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Abstract 
 
Farming in the rainfed lowlands of northwest Luzon, Philippines, is highly intensive, 
diversified, and commercialised. The cropping-system is predominantly rice-based in the 
wet season and high-value cash crops are grown during the dry season. Using panel data 
from 100 randomly selected farmers, a stochastic input distance function is used to 
investigate scope economies in this environment. Results show that significant scope 
economies exist between rice and the major dry-season crops of garlic and mungbean. 
Scope diseconomies exist between rice and maize. 
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1. Introduction 

Farming in the rainfed lowlands of northwest Luzon, Philippines, is highly intensive, 

diversified and commercialised (Lucas et al. 2000).  Rice is the most common crop in the 

lowlands during the wet season from May to October.  Cropping in the dry season is more 

diversified. Farmers grow a range of cash crops, including garlic, mungbean, pepper, 

tomato and tobacco, and partly subsistence crops, such as maize  These dry-season crops 

are supported by groundwater irrigation. A well developed marketing system has 

facilitated the evolution of the highly intensified rice-cash crop production system (Lucas 

et al. 1999). 

The profitability of cash crops has encouraged most rainfed farmers to diversify and 

maximise land use intensity by growing two or three cash crops. In some cases, 

diversification can also be classified as a strategy of farmers in dealing with risk. Through 

crop diversification, farmers are able to reduce the effects of production risk on the 

variability of household income.  It can also be hypothesised that diversification can have 

an impact on the technical efficiency of rainfed lowland farmers. The dynamics between 

sub-systems can influence the scope for complementarity between, and technical 

efficiency of, their operations, especially in light of the seasonality of demand for 

household labour and management inputs within the farming system (Coelli and Fleming 

2004). 

The objective of this paper is to analyse economies of scope in the intensive rainfed 

lowland rice-based cropping system. While scope economies have been studied in a wide 

range of industries, few studies have produced empirical evidence of scope economies in 

agricultural production (e.g. Chavas and Aliber 1993, Coelli and Fleming 2004). This 
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study provides evidence on scope economies in rice-based crop production using survey 

data in the northwest Luzon, Philippines.  

The rest of the paper is organised as follows. In the next section we discuss the study 

location and the data set. The third section presents the method of analysis, which 

includes the empirical model. The results of the econometric analysis are presented in the 

fourth section, with discussion focusing on the estimated model parameters, technical 

inefficiency and scope economies. Finally, we present a brief conclusion to the study. 

2. Study Area 

This paper is based on a panel data set collected to examine the economics of intensive 

cropping systems in Ilocos Norte, northwest Luzon, Philippines. The rainfed lowland of 

Ilocos Norte demonstrates a case of high cropping intensity and can serve as a model for 

other areas that are being intensified. Panel data from 100 randomly selected farmers 

were collected over the cropping seasons from 1994/95 to 1997/98. Sampling design and 

sample selection have been discussed by Lucas et al. (1999). Farms are small, with the 

average size of the sampled farmers only 1.1 hectares. Almost 58 per cent of the area is 

cultivated by tenants. Land holdings are fragmented, and each farm household has an 

average of three parcels that have an average size of 0.4 hectares.  

The usual cropping pattern for this environment is depicted in Figure 1. Almost all land is 

planted to rice during the rainy season, except for some upland fields that are not suitable 

for rice. A range of upland crops is grown in these fields such as beans, eggplant, and 

tomato. Most of the farmers plant modern rice varieties. Land preparation activities begin 

immediately after rain occurs. They are mostly done using hand tractors and water 
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Figure 1.  Cropping calendar and average monthly rainfall in Ilocos Norte, Philippines 
Source: Lucas et al. 2000, p. 392 

 

Table 1 summarises the average material and labour inputs and costs for rice in Ilocos 

Norte. Rice plants are established by transplanting, with an average seeding rate of 101 

kilograms per hectare. Chemical fertilisers are applied at a rate of 129-31-21 kilograms of 

NPK per hectare. Fertilisers are applied twice, the first application being made two weeks 

after transplanting and the second about five weeks after transplanting. The rate of 

chemical application was low. Overall, rice production is based mainly on the use of 

hired labour, with family labour contributing only about 20 per cent of the total labour 

requirement. Labour inputs accounts for 56 per cent of the total cost of rice production. 

Average labour usage in rice production over the four-year period was 85 person-days per 

hectare. The four-year average of rice output was 3.1 tonnes per hectare. 
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Table 1. Average inputs and costs for rice (1994-97), Ilocos Norte, Philippinesa. 
Categories 1994 1995 1996 1997 All 

years 
Inputs      
 Seed (kg ha –1) 111  

(76) 
107  
(68) 

103  
(53) 

93  
(42) 

101  
(57) 

 Nitrogen (kg ha –1) 155  
(87) 

143 
(99) 

121 
(41) 

116  
(39) 

129  
(64) 

 Phosphorus (kg ha –1) 30  
(25) 

39  
(38) 

30  
(22) 

30  
(19) 

31  
(25) 

 Potassium (kg ha –1) 19  
(15) 

22  
(20) 

19  
(18) 

25  
(19) 

21 
 (18) 

 Chemicals (kgai ha -1) 0.05 
(0.12) 

0.12 
(0.21) 

0.20 
(0.34) 

0.05 
(0.12) 

0.11 
(0.24) 

 Total labour 73  
(46) 

103  
(56) 

87  
(58) 

88  
(50) 

85  
(82) 

Costs      
 Material costs (US$ ha –1) b 174  

(95) 
198  
(78) 

131  
(45) 

147  
(46) 

155  
(66) 

 Labour costs (US$ ha –1) 206  
(122) 

179  
(123) 

243  
(110) 

177  
(98) 

197 
 (114) 

 Total costs (US$ ha –1) 380  
(190) 

377  
(137) 

352  
(127) 

324  
(120) 

351  
(140) 

Yield (t ha–1) 3.95 
(2.4) 

3.56 
(1.4) 

3.3 
(1.3) 

2.88 
(1.2) 

3.31 
(1.5) 

aFigures in parentheses are standard deviations, b 1US$=P25. 

In the dry season, maize, garlic, mungbean and tomato are the four major crops 

occupying almost 75 per cent of the area planted. Other crops planted during the dry 

season are tobacco, onion, pepper and vegetables. Dry-season crops are entirely 

dependent on irrigation from tube wells. Overall, input usage in dry-season crops is high 

except for mungbean (Table 2). Farmers apply over 500 kilograms of NPK per hectare, 

and chemicals are also applied at a higher rate. Material inputs account for 40 to 50 per 

cent of the total production cost. The high profitability of sweet pepper, tomato and garlic 

may have encouraged farmers to apply higher doses of inputs (Lucas et al. 2000, p. 399).  
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Table 2. Average input use and costs of major dry-season crops (1994-98), Ilocos 
Norte, Philippines a. 

Categories Maize Garlic Mungbean Sweet 
Pepper 

Tomato 

No. of fields 184 233 135 54 89 

Inputs      
    Seed (kg ha–1) 21 

(15) 
264 

(119) 
31 

(20) 
1.3 
(1) 

0.70 
(0.59) 

    Nitrogen (kg ha–1) 102 
(73) 

136 
(71) 

6 
(30) 

305 
(138) 

126 
(51) 

    Phosphorus (kg ha–1) 23 
(25) 

49 
(35) 

2 
(9) 

85 
(69) 

67 
(42) 

    Potassium (kg ha–1) 27 
(30) 

41 
(40) 

1.3 
(8) 

78 
(69) 

111 
(73) 

    Chemicals (kg a.i. ha–1)b 0.11 
(0.28) 

1.09 
(1.71) 

0.28 
(0.28) 

3.63 
(3.26) 

2.28 
(2.31) 

    Fuel (l ha–1)a 16 
(20) 

32 
(32) 

16 
(19) 

81 
(52 ) 

32 
(23) 

    Total labour 40 
(35) 

63 
(39) 

32 
(37) 

105 
(65) 

73 
(50) 

Costs      
    Material costs (US $) 156 

(77) 
786 

(404) 
80 

(58) 
547 

(236) 
383 

(181) 
    Labour costs (US $) 133 

(95) 
200 

(156) 
118 

(105) 
429 

(211) 
272 

(411) 
    Total Costs (US $) 289 

(124) 
986 

(450) 
198 

(134) 
976 

(343) 
655 

(504) 
      
Yield (t ha–1)  3.15 

(2.9) 
0.84 

(0.73) 
0.41 

(0.37) 
6.0 

(4.8) 
33 

(19.5) 

a Figures in parentheses are standard deviations, b includes insecticides, fungicides and herbicides. 

3. Method of Analysis 

3.1 Economies of Scope 

By definition, economies of scope (EOS) refer to the economies associated with the 

composition of output. They are traditionally defined relative to a cost function. Consider 

the case where a firm produces two outputs, y1 and y2. Following Baumol et al. (1982), 

we can measure the economies of scope between two crops by the following definition: 

EOS 1,2 = [C(y1,y2) – C(y1, 0) – C(0, y2)]/C(y1,y2) (1) 
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where C(y1,y2) is the multiple output cost function of joint production of y1 and y2; C(y1,0) 

is a cost function when only y1 is produced; C(0, y2) is a cost function when only y2 is 

produced. In our case, y1 and y2 can be defined as the outputs of crops 1 and 2, 

respectively. Economies of scope are said to exist if EOS1,2 < 0, and diseconomies of 

scope exist if EOS1,2 > 0. Intuitively, economies of scope between crop 1 and crop 2 

imply that the cost of producing y1 and y2 jointly is less than the cost of producing them 

separately. 

Empirically, EOS1,2 can be calculated and evaluated by using the predicted values of 

C(y1,y2), C(y1,0) and C(0,y2). However, because of the limited data on costs and 

individual prices of inputs received by farmers, the estimation of cost functions was not 

possible. As an alternative, an input-distance function is estimated. Following Coelli and 

Fleming (2004), the input distance function is used on the basis that the estimation of cost 

functions is not possible and on the premise that the assumption of cost minimisation is 

unlikely to be applicable to rainfed lowland rice farmers. As indicated in the use of level 

of inputs, farmers in this area are applying inputs more than the recommended rate. In the 

same context, the cropping system in Ilocos Norte is profit-driven, which makes the 

farmers grow two or more crops in the same parcel of land.  The use of an input distance 

function is appropriate for this problem and the model allows for the possibility of 

inefficiency in our production model. 

Coelli, Rao and Battese (1998 p. 64) defined the input distance function as: 

⎭
⎬
⎫

⎩
⎨
⎧

∈⎟
⎠
⎞

⎜
⎝
⎛= )(:),( yL

D
xDyxd  (2) 
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where L(y) represents the set of all input vectors, x, which includes all fixed and variable 

inputs, that can produce the output vector, y. The properties of input distance function can 

be easily derived using the assumptions of production technology. The expression d(x,y), 

is non-decreasing in x and increasing in y,  and linearly homogeneous and concave in x. 

The value of the distance function is equal to or greater than one if x is an element of the 

feasible set, L(y). That is, d(x,y) ≥1 if x ∈ L(y). It is equal to one if x is located on the 

inner boundary of the input set. That is, it equals 1 if the firm is technically efficient and 

exceeds 1 is the firm is technically inefficient (Coelli and Fleming 2004, p. 232). This 

measure is the inverse of the traditional input-orientated technical efficiency measure 

defined by Farrell (1957), which lies between 0 and 1. 

Following Coelli and Fleming (2004), economies of scope can be computed using the 

derivative of the input distance function. The first partial derivative of the input distance 

with respect to the ith output is generally negative. This indicates that the addition of an 

extra unit of output, with all variables held constant, reduces the amount by which we 

need to deflate the input vector to put the observation onto the efficient frontier. The 

second cross-partial derivative would need to be positive to provide evidence of scope 

economies (Coelli and Fleming, 2004). From equation (2), economies of scope exist 

between outputs i and j if: 

mjiji
YY

D

ji

,...,1,,,,0
2

=≠>
∂∂

∂ . (3) 

Equation (3) provides the basis for computing the economies of scope between the 

different rice-based cropping systems in the rainfed lowlands in Ilocos Norte, Philippines. 

There are potentials for the existence of scope economies in this area. For example, in the 
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case of rice-mungbean cropping pattern, we would expect that this cropping pattern 

would have significant scope economies because mungbean is a nitrogen-fixing crop 

thereby reducing the amount of fertiliser applied on the following wet season. Among the 

dry-season crops, complementarities in organising farm work, input use such as labour 

management, water management and pest and insect control can result in scope 

economies in the production system. 

There are also potentials for diseconomies of scope, caused by on-site externalities 

between the different crops. On-site effects include adverse changes in the physical, 

chemical and biological properties of the soil-water-plant complex that reduce farm 

productivity. For example, reduced availability of nutrients to plants in the intensified 

irrigated rice systems of tropical Asia could make these systems unsustainable because of 

changes in soil properties (Cassman and Pingali 1995). Scope diseconomies may also 

exist as a result of off-site externalities that are not normally valued in the market place, 

such as groundwater contamination, damage to irrigation infrastructures due to soil 

erosion. 

These on-site and off-site effects may be present in the case of the intensive cropping 

systems in Ilocos Norte. The high-input intensive systems may be unsustainable in the 

long run. Scope diseconomies may exist between rice and maize cropping pattern because 

maize is a nitrogen-depleting crop and therefore parcels planted to maize would need to 

have more fertiliser applied for a sustainable system. Excess nitrogen has been found to 

move to deeper soil layers (Tripathi et al. 1997), where it is prone to loss through 

leaching of nitrate into groundwater (Gumtang et al. 1998) and/or emission of nitrous 

oxide into the atmosphere. 
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3.2 Variables and Data 

The data on the multiple outputs and multiple inputs used in this study are based on 

aggregate values for each farm. Before the data were aggregated, they were converted 

from values on a per hectare basis into actual values. This allows us to include land (area) 

planted to crops as an additional variable in our analysis. 

The input variables considered are land, seeds used, fertiliser, chemicals, labour and 

power used. Land was defined as the total area planted to rice and non-rice crops during 

the given cropping season per farm. To capture the amount of seed used, we calculated 

the deflated total value of seed costs as the sum of all values of seed costs for all crops 

planted during the cropping year. Fertiliser is the total value of active ingredients of 

nitrogen, phosphorus and potassium. Chemicals include the total amount of active 

ingredients of insecticides, pesticides, fungicides and herbicides used for all crops. 

Labour is the total number of days of labour used in all cropping practices for all crops 

per year. Power is composed of the cost of power used for land preparation, such as the 

tractor and fuel inputs, and the fuel costs used for supplementary irrigation. 

For the purpose of the analysis, we have limited the output variable into four categories, 

rice output plus the values of respective outputs of garlic, maize, mungbean and other 

crops. Because of the multiplicity of outputs derived from different crops during the dry 

season, we focus on the top three major crops grown during the dry season. This 

classification is based on the number of fields or parcels planted to maize (184), garlic 

(233) and mungbean (135) during the four-year periods.  These crops are planted almost 

always on the same parcels over time. For the remaining parcel of land, there are different 
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crops planted that are not necessarily planted on the same land over time. Garlic and 

mungbean are considered as cash crops while maize is predominantly for home 

consumption. We have summed the values of these other outputs into one additional 

category called other crops. The most important crop in the other crops category is sweet 

pepper. 

We have considered the data for 50 farmers during the 1994-95 and 1995-96 cropping 

seasons and the data for 100 farmers during the 1996-97 and 1997-98 cropping seasons. 

The reason for this unbalanced number of observations is that data were initially collected 

for 50 farmers and the sample size was only increased to 100 in 1996.  

Evidence of economies of scope in rainfed lowland rice environment can be derived from 

by using equation (3). We note that, although rice and other crops are grown in different 

seasons, farmers are still faced with the decision of which combination is best and more 

efficient. For this purpose, we examine whether economies of scope exist between the 

different cropping patterns and between the different crops grown in the dry season. The 

different cropping patterns considered are: rice-garlic, rice-maize, rice-mungbean and 

rice-other crops. Because farmers diversify and plant several crops during the dry season, 

the different combinations of crops are also examined, namely garlic-maize, garlic-

mungbean, garlic-other crops, maize-mungbean, maize-other crops and mungbean-other 

crops. 

3.3 Empirical Model 

We make use of the methodology proposed by Coelli and Fleming (2004), Coelli and 

Perelman (1996) and Battese and Coelli (1992). A multi-output multi-input stochastic 

input distance function was estimated, and the results were used to evaluate the 
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economies of scope. This function is also used to calculate the technical efficiency index 

for each sampled farmer in each year, and the mean technical efficiency by year and for 

the whole period. The model is based on a translog functional form that takes into 

account the interactions between outputs and input variables. The means of the logged 

variables were adjusted to zero so that the coefficients of the first-order terms may be 

interpreted as elasticities, evaluated at the sample means. 

Following Coelli and Perelman (1996), the translog stochastic input distance function can 

be specified as: 
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where Yit is the i-th input in period t and Xjt  is the j-th output in period t, and β,α ,φ, ϕ and 

δ are parameters to be estimated. As mentioned earlier, the five inputs variables in the 

model are area, seeds, fertiliser, power, labour and chemicals. The outputs are the rice 

outputs and the value of the outputs of garlic, maize, mungbean and other crops. The 

dummy variables to take into account the zero values of Yjs and Xi were also included. 

This implies that the logarithms of these variables are taken only if they are positive, 

otherwise they will have a value of zero (Battese 1997). The variables T and T2 are 

included to take technical change into account. 

In order to obtain the estimating form of the stochastic input distance function, we set      

–ln dit = vit-uit and impose the restriction that Σβi = 1 (Coelli and Perelman 1996, Coelli 

and Fleming 2004). The translog stochastic input distance function can now be re-written 

as: 
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where  

Ait  is the total area planted to rice and non-rice crops in period t, in hectares;  

X1 the total cost of seeds used, in pesos;  

X2 the total amount of fertiliser used in all crops, in kilograms of NPK;   

X3 the total cost of power used, including cost of tractor and fuel cost, in pesos;  

X4 is the total labour used in all crop production, in person-days;  

X5 is the total amount of chemicals used, including insecticide, pesticides and fungicides, 

in pesos;  

Y1 the total output of rice, in kilograms;  

Y2 the total value of output of garlic, in pesos;  

Y3 the total value of output of maize, in pesos;  

Y4 the total value of output of mungbean, in pesos;  

Y5 the total value of output of other crops, in pesos.  

D1 is the dummy variable for garlic, with a value of 1 if Y2>0 and 0 if Y2 = 0;  

D2 is the dummy variable for maize, with a value of 1 if Y3>0 and 0 if Y3 = 0;  

D3 is the dummy variable for mungbean, with a value of 1 if Y4>0 and 0 if Y4=0;  

D4 is the dummy variable for other crops, with a value of 1 if Y5>0 and 0 if Y5=0;  

D5 is the dummy variable for chemicals, with a value of 1 if X5> 0 and 0 if X5=0.  

vits are assumed to be independent and identically distributed with mean zero and 

variance ; 2
vσ
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uit = {exp[-η(t-T)]}ui,  where uis are assumed to be independent and identically distributed 

non-negative truncations of the N(µ, σ2) and η is an unknown parameter to be 

estimated. 

Following Coelli and Perelman (1996) and Coelli and Fleming (2004), the input distances 

are predicted as: 

di=E[exp(ui)|ei] where ei = vi-ui. (6)

The parameters of the model are estimated using the maximum likelihood estimation 

procedures in running the FRONTIER 4.1 program (Coelli 1996). Various hypothesis 

testing are carried out using the likelihood ratio test. 

4. Results 

4.1 Partial elasticities of inputs and outputs 

The maximum likelihood estimates of the parameters of the translog stochastic input 

distance function given by equation (5) are presented in Appendix 1. Because the values 

of the explanatory variables were mean-corrected to zero, the first-order parameters are 

estimates of input and output elasticities. A summary of the estimates of input and output 

elasticities is presented in Table 3.  Because of the restriction required for homogeneity of 

degree +1 in inputs, the estimated partial output elasticity for land (total area planted to 

crops) is 0.516. This estimate is plausible and consistent with the output elasticities 

estimated for other rainfed lowland areas in the Philippines. For example, Villano (2004) 

applied a translog stochastic frontier model in the rainfed lowland of Tarlac, Central 

Luzon, Philippines and obtained an output elasticity for land of 0.510. 
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Except for chemicals, all the elasticity estimates for inputs are significant at the one per 

cent level. All estimated coefficients fall between zero and one, which satisfies the 

monotonicity condition at the mean of inputs – all marginal products are positive and 

diminishing. Among the inputs other than land, fertiliser and labour showed the highest 

elasticity estimates at 0.181 and 0.161, respectively. This underlines the importance of 

these two inputs in the cropping systems. Farmers in Ilocos Norte use high levels of 

fertiliser because of the economic benefits derived from its application to high-value 

crops. High-value crop cultivation is very labour-intensive and large quantities of 

fertiliser, pesticide and irrigation are required. 

The estimated partial output elasticity of seeds was found to be significant. We note that 

this variable is the total costs of seeds used in all crops grown.  This variable is 

particularly important in the dry-season crops. Unlike in the case of rice, where farmers 

can collect seeds from their previous harvests, costs of seeds for dry-season crops are 

relatively expensive. For garlic, and sweet pepper, the best quality seed materials are 

selected from the farmer’s harvest. Farmers who do not have sufficient seed materials for 

garlic and sweet pepper before the onset of the dry-season usually buy from the market 

where the cost is more than double the regular selling price. 

Maize and tomato seeds are bought from seed companies. The elasticity implies that 

farmers would increase their output from seed input with the assurance of good quality 

seed materials, despite the high costs. Usually, farmers sow more seeds than what is 

needed for replanting purposes particularly, for sweet pepper, tomato and tobacco but 

also for rice. 
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The estimated output elasticity of power is low, but significant. Likewise, the estimated 

output elasticity for chemicals was found to be low but it was insignificant. Even without 

the threat of pest and disease infestation, farmers generally apply chemicals 

indiscriminately because they believe it is a protection mechanism. Ideally, we should 

have included a variable that captures the incidence of insects, pests and diseases 

infestation in addition to including the actual amount of chemical used. This is evidenced 

by the fact that the coefficient of the dummy variable for chemicals, φ5, is significant. 

Table 3. Estimates of input and output elasticities 

Variable Estimated 
elasticity 

Standard error t-value 

Inputs:    

 Seeds 0.089 0.027 3.26 

 Fertiliser 0.181 0.041 4.45 

 Power a 0.051 0.020 2.54 

 Labour 0.161 0.035 4.62 

 Chemicals b 0.002 0.011 0.18 

Outputs:    

 Rice - 0.317 0.030 -10.61 

 Garlic -0.214 0.097 -2.22 

 Maize 0.138 0.070 1.96 

 Mungbean -0.339 0.162 -2.09 

 Others c -0.075 0.013 -5.59 
a includes the cost of hiring tractor and animals, and fuel cost for land preparation and irrigation; b includes 
the active ingredients of insecticides, fungicides and herbicides; c include other crops such as tomato, sweet 
pepper, tobacco and vegetables. 
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The estimated partial elasticities of input for rice, garlic, mungbean and other crops are of 

expected sign and magnitude, and highly significant at one per cent level (Table 3). 

Because of our formulation of the input distance function in equation (5), we would 

expect the signs of the input elasticities for outputs to be negative. A negative elasticity 

estimate denotes a positive output response to a proportional increase in all inputs. These 

values show the impact of a proportional change of inputs to the outputs of rice, garlic, 

mungbean and other crops. For example, a 10 per cent increase in all inputs would 

increase rice output by approximately 3.2 per cent. The values of output of garlic, 

mungbean and other crops would increase by approximately, 2.1, 3.3 and 0.75 per cent, 

respectively. The result for maize was positive and significant at 10 per cent level. This is 

not expected, because it implies that the set of inputs as a whole would have a negative 

impact on the value of the output of maize. Two explanations are proffered for this 

unexpected result. 

One explanation is that maize is grown partly as a subsistence crop and does not receive 

the attention that the other commercial crops receive when inputs are allocated. Another 

explanation concerns a decline in the yield of maize over the four-year study period. 

Maize output in 1997-98 was almost 14 per cent below the 5 million tonnes output in 

1993-94 according to a Bureau of Agricultural Statistics (BAS) report. This decline may 

be attributed to pest infestation that is not captured in the specification of the model due 

to data constraints. Maize borer is a major pest in Philippine maize farmers, as attested by 

Teng, Fernandez, and Hofer (1992) and Logroño (1998). BAS data on the impact of 

maize borer on maize supply in the Philippines show that a high incidence of maize borer 

infestation could cause maize supply losses ranging from 74,000 tonnes to 164,000 
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tonnes over the 1980-1981 to 1997-1998 dry seasons. At a low incidence of maize borer 

infestation, maize supply losses could range from 26,000 tonnes to 64,000 tonnes. 

The inverse of the sum of the output elasticities, α1, α2, α3, α4 and α5 provides a measure 

of ray scale economies at the sample means (Coelli and Fleming 2004). The sum is 0.807, 

and the inverse is 1.24, suggesting increasing returns to scale. This implies that an 

increase in all inputs in the same proportion, k, leads to an increase of output of a 

proportion greater than k, a result that reflects the small scale of commercial operations 

on the surveyed farms, particularly on the individual parcels. 

4.2 Technical efficiency estimates 

Two sets of hypothesis tests on the technical efficiency estimates were undertaken using 

likelihood ratio tests. First, the null hypothesis of no technical inefficiencies in production 

(H0: γ=0) was tested. The value of the log-likelihood ratio test statistic was 46.92 and this 

was found to be greater than the critical value of 8.54 obtained from Table 1 of Kodde 

and Palm (1986) for three restrictions. This implies that the technical inefficiency term 

(uit) is a significant addition to the model. The value of γ=0.6988, suggests that almost 70 

per cent of the disturbances are due to inefficiency and about 30 per cent due to stochastic 

events. Second, we tested if the technical inefficiency varies over time (H0: η=0). The 

value of log-likelihood ratio test statistic was 4.4, which is greater than the critical value 

of 3.841. This result provides evidence of a change in the level of inefficiency over time, 

reflected in the significant negative value of η reported in Appendix 1. 

The average technical efficiency over the four-year crop production is 0.68, with a 

minimum of 0.43 and a maximum of 0.94. These figures suggest that there is an 
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opportunity to expand crop output without using more inputs or introducing new 

production technologies. The average annual technical efficiency estimates are 0.77, 0.73, 

0.67 and 0.63 for the cropping years 1994-95, 1995-96, 1996-97 and 1997-98, 

respectively. 

A plausible explanation for this decline in technical efficiency is that inefficient farmers 

were unable to attain the benefits of the technical progress that is evident from the 

positive coefficient for time trend, δ1, of 0.085 (standard error 0.031). The more 

progressive farmers were shifting the frontier outwards over time, but some (possibly 

most) farmers were maintaining their current practices, making the latter group more 

inefficient in relative terms. That is, their farm performance was static while progressive 

farmers were improving their performance. We expect that technical inefficiency is 

enduring over time. Anecdotal evidence from extension officers suggests that farmers 

who use today’s technology more efficiently are likely to use tomorrow’s technology 

more efficiently too, and be quicker to adopt improved technologies that shift out the 

production frontier. Many technically inefficient farmers are also constrained by the 

inadequacy of the basic infrastructure and support services that could enhance the 

efficiency of both their production and distribution activities (Gonzales, Oliva and Leynes 

1995). 

A plot of the distribution of technical efficiency indices is presented in Figure 2. Thirty-

one per cent of farmers fall within the 61-70 per cent range. There are only about 12 per 

cent of farmers who obtained an average technical efficiency of more than 80 per cent. 

These variations in technical efficiency estimates can be attributed to several factors such 

as the demographic characteristics of farmers and tenurial status. Extension of this 



 19

analysis, using the Battese and Coelli (1995) model to estimate an input distance 

stochastic frontier function with technical inefficiency effects, will be considered in the 

future. 
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Figure 2. Distribution of technical efficiency indices of rainfed lowland farmers in 
Ilocos, Norte, Philippines. 

 

4.3 Economies of scope estimates 

The coefficient estimates of economies of scope with different crop combinations are 

presented in Table 4. These scope economies are obtained using equation (3) for each pair 

of outputs at the means of the sample data. Positive values of the estimated coefficients 

indicate scope economies and negative values indicate scope diseconomies. The 

corresponding standard errors of the estimates of scope economies computed using the 

Taylor series expansion are also reported in Table 4. 
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Table 4. Estimates of economies of scope in the rainfed lowlands of Ilocos Norte, 
Philippines 

 

Output combinations Estimated 
Coefficient 

Standard error t-value 

Rice-Garlic 0.095 0.24 3.891  

Rice-Maize -0.032 0.015 -2.140  

Rice-Mungbean 0.115 0.054 2.137  

Rice-Other Crops 0.035 0.009 3.667  

Garlic-Maize -0.030 0.020 -1.499 

Garlic-Mungbean 0.070 0.057 1.221 

Garlic-Other Crops 0.015 0.021 0.725 

Maize-Mungbean -0.046 0.056 -0.828 

Maize-Other Crops -0.009 0.009 -0.917 

Mungbean-Other Crops 0.025 0.055 0.462 

Evidence of significant scope economies exists between rice and garlic, rice and 

mungbean, and rice and other crops. Garlic cultivation requires mulching, and the farmers 

use rice straw as mulching material. This mulching material is left on the field after the 

rice is harvested, and dug into the soil to improve it for garlic cultivation. Mungbean is a 

nitrogen-enhancing crop and its residue is also returned to the soil to improve soil fertility. 

The result of both mulching practices and nitrogen fixation is improved productivity and 

reduced costs to farmers engaged in these cropping patterns. There is weak evidence that 

scope economies exist between some crops grown in the dry season, such as between 

garlic, mungbean and other crops. 

The estimated coefficient for rice and maize is negative and significant. As mentioned 

earlier, maize is a nitrogen-depleting crop with heavy fertiliser requirements. More 
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fertiliser is applied to rice crops on parcels of land previously under maize, which 

increases cost. The combinations of maize with other dry-season crops also indicate 

(weakly) scope diseconomies, for the same reason. 

In summary, our estimated coefficients provide some evidence that scope economies and 

diseconomies can occur in intensive rice-based mixed cropping systems. 

 

5. Conclusions 

This paper investigates economies of scope and technical inefficiency in a rainfed 

lowland mixed cropping system in the Philippines. An input distance stochastic frontier 

function was estimated using panel data collected from 100 randomly selected farmers. 

Evidence is provided of economies and diseconomies of scope and the extent of 

inefficiency in the production system. Significant scope economies exist between rice and 

mungbean, rice and garlic, and rice and other crops. Scope diseconomies were observed 

between maize and all other crops. 

Significant technical inefficiency is observed in these highly intensive and 

commercialised cropping systems and it appears to have been increasing over the study 

period as the production frontier moved outwards. The average technical efficiency was 

0.68, which suggests that there is an opportunity to expand crop output without using 

more inputs or introducing new production technologies. 
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Appendix 1. Estimates of the Stochastic Distance Function 

Variable 
 
Coefficient 

Estimated 
Coefficient Standard error t-value 

Constant β0 1.262 0.480 2.630 a

Rice α1 -0.317 0.030 -10.608 a

Garlic α2 -0.214 0.097 -2.222 a

Maize α3 0.138 0.070 1.965 b

Mungbean α4 -0.339 0.162 -2.087 a

Other crops α5 -0.075 0.013 -5.592 a

Seed β1 0.089 0.027 3.255 a

Fertiliser β2 0.181 0.041 4.450 a

Power β3 0.051 0.020 2.544 a

Labour β4 0.161 0.035 4.624 a

Chemicals β5 0.002 0.011 0.183 
Rice2 α11 -0.118 0.060 -1.980 b

Rice x Garlic ϕ12 0.027 0.010 2.812 a

Rice x Maize  ϕ13 0.012 0.006 1.884 b

Rice x Mungbean ϕ14 0.007 0.008 0.884 
Rice x Other crops ϕ15 0.011 0.006 1.922 b

Rice x Seed ϕ1
1 -0.103 0.043 -2.367 a

Rice x Fertiliser ϕ1
2 -0.012 0.063 -0.197 

Rice x Power ϕ1
3 0.085 0.022 3.781 a

Rice x Labour ϕ1
4 -0.131 0.052 -2.527 a

Rice x Chemicals ϕ1
4 0.019 0.013 1.506 

Garlic2 α22 0.037 0.025 1.508 
Garlic x Maize ϕ23 0.000 0.001 -0.346 
Garlic x Mungbean ϕ24 -0.003 0.002 -1.361 
Garlic x Other crops ϕ25 -0.001 0.001 -0.835 
Garlic x Seed ϕ2

1 0.015 0.012 1.283 
Garlic x Fertiliser ϕ2

2 -0.015 0.016 -0.954 
Garlic x Power ϕ2

3 0.002 0.006 0.276 
Garlic x Labour ϕ2

4 0.019 0.010 1.884 
Garlic x Chemicals ϕ2

5 0.009 0.004 2.400 
Maize2 α33 -0.055 0.018 -3.069 a

Maize x Mungbean ϕ34 0.000 0.001 0.427 
Maize x Other crops ϕ35 0.002 0.001 1.673 c

Maize x Seed ϕ3
1 0.002 0.006 0.293 

Maize x Fertiliser ϕ3
2 -0.013 0.010 -1.314 

Maize x Power ϕ3
3 -0.004 0.004 -1.033 

Maize x Labour ϕ3
4 0.004 0.007 0.536 

Maize x Chemicals ϕ3
5 0.001 0.002 0.456 

Mungbean2 α44 0.047 0.032 1.492 
Mungbean x Other crops ϕ45 0.000 0.001 -0.201 
Mungbean x Seed ϕ4

1 0.021 0.009 2.352 a

Mungbean x Fertiliser ϕ4
2 0.019 0.014 1.336 

Mungbean x Power ϕ4
3 -0.003 0.005 -0.594 

Mungbean x Labour ϕ4
4 -0.018 0.009 -1.968 a

Mungbean x Chemicals ϕ4
5 0.007 0.003 2.591 a

Other2 α55 -0.006 0.001 -5.760 a

Other crops x Seed ϕ5
1 0.009 0.006 1.441 

Other crops x Fertiliser ϕ5
2 0.031 0.009 3.296 a

Other crops x Power ϕ5
3 -0.002 0.004 -0.434 
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Other crops x Labour ϕ5
4 -0.001 0.007 -0.115 

Other crops x Chemicals ϕ5
5 -0.002 0.002 -0.861 

Seed2 β11 -0.154 0.064 -2.393 a

Seed x Fertiliser β12 0.188 0.075 2.495 a

Seed x Power β13 -0.043 0.028 -1.516 
Seed x Labour β14 -0.065 0.050 -1.309 
Seed x Chemicals β15 -0.025 0.016 -1.628 
Fertiliser2 β22 -0.018 0.147 -0.126 
Fertiliser x Power β23 -0.115 0.039 -2.980 a

Fertiliser x Labour β24 0.057 0.088 0.649 
Fertiliser x Chemicals β25 0.011 0.018 0.612 
Power2 β33 0.052 0.012 4.151 a

Power x Labour β34 0.027 0.022 1.242 
Power x Chemicals β35 0.018 0.006 2.922 a

Labour2 β44 -0.293 0.074 -3.963 a

Labour x Chemicals β45 -0.032 0.018 -1.808 
Chemicals2 β55 0.021 0.010 2.144 a

Year δ1 0.085 0.031 2.717 a

Year2 δ11 0.071 0.014 5.109 a

Dummy - Garlic φ1 -1.817 0.948 -1.917 b

Dummy - Maize φ2 1.384 0.579 2.392 a

Dummy - Mungbean φ3 -1.958 0.939 -2.084 a

Dummy - Other φ4 -0.460 0.121 -3.800 a

Dummy - Chemicals φ5 -0.356 0.143 -2.483 a

σ2  0.079 0.015 5.172 a

γ  0.699 0.064 10.876 a

µ  0.468 0.102 4.583 a

η  -0.164 0.078 -2.108 a

     
Likelihood ratio test of the 
one-sided error 

 
46.92   

ϕj
i j denotes output and i denotes inputs.a,b,cdenotes significance at 1, 5 and 10 per cent levels, respectively. 


