamic programming (Rust, 1996) is non-trivial in most instances. This is intuitive given the 55 

large state and policy spaces typically encountered within such applications. 56 

This paper presents a novel computational algorithm for the solution of multiple-phase optimal 57 

control problems incorporating transition costs. It involves the iterative improvement of switch 58 

points utilising a root-finding procedure. This approach is inspired by the use of shooting 59 

methods to solve boundary value problems (Ascher et al., 1995; Stoer and Bulirsch, 2002). The 60 

algorithm presented here is based on a set of necessary conditions derived for a finite-time 61 

multiple-phase system with different endpoint constraints and n phases. This derivation is 62 

necessary because previous theoretical studies have ignored alternative endpoint constraints, 63 

consequently narrowing their applicability, and the prior analysis of finite-time systems has been 64 
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limited to either two (Tomiyama, 1985; Amit, 1986; Tomiyama and Rossana, 1989) or three 65 

regimes (Mueller et al., 1999). The effectiveness of the algorithm is demonstrated in an 66 

application to a complex multiple crop control problem incorporating strong nonlinearities and 67 

stiff process equations. This algorithm appears to be the first in Economics to solve general 68 

multiple-phase problems and provides practitioners with the opportunity to study these systems 69 

in considerable detail, a luxury not afforded in the analytical constructs to which they have 70 

previously been restricted.  71 

The model and necessary conditions are presented in Section 2. Section 3 describes the 72 

numerical algorithm and discusses its implementation. An application of this algorithm to a 73 

multiple crop problem is presented in Section 4. Section 5 presents conclusions and 74 

recommendations for further research. The parameter values for the numerical application are 75 

presented in an appendix. 76 

2. Model and Necesssary Conditions 77 

This section formally defines a model for a multiple-phase system and presents a set of 78 

necessary conditions required for its solution.  79 

DEFINITION 2.1. A general multiple-phase system is assumed to incorporate an m-dimensional 80 

state vector )}(),...,(),({)( 21 txtxtxtx m=  of continuous functions, piecewise continuous 81 

differentiable over the time interval ],...,[ 0 nttt =  and belonging to mRX ∈ , and a v-82 

dimensional vector of control functions )}(),...,(),({)( 21 tutututu v= , piecewise continuous in 83 

],...,[ 0 nttt =  and belonging to vRU ∈ . The state variables are assumed fixed at the initial time 84 

and are denoted 0x . The state variables free at the terminal time are denoted i
nx , for 85 

],...,2,1[ di = . Terminal state variables i
nx , for ],...,1[ mdi += , are fixed. � 86 
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This model concerns multiple-phase systems with a given switching sequence and fixed number 87 

of stages. Relaxation of these assumptions adds significant complexity but would nevertheless 88 

be a valuable extension of this work.  89 

DEFINITION 2.2.1 A multiple-phase switching system is defined as { }ϑ,, KT=Ξ  where, 90 

1. Τ is a set of discrete controls known as switching times that dictate the termination of one 91 

phase and the start of the next, 92 

2. { }nkkkK ,...,, 21=  is a finite, fixed, and exogenously determined sequence of discrete 93 

(integer) states that indexes individual continuous dynamical systems, { } Kkk ∈= ϑϑ , where 94 

[ ]UfX kk ,,=ϑ . The ordinal ranking of sequences is defined over the closed interval 95 

[ ]nj ,...,2,1= ,  96 

3. X  is a continuous state space where mRX ∈ ,  97 

4. kf  is the vector of state equations for each stage k, and 98 

5.  U  is the set of admissible controls lying in vR . � 99 

DEFINITION 2.3. A control input for a multiple-phase switching system Ξ  consists of a set of 100 

vectors { }ut,=Ξχ  where, 101 

1. },...,,{ 121 −= ntttt  is a sequence of real numbers denoting switching times, the moment jt  102 

at which stage jk  is terminated and the stage 1+jk  becomes active. It follows that regime 103 

jk  is active over the interval ],[
1 −+− jj

tt , where +−1j
t  is the moment just after 1−jt  and −j

t  is 104 

the moment just before jt , 105 

                                                 

1 This definition is loosely based on the hybrid system defined in Branicky et al. (1998). 
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2. ntt =  is a freely determined terminal time, and 106 

3. },...,,{ 21 nuuuu =  is a collection of control functions defined for each stage in sequence K.107 

 � 108 

It is possible for switching times to accumulate in this model. Consequently, not all regimes in 109 

the predefined sequence must be activated. For example, it may be optimal for two consecutive 110 

switching times, such as jt  and 1+jt , to coalesce (that is, 1+= jj tt ), in which case, movement 111 

from jk  to 2+jk  will occur without the activation of 1+jk . This allows for the case where the 112 

operation of a stage or number of stages in sequence K is not contained in the optimal solution. 113 

The state variable is continuous at the switching times in this model. However, jumps within the 114 

state variable (Vind, 1967) may be accommodated with manipulation of the necessary 115 

conditions (see Seierstad and Sydsaeter, 1987).  116 

DEFINITION 2.4. A trajectory ( Γ ) for a multiple-phase switching system Ξ  and control sequence 117 

Ξχ  is admissable over the interval ],,...,,[ 110 nn ttttt −=  if it satisfies Definition 2.1 and the 118 

continuous dynamics ))(),(( tutxfx jj=� , for ],[
1 −+− jj

tt  and Jj ∈ , for a predefined switching 119 

sequence { }nkkkK ,...,, 21= .  � 120 

These definitions permit the classification of a general multiple-phase optimal control problem. 121 

PROBLEM 2.1. For a multiple-phase system Ξ  identify an admissible trajectory that maximises 122 

the objective functional, 123 
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subject to, 125 

))(),(( tutxfx jj=� , for ],[
1 −+− jj

tt  and [ ]nj ,...,2,1=  given { }nkkkK ,...,, 21= , (2) 126 

jt  free for [ ]nj ,...,2,1= , (3) 127 

)( jtx  free for [ ]1,...,2,1 −= nj ,  (4) 128 

0x  fixed, (5) 129 

)( n
i
n tx  free, for ],...,1[ di = , and (6) 130 

)( n
i
n tx  fixed for ],...,1[ mdi += , (7) 131 

where r is a discount rate, )),(( nn ttxG  is a terminal reward function, ))(( jj txC  is a switching 132 

cost function for the jth phase, and ))(),(( tutxF jj  is a single-valued reward function on 133 

vm UX ×  for the jth phase. Functions )(⋅G , )(⋅C , and )(⋅F  are all real-valued functions that are 134 

once continuously differentiable in the relevant arguments. The terminal value function G is 135 

defined for )( n
i
n tx , where ],...,1[ di = . � 136 

The terminal reward function )),(( nn ttxG  is defined as a salvage value in economic applications 137 

of optimal control. The switching cost function is a cost accruing to the termination of one stage 138 

and the start of another. (These can be understood as terminal value functions for individual 139 

regimes.) They are a pertinent feature of many multiple-phase systems. For example, it can be 140 

costly to remove one crop and establish another (Mueller et al., 1999) or invest in the productive 141 

capacity required for the artificial recovery of petroleum (Amit, 1986). Both the terminal value 142 

function )(⋅G  and the switching cost function )(⋅C  are dependent on the state variable ( )( jtx ). 143 
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The latter is included because it is likely to exist in a number of important multiple-phase 144 

problems. For example, the herbicide dose required for the establishment or removal of a crop 145 

may be dependent on weed density. Or, investing in a new production technology may require 146 

an initial outlay that is dependent on the current capacity of the existing firm. 147 

THEOREM 2.1. Consider a multiple-phase system Ξ  described by Definitions 2.1-2.4. For 148 

],...,2,1[ nj =  and switching sequence { }nkkkK ,...,, 21= , let ( ** ),(),(* jj ttutx ) denote the 149 

admissible trajectory that maximises the value of J in Problem 2.1. This is the optimal trajectory 150 

*Γ .  151 

Define a Hamiltonian function for each regime jk  as, 152 

)),(),(()())(),(()),(),(),(( ttutxfttutxFetttutxH jjjjj
rt

jjj λλ += − , (8) 153 

across the interval ],[
1 −+− jj

tt .  154 

An optimal trajectory *Γ  requires, 155 

i) initial condition )( 00 txx =  for fixed initial state variable(s) 0x ,   (9) 156 

ii) n m-dimensional vectors of real-valued, piecewise continuous adjoint functions 157 

)}(),...,(),({)( 21 tttt m
jjjj λλλλ = , defined across ],...,2,1[ nj =  and piecewise continuously 158 

differentiable over the interval ],[
1 −+− jj

tt , that satisfy,  159 

)(

)),(),(),((
)(

tx

tttutxH
t jjjT

j ∂
∂

−=
λ

λ� , (10) 160 

where )(tT
jλ  denotes the transpose of the n adjoint vectors, 161 
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iii) optimal control function(s) that satisfy, 162 

 )),(),(),((Max
)(

tttutxH jjjtu j

λ  for all ],[
1 −+−

∈
jj

ttt , (11) 163 

iv) an adjoint vector )( nn tλ  that satisfies,  164 

)(
)),((

)(
n

nn
rt

n
T
n tx

ttxGe
t

n

∂
∂

=
−

λ ,  (12a) 165 

for state variables )( n
i
n tx , where ],...,1[ di = , free at the terminal time and defined in G, 166 

NOTE: 0)( =n
T
n tλ  replaces (12a) for those state variables )( n

i
n tx , where ],...,1[ di = , that are 167 

not defined in G,  (12b) 168 

NOTE: )()( nn
i
n txtx =  replaces (12a) and (12b) for fixed terminal state variables )( n

i
n tx , where 169 

],...,1[ mdi += , (12c) 170 

v) a terminal time that satisfies, 171 

0
)),((

)),(),(),(( =
∂

∂
+

−

n

nn
rt

tnnn t
ttxGe

tttutxH
n

n
λ , (13a) 172 

if no terminal value function is defined, then the equivalent of (13a) is, 173 

0)),(),(),(( =
ntnnn tttutxH λ , (13b) 174 

if, instead, the terminal time is fixed, then no additional necessary condition is required, as 175 

ntt = ,  (13c) 176 

vi) adjoint vectors that satisfy the boundary conditions, 177 
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)(
)(

))((
)( 1 +− +

−

=
∂

∂
+

j
T
j

j

jj
rt

j
T
j t

tx

txCe
t

j

λλ , (14) 178 

at switching times },...,,{ 121 −= ntttt  and ]1,...,2,1[ −= nj , 179 

vii) 
+− +++

−

=
∂

∂
−

j

j

j
tjjj

j

jj
rt

tjjj tttutxH
t

txCe
tttutxH )),(),(),((

))((
)),(),(),(( 111 λλ , (15) 180 

for those switching times in },...,,{ 121 −= ntttt  for which 11 +− << jjj ttt  holds, 181 

viii) 
+− +++

−

≤
∂

∂
−

j

j

j
tjjj

j

jj
rt

tjjj tttutxH
t

txCe
tttutxH )),(),(),((

))((
)),(),(),(( 111 λλ , (16) 182 

for those switching times in },...,,{ 121 −= ntttt  for which 11 +− <= jjj ttt  holds , and 183 

ix) 
+− +++

−

≥
∂

∂
−

j

j

j
tjjj

j

jj
rt

tjjj tttutxH
t

txCe
tttutxH )),(),(),((

))((
)),(),(),(( 111 λλ , (17) 184 

for those switching times in },...,,{ 121 −= ntttt  for which 11 +− =< jjj ttt  holds. � 185 

PROOF. An extensive proof is provided in a mathematical appendix available at 186 

www.are.uwa.edu.au/home/derivation.  187 

Necessary conditions (8)-(13) are analogous to the standard Maximum Principle (Seierstad and 188 

Sydsaeter, 1987). This follows the definition of a multiple-phase problem as a set of n dynamical 189 

systems. In contrast, switching conditions (14)-(17) are not found in standard control problems. 190 

These describe how individual systems are linked over time under optimal management. These 191 

conditions appear in similar form in the models of Amit (1986), Mueller et al. (1999), and 192 

Makris (2001). It is demonstrated here that they generalise to a finite-time multiple-phase model 193 
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with n regimes, positive switching costs, and alternative endpoint constraints. Equations (14) 194 

and (15) are also equivalent to the smooth pasting and value-matching conditions found in 195 

applications of stochastic control in finance (Brekke and Oksendal, 1994; Dixit and Pindyck, 196 

1994). 197 

Equation (14) determines the optimal level of the state variable(s) at each switching time ( )( jtx ) 198 

(these are referred to as transition states in the following). The shadow price variables, )( j
T
j tλ  199 

and )(1 j
T
j t+λ , represent the marginal adjustment in optimal value accruing to a change in the 200 

state variable within the corresponding stage when switching time jt  is approached from below 201 

or above respectively. The second term in (14) represents the marginal transition cost for the 202 

active regime. Equation (14) states that it is optimal to switch when the marginal value of a 203 

change in the state variable is equivalent between stages. 204 

Switching conditions (15)-(17) describe the management of optimal switching times given the 205 

relative value of alternate stages. The value of a Hamiltonian function )),(),(),(( tttutxH jjj λ  206 

evaluated at a given time represents the shadow price of altering the length of this phase. The 207 

second term in each of conditions (15)-(17) is the rate at which transition costs change over time 208 

within regime j. Equation (15) states that it is optimal to switch to the subsequent regime at time 209 

jt  if the rate at which the capital value of each stage changes over time is equal at that point. 210 

Regime j should not be activated if its total value, reflected through its Hamiltonian and 211 

switching cost functions, is dominated at each potential switching time by that of the successive 212 

regime. This is described in (16). Moreover, the successive regime should not be adopted if there 213 

is no time jt  at which its capital value matches that earned within the active phase. This is stated 214 

in equation (17).  215 
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Necessary conditions (14)-(17) are not required if Τ  is empty. In this instance, Theorem 2.1 216 

collapses to the standard Maximum Principle. The state variable(s) could be fixed for a given 217 

switching time jt . In this instance, equation (14) is no longer required for the determination of 218 

)( jtx . Alternatively, the control input Ξχ  may contain fixed switching times. Necessary 219 

conditions (15)-(17) are not required in this case. 220 

The boundary conditions are obviously affected if switching cost functions ))(( jj
rt txCe j−  221 

and/or their relevant derivatives are not defined. If switching costs do not exist or are 222 

independent of the state vector, condition (14) requires equality between the adjoint variables of 223 

stages j and j+1. That is, )()( 1 j
T
jj

T
j tt += λλ . Likewise, equation (15) simplifies to a requirement 224 

of equality between the total capital value of each regime at the switching time; that is, 225 

jj tjtj HH )()( 1 ⋅=⋅ + ; if switching costs are not defined or are independent of time. (Switching 226 

costs will be a function of time in most economic problems because of discounting.) These 227 

results are analogous to the Weierstrass-Erdmann corner conditions (Seierstad and Sydsaeter, 228 

1987) from variational calculus, which are also required when state and/or control variables are 229 

subject to inequality constraints (Pontryagin et al., 1962). This equivalency highlights the close 230 

symmetry between multiple-phase problems with fixed and free stage sequencing, if the latter is 231 

incorporated utilising piecewise constant controls and transition costs do not exist.  232 

3. Algorithm 233 

Theorem 2.1 may be used to identify analytical solutions to multiple-phase problems of low 234 

dimension. However, such solutions are extremely difficult to obtain, even in systems 235 

incorporating only weakly non-linear differential equations. This section consequently describes 236 

an optimisation algorithm suited to the study of more complex problems.  237 
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The following algorithm is motivated by the structure of Theorem 2.1, which infers 238 

decomposition into two distinct stages. The first concerns the solution of each phase as an 239 

independent control problem at each iteration. The second concerns the updating of the switch 240 

points using the switching conditions (14) and (15) and a bisection technique (Stoer and 241 

Bulirsch, 2002). Bisection successively reduces the size of an interval where a root is bound 242 

between function values that are opposite in sign. Bisection is utilised here as other root-finding 243 

methods, such as the Newton, Broyden and secant methods (Ortega and Rheinboldt, 1970; Judd, 244 

1998), require continuity of the switching conditions. Newton’s method also requires derivative 245 

information that is not available in this instance. The existence of a solution to an interval 246 

bisection technique is guaranteed for a continuous function through the intermediate value 247 

theorem, provided the initial function evaluations are opposite in sign. The step discontinuity 248 

that occurs at each switch point (given the presence of transition costs) does not void this 249 

condition in computational application given its equivalence to a continuous function whose root 250 

is located between two floating-point numbers (Press et al., 1992).  251 

ALGORITHM 3.1 252 

PURPOSE: Identify an optimal control sequence Ξχ  for the multiple-phase system Ξ . 253 

INITIALISATION:  254 

a) Determine a fixed stage sequence K. Define the maximum number of permissible 255 

iterations ( î ). Define the stopping tolerance ε . Define a set of initial conditions 256 

},{ 00 xt=Λ . Provide estimates for the optimal switching times ( jt  for ]1,...,2,1[ −= nj ) 257 

and the transition states ( )( jtx  for ]1,...,2,1[ −= nj ) for }2,1{=i .  258 

b) Optimise each phase jk , for ]1,...,2,1[ −= nj , as a fixed point control problem utilising 259 
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conditions (8)-(11) and (12c) and (13c). (12c) and (13c) are determined by the estimates 260 

of jt  and )( jtx . Optimise the terminal stage utilising conditions (8)-(11) and the 261 

relevant terminal conditions from (12)-(13).  262 

c) Obtain )( j
T
j tλ  and compute )( jj tH  for all j. Ensure that 263 

( ) ( ) 0)())(()()())(()( 2
1

2

)(

21
1

1

)(

1 <

�
�

�
� −+

�
�

�
� −+ +

−
+

−
jjtxjj

rt
jjjjtxjj

rt
jj ttxCetttxCet

j

j

j

j λλλλ  and 264 

( ) ( ) 0)())(()()())(()( 2
1

221
1

11 <

�
�

�
� −−

�
�

�
� −− +

−
+

−
jjtjj

rt
jtjjtjj

rt
jt tHtxCetHtHtxCetH

j

j

jj

j

j
 where 265 

numeric superscripts denote the iteration number, ( )x⋅  denotes the derivative of the term 266 

enclosed in brackets with respect to the subscripted variable ( x  in this example), and 267 

21
jj tt <  and )()( 21

jj txtx < .  268 

MAIN COMPUTATION: 269 

For i=3: î  270 

1. Form switch points for the current iteration using the midpoint formulas 271 

2/)( 21 −− −= i
j

i
j

i
j ttt  and 2/))()(()( 21 −− −= i

j
i
j

i
j txtxtx . 272 

2. Optimise each phase jk  for ]1,...,2,1[ −= nj  as a fixed point control problem utilising 273 

conditions (8)-(11) and (12c) and (13c). Optimise the terminal stage utilising conditions 274 

(8)-(11) and the relevant terminal conditions in (12)-(13). Obtain )( j
T
j tλ  and compute 275 

)( jj tH  for all j. 276 

3. If ( ) ( ) 0)())(()()())(()( 2
1

2
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2

1)(
>
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j λλλλ  277 

then )()( 2−= i
j

i
j txtx  and )()( 11 −− = i

j
i
j txtx . Else, )()( 1−= i

j
i
j txtx  and )()( 22 −− = i

j
i
j txtx .  278 
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4. If ( ) ( ) 0)())(()()())(()( 2
1
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1 >


�
�
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� −− −
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i
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i
t tHtxCetHtHtxCetH
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j
 then 279 

2−= i
j

i
j tt  and 11 −− = i

j
i
j tt . Else, 1−= i

j
i
j tt  and 22 −− = i

j
i
j tt .  280 

5. Stop and print output if ε<− −1i
j

i
j tt  and ε<− − )()( 1i

j
i
j txtx  or 281 

( ) ελλ <

�
�

�
� −+ +

− )())(()( 1)( j
i
j

i

txjj
rt

j
i
j ttxCet

j

j  and ( ) ε<

�
�

�
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− )())(()( 1 j
i
j

i

tjj
rt

j
i
j tHtxCetH

j

j  282 

for all j. 283 

6. If ii ˆ= , then stop and report progress; else go to Step 1. 284 

The boundary conditions for each individual control problem in step (b) in the initialisation and 285 

step (2) in the main computation are well-defined following the prior definition of the switching 286 

times and the transition states. It is natural to question whether the designation of these fixed 287 

points will affect satisfaction of the optimality condition (11) for interior solutions, ( ) 0)( =⋅
ujH  288 

for [ ]nj ,...,2,1= , as the weak variation uδ  in equation (A.14) in the accompanying 289 

mathematical appendix (available at www.are.uwa.edu.au/home/derivation) is no longer entirely 290 

arbitrary but must now satisfy these endpoint constraints. However, it may be shown that (11) 291 

holds despite this induced restriction (see Kamien and Schwartz, 1991, Section II.6). 292 

The approach taken in Algorithm 3.1 resembles the single shooting algorithm used for the 293 

solution of two-point boundary value problems commonly defined by the necessary conditions 294 

of the standard Maximum Principle. The single shooting algorithm involves integration of the 295 

state and costate equations using an Initial Value Problem method and updating of the 296 

unspecified initial condition(s) through use of a root-finding method until the given endpoint 297 

condition(s) are satisfied to sufficient accuracy (Keller, 1968; Osborne, 1969; Ascher et al., 298 

1995). Their stability is significantly increased through division of the problem into multiple 299 

intervals that reduce the length of each integration (Lipton et al., 1982; Stoer and Bulirsch, 300 
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2002). This method, known as multiple shooting, may be adapted to analyse multiple-phase 301 

problems (see Bulirsch and Chudej 1995 for a two-phase example). However, in contrast to 302 

Algorithm 3.1, an expensive approximation of the Jacobian matrix is typically required for the 303 

non-linear equation solver at each iteration and this solver is also required to enforce the 304 

continuity of each state variable at the switching time (Pesch, 1994; Stoer and Bulirsch, 2002). 305 

Phases are bypassed if equation (15) is satisfied for consecutive switching times at a single 306 

moment. However, this algorithm does not cater for the situation where (16) and (17) hold as 307 

inequalities. These may be incorporated in simple problems utilising mathematical programming 308 

(see Mueller et al., 1999). However, this requires that the differential equations governing the 309 

dynamic behaviour of the state and costate variables are explicitly solvable. Algorithm 3.1 does 310 

not face such restrictions and is therefore capable of solving problems of much greater 311 

complexity.  312 

The following application is programmed in MATLAB version 7.1 (Miranda and Fackler, 313 

2002). Each sub-problem (phase) is solved utilising a variant of the MISER parameterisation 314 

algorithm of Teo et al. (1991), which is engineered to operate more efficiently in an iterative 315 

scheme. This algorithm involves an approximation of control functions within each phase 316 

through interpolation with sets of linear basis functions and solution of the discretised problem 317 

using non-linear programming (NLP). Adjoint and state equations are integrated explicitly over 318 

the length of a stage using a differential algebraic equation method (Ascher et al., 1995) 319 

following the definition of an initial guess of the optimal control. These control histories are 320 

subsequently iteratively improved using NLP, with the integration of the process equations 321 

repeated at each step to calculate the required gradients, until an optimal solution is obtained. A 322 

sequential quadratic programming (SQP) NLP algorithm (Gill et al., 1981) is used because it is 323 

the most robust and efficient method presently available for this form of optimisation (Betts et 324 
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al., 1993; Betts and Gablonsky, 2002). Control parameterisation is adopted for the solution of 325 

each phase due to its efficiency and improved convergence relative to other methods. 326 

Approximation of control variables utilising basis functions introduces some degree of 327 

suboptimality but this is significantly reduced as the number of such functions in each phase is 328 

increased, with an optimum of around twenty knot points (Teo et al., 1991), which is 329 

subsequently adopted in the following application.  330 

It is well known that the bisection technique employed in Algorithm 3.1 will converge linearly 331 

to a root in ( ) )2log(//log 0 εµ  iterations, where 0µ  is the size of the initial interval and ε  is the 332 

stopping tolerance (Press et al., 1992). A loose stopping criterion ( 0001.0=ε ) is utilised in the 333 

outer iteration in the following application so that numerical errors generated in the optimisation 334 

phase do not detrimentally affect convergence (Judd, 1998).  335 

There are a number of ways to improve the efficiency of Algorithm 3.1. First, solution time is 336 

often significantly decreased through using an optimal trajectory from the previous iteration as 337 

an initial guess for the next. Solution time may be reduced by up to 80 percent. However, this 338 

strategy must be carefully implemented to prevent poor results from affecting convergence. 339 

Second, parallel processing may be used to solve each independent phase.  340 

4. Application 341 

This section describes the application of Algorithm 3.1 to a complex multiple-phase control 342 

problem.  343 

Annual ryegrass (Lolium rigidum) is the most economically important weed constraining crop 344 

production in Western Australia (Pannell et al., 2004). Moreover, nearly half of the annual 345 

ryegrass populations in the primary grain-growing region of this state (the West Australian 346 

wheat belt) are estimated to be resistant to regular selective herbicides (Llewellyn and Powles, 347 
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2001). This reduces producer profit through forcing substitution towards less cost-effective 348 

substitutes, such as the mechanical collection of weed seeds at harvest. The adoption of grain 349 

legumes and the greater profitability of cereals, relative to livestock activities, in many farming 350 

systems in this region motivate continuous cropping (Pannell, 1995; Poole et al., 2002). 351 

However, the inclusion of regular pasture phases has the potential to delay or help to minimise 352 

the effects of herbicide resistance through permitting the use of a wide range of weed control 353 

strategies (Powles et al., 1997), such as grazing, the use of non-selective herbicides, or green-354 

manuring. The economics of herbicide resistance and the utilisation of non-chemical treatments 355 

have been investigated previously (Gorddard et al., 1995, 1996; Pannell et al., 2004). Yet, the 356 

optimal management of multiple phases and pasture treatments has not been studied because 357 

significant methodological difficulties have been predicted (see, for example, Gorddard et al., 358 

1995, p. 73). These may be overcome, however, through the use of Algorithm 3.1. 359 

It is assumed that a producer wishes to determine the optimal management of a single field in 360 

the eastern wheat belt of Western Australia. The goal of the producer is to determine the optimal 361 

management of two phases in a steady-state field rotation. The initial phase involves lucerne 362 

(Medicago sativa) pasture and the second phase involves wheat (Triticum aestivum) cropping. 363 

Stationarity of the steady-state cycle is imposed through requiring equality between the initial 364 

( )( 0tx ) and terminal ( )( 2tx ) state vectors. Algorithm 3.1 is not limited to the solution of this 365 

type of problem, however, and may easily be extended to deal with any feasible problem defined 366 

by Problem 2.1.  367 

It is assumed that crop yield is detrimentally affected by the population of a single weed, annual 368 

ryegrass. There is one switching time ( 1t ) and the terminal time ( 2t ) is free. The latter 369 

determines the length of the second phase in the rotation. Two state variables are required to 370 

represent the weed seed population because of herbicide resistance (Gorddard et al., 1995, 371 
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1996). First, )(tx s  is the population of annual ryegrass seeds that following germination is 372 

susceptible to the selective Group A herbicide (diclofop-methyl) (Preston, 2000).2 Second, )(txh  373 

is the population of seeds that following germination are resistant to this herbicide. Time 374 

notation is omitted where not required in the following discussion for notational parsimony. 375 

4.1 Pasture phase dynamics 376 

The producer’s problem in the lucerne phase is,  377 
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2 Resistance to a single herbicide is studied to focus attention on the intertemporal management of herbicide 

resistance.  
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where jv  denotes the size of the control vector for phase j , r is the discount rate, 1
1u  is the 385 

sheep stocking rate, a and b are parameters describing the relationship between stocking rate and 386 

profit, npc  is the cost of achieving 50 percent weed control utilising alternative weed control 387 

treatments available during the pasture phase ( 2
1u ) (Gorddard et al., 1995), 388 

seedMggv )1(1 −−−=  where g is the germination rate and seedM  is the natural mortality rate of 389 

ungerminated seeds, )1(2 plantMgv −=  where plantM  is the natural mortality rate of germinated 390 

seeds, d and l are parameters describing the strength of the relationship between grazing rate and 391 

weed control, and R is the number of seeds produced by a single weed. Equation (21) is the set 392 

of initial conditions and terminal conditions (22)-(23) will be determined by the estimated 393 

switch points in Algorithm 3.1. 394 

4.2 Cereal phase dynamics 395 

The producer’s problem for the cereal phase is, 396 
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)}(),({ 00002 txtxx hs= , (29) 404 

2t  free, (30) 405 

where p  is a constant price, 0y  is weed-free yield, η  is the proportion of yield lost to 406 

phytotoxic damage for a given dosage (measured in kilograms of active ingredient per hectare) 407 

of selective herbicide ( 1
2u ), z is the maximum proportion of grain yield lost at high weed density, 408 

s is a crop-dependent density parameter, g  is a constant representing the competitiveness 409 

between the weed population and the wheat crop, W(t) represents the total weed population, hc  410 

is the cost of the selective herbicide dose, ncc  is the cost of achieving 50 percent weed control 411 

utilising alternative weed control treatments available during a cropping phase ( 2
2u ) (Gorddard et 412 

al., 1995), cestc  is a fixed cost representing the establishment costs of wheat, lestc  is a fixed cost 413 

representing the establishment costs of lucerne, and q is a parameter designating the strength of 414 

the relationship between ryegrass mortality and selective herbicide dosage. The weed population 415 

is defined as )()()( tWtWtW hs += , where sW  is the susceptible weed population and hW  is 416 

the herbicide resistant weed population. These are related to the susceptible and resistant seed 417 

populations through )1()1( 2
2

1
2 ueMgxW qu

plant
ss −−= −  and )1)(1( 2

2uMgxW plant
hh −−= .  418 

The initial conditions (27)-(28) for the second phase will be determined by the estimated switch 419 

points in Algorithm 3.1. The terminal condition (29) is required given the cyclical nature of this 420 

problem discussed above. A terminal value function ( lest
rt ce 2− ) is required in (24) to reflect 421 

establishment costs for the subsequent lucerne phase in the cycle.  422 

The effective removal of lucerne requires careful grazing management and the application of 423 

non-selective herbicides (Bee and Laslett, 2002). A switching cost function for 1t  is therefore 424 



 22 

defined as lrem
rt ce 1− , where lremc  is the fixed cost of lucerne removal. This is obviously not a 425 

function of the state variables so condition (14) will hold as )()( 1211 tt TT λλ =  at )( 1tx  in this 426 

example. An interesting extension of this work would be the inclusion of a relationship between 427 

herbicide application when lucerne is removed and the density of annual ryegrass plants. This 428 

would require better information and the inclusion of plants, rather than seeds, as state variables. 429 

Moreover, this would require manipulation of Theorem 2.1 as a jump in the state variables 430 

would occur at the switching time. This extension may provide little additional insight, however, 431 

as two ryegrass plants or less are present at the switching time under optimal management of 432 

both scenarios in the following application.  433 

The parameter values for this application and a brief description of their estimation is provided 434 

in Table 1 in Appendix 1. All values are expressed in 2004 Australian dollars. More detailed 435 

information on the estimation of parameters may be obtained from the author on request. 436 

4.3 Model output 437 

The first scenario represents an established resistance problem, with an initial susceptible seed 438 

( )( 00 tx s ) population of 70 seeds m-2 and an initial herbicide resistant seed ( )( 00 txh ) population of 439 

35 seeds m-2. The model solves after fifteen iterations. The optimal trajectories for both seed 440 

populations are shown in Figure 1. Here, the optimal switching time is denoted with a vertical 441 

line labeled 1t . 442 

Insert Figure 1 near here 443 

Figure 1 displays that both seed populations decline significantly over the duration of the lucerne 444 

pasture phase (phase one). This follows a combined use of grazing, at a constant rate of around 445 

7.64 Dry Sheep Equivalents (DSE) per hectare, and alternative treatments that are utilised at 446 
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around 70 percent intensity over this stage. This demonstrates the value of an integrated weed 447 

management strategy for reducing weed burdens before a subsequent cropping phase begins. 448 

The pasture phase is utilised for just over three years ( 3.31 =t ). This is less than the length of 449 

the cropping phase (phase two) that continues for four years in the cycle. This finding is intuitive 450 

because of the higher profitability of cereal cropping relative to grazing systems at low weed 451 

densities in this dryland environment. 452 

The continuity of the state variable at the switching time ( 1t ) is observable in Figure 1. 453 

Discontinuity in the time derivatives of the state variables is also obvious given that the state 454 

trajectories experience a point of non-differentiability (corner) at 1t . This, of course, follows 455 

naturally from the piecewise definition of the constituent phases. 456 

The second scenario involves an initial susceptible seed population of 70 seeds m-2 and no 457 

herbicide resistance. The optimal trajectories for the susceptible seed population for the “with 458 

resistance” and “without resistance” scenarios are shown in Figure 2. The switching times for 459 

these cases are labeled 1t  and '1t  respectively. These trajectories demonstrate a number of 460 

important concepts. First, the length of the cropping phase increases significantly, from around 461 

four years to six years, when herbicide resistance is not present. This underlies a moderate 462 

increase in the optimal terminal time, from 326.72 =t  years to 33.82 =t  years. This extension 463 

in the length of the cereal phase follows an increase in its value, as wheat yield is not 464 

constrained by resistant weeds and the ineffectiveness of the efficient selective herbicide. 465 

Second, the lucerne phase finishes a year earlier ( '11 tt > ) when there is no herbicide resistance. 466 

This follows a reduction in the relative profitability of the pasture phase. Last, the susceptible 467 

weed population at the switching time ( )( 1tx s ) is significantly lower given an increase in the 468 

marginal value of in-pasture weed control. This greater level of control is achieved through a 2 469 

percent increase in the mean stocking rate (from 7.6407 DSE/ha to 7.797 DSE/ha) and a 19.6 470 
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percent increase in the mean intensity of alternative treatments (from 69.86 percent to 83.54 471 

percent).  472 

Insert Figure 2 near here 473 

Alternative weed control treatments are used at a significant intensity over the cereal phase when 474 

herbicide resistance constrains production (Figure 3a) because of the ineffectiveness of the 475 

selective herbicide against resistant weeds. This decreases producer profit given the increasing 476 

marginal cost associated with the utilisation of alternative treatments. The main cost of herbicide 477 

resistance consequently appears to arise from higher weed control costs and not significantly 478 

higher weed burdens (see Figure 2). This reinforces survey evidence (Llewellyn and Powles, 479 

2001) and output from simulation modelling (Pannell et al., 2004) that identifies little difference 480 

in weed density between fields under standard management practice both with and without 481 

herbicide resistance. In contrast, the higher profitability of the cereal phase when herbicide 482 

resistance is not present arises from the steady application of both selective herbicide (Figure 3b) 483 

and alternative treatments (Figure 3c) at moderate intensities. 484 

Insert Figure 3 near here 485 

V. Conclusions 486 

There appears to be no general framework for the numerical optimisation of multiple-phase 487 

systems in which control variables are defined in each stage. This is a significant limitation 488 

because such systems arise in many important situations, such as determining the optimal time 489 

to switch between production technologies, energy sources, and land uses. The computational 490 

algorithm presented in this paper offers a flexible and efficient platform for the solution of 491 

multiple-phase problems in which the number and sequence of phases is pre-assigned. However, 492 
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this framework does not explicitly permit switching times to accumulate. Removing this 493 

limitation would increase its flexibility and is consequently a valuable area for further work.  494 
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Appendix 1 495 

Table 1: Parameter values for the two-phase herbicide resistance model.  496 

Parameter Value Source 

r r=.05 Pannell et al. (2004) 

a, b a=25.316, b=14.879 Non-linear least squares estimates from a simulated 

relationship between stocking rate and lucerne 

profitability, based on Mott (1960). 

ncnp cc ,  5$== ncnp cc  These are estimates of the cost of 50 percent control from 

unpublished estimates in the Resistance and Integrated 

Management simulation model (Pannell et al., 2004). 

hc  40$=hc  DAWA (2004) 

g 8.0=g  Gill (1996) 

seedM , plantM  55.0=seedM , 05.=plantM  Unpublished data in RIM model (Pannell et al., 2004) 

d, l 1111.1=d , 5.0=l  The parameter d is determined from the maximum level 

of annual ryegrass control reported for grazing sheep (90 

percent) (Pearce and Holmes, 1976; unpublished RIM 

estimates) using d=(1/ceiling). The parameter l is selected 

to fit the functional form to available data (Reeves and 

Smith, 1975; Pearce and Holmes, 1976; unpublished RIM 

estimates), with d fixed. 

q 451.7=q  Gorddard et al. (1995, 1996) 

p 185$=p  Estimate for wheat price after legume pasture, taken from 

RIM model (Pannell et al., 2004). 

0y  82.10 =y  tonnes Weed-free yield for continuous wheat crop (1.3 tonnes) 

(Pannell et al., 2004) is increased by 40 percent because 

of higher nitrogen, decreased disease, and improved soil 

structure after lucerne phase (Latta and Devenish, 2002). 

η  1448.0=η  Gorddard et al. (1995,1996) 

z, s, k 33.0,105,6.0 === ksz  Pannell et al. (2004) 

cestc  82$=cestc  Pannell et al. (2004) 

lremlest cc ,  50.58$=lestc ,

25.21$=lremc  

Calculated from information in DAWA (2004) 
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 601 

Figure 1. Optimal trajectories for susceptible and resistant annual ryegrass seeds over a lucerne 602 

pasture – wheat crop rotation. 603 
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 604 

Figure 2. Optimal trajectories for susceptible annual ryegrass seeds with and without herbicide 605 

resistance over a lucerne pasture – wheat crop rotation. 606 
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 607 

Figure 3. (a) Intensity of alternative treatments with herbicide resistance, (b) selective herbicide 608 

dose (kilograms of active ingredient applied per hectare) without herbicide resistance, and the 609 

(c) intensity of alternative treatments without herbicide resistance. All of these treatments are 610 

applied in the second (crop) phase.  611 
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