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INTRODUCTION

This paper focuses on the application of computer-based, iterative

methods for deriving analytical solutions to economic models expressed as

systems of simultaneous linear and/or nonlinear equations. Fractical

suggestions for using four specific methods are emphasized. Analogies

from economics are used to explain practical and theoretical points.

The primary motivation for this paper arises from methodological

constraints faced in developing quantitative tools for economic planning,

especially in the less developed countries (LDCS), where planners increasingly

seek to sirnui~te economic activity at the industrial, sectoral, or national

level. Simultaneous-equationmodels* appear to offer several advantages over

other techniques such as input-output analysis or constrained optimization.

For instance, input-output analysis is not designed to capture supply and

demand responses to substitution possibilities. Constrained optimization

models, despite recent innovations [5,6,16], remain limited “bythe number

of equations nonlinear in three or more variables that can be conveniently

handled and by convexity conditions required to find an optimal activity

set. Simultaneous-equationmodels are also generally superior for charac--

terizing time-dependent relationships or forecasting macroeconomic activity.

A mjor impediment to the use of simultaneous-equationmodels is the

difficulty of calculating solutions. This is especially true of large models

and models with many nonlinear equations. Procedures used to calculate

solutions have been, for the most part, either variations of Gauss-Seidel

iteration or ad hoc, model-specific methods. In addition to drawing scarce——

*That is, quantified models consisting of an equal number of endogenous
variables and equations. These models may be termed “nonoptimizing” because
their solutions need not depend on the optimization of an explicitly-stated
objective funccion. Some examples are the Kelley-Williamsonl-Cheetammodel [15],
the Chenery-Raduchel model [1], and the Wharton and Brookings models [II].
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resources away from model specification and estimation, model-specific

methods tend to be inflexible. Modifying the model to simulate the effects

of policy alternatives can require extensive reform!ulati.onsof the solution

algorithm -- a costly distraction in LDC.planning. The Gauss-Seidel and

Jacobi methods used at the Wharton Schoc)l,Brooking,sInstitute and U.S. Depart-

ment of Agriculture are generally not as sensitive as model-specific methods

to changes in.a few equations. However, with Gauss-Seidel methods considerable

time and effort may be expended in rearranging the equations of the model

before a solution is obtained.

Despite these problems, economists appear to have limited their search

for and reporting of method~~for solving simultaneous-equationmodels. For

instance, Shapiro and Hdabuk’s recent review of macroeconomic model building

[9] excluded discussion of solution procedures. Th~egeneral objective of

this paper is to partially redress this failing by providing a convenient

introduction to iterative methods as solution procedures for simultaneous

equation economic models. The theory of iteration and practical suggestions

for using iterative methods are presented at a basic level requiring minimal

proficiency in mathematics. Part I begins with a very general discussion of

the nature of iteration, followed by an optional section which gives a more

mathematically detailed treatment. Parts 11 and 111 describe four specific

iterative methods useful in economic mocleling. Suggestions on how to use

them are drawn from the literature and from the authors’ model solving

experience. Part IV summarizes the advantages of the four methods and

suggests how to search for other algorithms.

ii
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NOTATION

Indices used as subscripts to indicate the

(k-l),(k),(k+l),etc.

aYb,...yx.yyz

A,B,...,X,Y,Z

~th .th .th
7.1) or ij member of a set. Unless

otherwise indicated, ~.and j take on successive

integer values between 1 and n.

Indices used as superscripts to indicate the

k_lst, kth St
, or k+l member of a sequence of

iterates. Superscript values are nonnegative

intergers, k ‘=0,1.,2,....

Index used to indicate the total number of

equations In a system of equations or the

number of elements in a vector or a matrix.

Lower case letters denote a real number con-

stant or a variable that takes on real number

values. Unless otherwise indicated, variables

will be denoted by letters from the end of

the alphabet.

Upper case letters denote a vector or matrix

whose elements--a b
ij’ ij’”’”’‘ij’ ‘ij, ‘ij ‘-

may be real constants or variables. Unless

otherwise indicated, vectors or matrices with

variable elements will.be denoted by letters

from the end of the alphabet. All matrices

used in this paper are square (number of rows =

number of columns ‘ n).
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A,vector or matrix all of whose elements are

f(x)

fi(X); or fi(x1,x2,...,xn)

F (X)

x@-lLx@),x@+l)..*, ,*..

(k)
‘i

x(o) (k)
9***YX

(k+l)
‘i

=gi(x‘k)); or

(k+l) (k) (k)
‘i =gi(xi X2 ,....

x (k),
n

~; orJ(X)

zero.

A,function of one variable.

The ith function in a system

in n variables.

A,system of n functions in n

of n functions

unknowns. collec-

tively, this system of equations is also

referred to as a function or a mapping.

A.vector of values which are a user’s initial

guess at a solution of a system of simultaneous

equations.

Vectors representing the k-lst, k
th St

, and k+l

iterates in a sequence of iterates generated

by an iterative method beginning at some X
(o)

and searching for the solution of a system

of simultaneous equations.

(k)
The ith e~ement of the vector X .

‘I’hesequence of iterates generated by a one-

(9)
dimensional iterative method beginning at x .

A function that expresses new iterates, X
(k+l)

9

(k)
in terms of old iterates, X .

‘I’heith function in the system of n iterative

Functions collectively denoted X(k+l)=G(x(k)).

The Jacobian matrix of a system of equations,

evaluated at X.

iv



(1 (x)

14
11X11

*

f‘(x)

af (x)

axj

afl(x)

axj

j:(i-1)

j $(i+l)—

The

‘The

The

spectral radius of matrix X.

absolute value of x.

norm of the vector or matrix X.

A superscript that denotes a point x*
*

or X

that is an economic equilibrium, the solution

of a system of simultaneous equations, or

the

The

limiting point of a sequence of iterates.

derivative, &, of a function of one

variable, evaluated at x.

The j
th

first partial derivative of a function

of n variables, evaluated at X.

The jth first partial derivative of the i
th

equation in a system of n equations, evaluated

Thus afi(x) th
at X. can represent the ij

‘ ax-j

element of the Jacobian matrix of the system

of equations.

The summation of a sequence of terms containing

variables with the subscript j. Unless other-

wise indicated, the sum shall be formed by

taking integer values of j between 1 and n.

Same as above except that the index j takes

on integer values from 1 to i-1, where i is

fixed.

Same as above except that the index j takes on

integer values from i-l-lto n, where i is fixed.

v



Same as above except that j takes on all integer

values from 1 to n except i, where i if fixed.
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A.

Part 1:

Basic Concepts.—

Iteration is a method

The Nature of Iteration

for finding a solution to

error. The method begins with an initia.Lguess at a

is then tested to see if it is an adequate answer to

a problem by trial and

solution. This guess

the problem. If it is

not, a second guess is generated by modifying the initial guess according

to a well-deffned rule. The second guess is tested; and, if need be, a third

guess is generated by modifying the second guess according to the same rule.

Th:isprocess continues until a solution is found or until a decision is made

to stop looking.

There are many possible rules for generating new iterative guesses from

old ones, and each distinct rule defines a distinct iterative method. Most

rules allow information about the problem-to-be-solved to influence the

way old

depends

a given

In

model.ss

1.

2.

guesses are modified to form new guesses. Each new guess thus

on the rule, the problem, and the previous guesses. However, for

rule and problem, new guesses depend only on old guesses.

the case of iterative solution of simultaneous-equation economic

the following components of the iterative process merit identification:

The problem is to find a solution for an economic model expressed

as a system of n equations in n “unknowns” (endogenous variables).

In functional notation, F(X) = ~ is the model, where F is a function,

X is an nxl vector of endogenous variables, and g is an nxl vector

of constants, X(*), which satisfies the model. I.e., F(X(*)) = 0.—

The guesses, or iterates, are nxl vectors of constants to be tested

as possible solutions of the model. They are generated and tested

one at a time, beginning with X
(o)

, the initial guess, and proceeding



3.

4.

-2-

through subsequent guesses X
(1)

, X(2), X(3)
x(k), ~(k+l), ~tca,

,...,

where superscripts indicate the ordering of the sequence of guesses.

A test determines wheEher the most recent guess is an adequate

approximation to a solution. It consists of measuring (by means of

some distance formula, D) the deviation of F(X(k)) from zero. I.e., the

quantity D[F(X‘k)) -~] = D[F(X(k)) - F{X(*))] must be approximately

zero for X(k) to be accepted as a solution to the model. Otherwise a

(k+l)
new iterate, X , must be chosen.

The rule generates new guesses from old guesses. Each——

the rule to derive a new guess is called an iteration.

application of

A rule can be

written as the

procedures for

near the point

1/ (k+l)
function– X = G(x(k)), where G incorporates

obtaining “information” about the model’s “behavior”

F(X(k)) and for using this information in the selection

of X(k+l)
.

Figure 1 is a flowchart of the workings of an iterative method.

If an iterative method generates a sequence of iterates that terminates

2/
in values arbitrarily close to a solution— , the method is said to converge

to a solution, or to be convergent. Methods which converge to a solution——.

fromq initial guess are filoballyconvergent. For some

globally convergent iterative methods do not exist; it is

find methods that converge

convergence” surrounding a

In practice, the same

a certain class of models,

when the initial guess lies in

nolinear models,

only possible to

some “region of

solution. These methods are locally convergent.

method may be globally convergent when applied to

anclonly locally convergent or not convergent at

all for other models. Convergence may also depend on the way a given model

is expressed algebraically to address the computer program for the iterative

method. A researcher seeking solutions to a model faces the twin problems



-3-

Figure 1: Schematic Structure of an Iterative Method
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Current Guess
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a Solution? No
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Pick a new guess
according to the rule
~(k+l) = ~(X(k))
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of (1) choosing an iterative met”hodappropriate to his model, and (2) choosing

an algebraic statement of his model appropriate to the iterative method.

Hundreds of iterative methods have been proposed for solving systems of

simultaneous equations. The four discussed in Parts 11 and 111 are (1) theore-

tically fundamental, (2) easy to program and use, (3) efficient and reliable,

and (4) applicable to both linear ahd nonlinear models. The Jacobi and Gauss–

Seldel methods presented in Part II were originally devised for linear problems.

Newton’s method and the related Brown’s method are discussed in Part III.

The two pairs of methods are described and suggestions are made on how to modify

either the model or the methods in order to obtain convergence. Readers may

wish to proceed directly to Parts 11 or 111. The remainder of Part I is an

optional section which introduces some concepts and theorems important in

the theory of iterative convergence. It provides additional background for

interested readers but is not essential for understanding Parts II-IV.

B. A Sketch of the Theory of Convergence of Iterative Methods—

Consider the iterative process defined over some domain D by the function

~(lc+l)= ~&)). (Note that the function G depends both on some model,

F(X) = O, and on the particular iterative technique used to solve the model.

Neither G(X(k)) = xk+l nor any

F(X) = O and its derivatives.)

arbitrarily large the distance

of its derivatives should be confused with

The method converges to X* if as k gets

IX,* - X*‘k)] tends to zero for each element.
L

A(k)
men, for sufficiently large k, lXi* - Xi I and hence Ixi* - xi(k+l)l

(k)
approach zero, the successive iterates X and X(k+l) are approximately equal

(k) =x *= x (k+l), Orx (k)&x (k+l).
since x

i i i i i
Thus, X* is a fixed point of

the iterative method as well as a solution to the economic model,q’ and an

(k) -x (k-tl)l=o.
alternative criterion of convergence is Ixi i.
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The analysis of convergence in a one-equation problem can be presented

graphically. Each of the following four graphs (derived from~~, p. ~~)

illustrates the effects of the slope of the iterative function, g(x‘k)), on

the convergence of the method.

In 2A and 2B the sequence of iterates begins at the initial guess x(o)

*
and converges to the fixed point x . In 2C and 2D the sequence diverges

(k)~
from xi despite relatively good in~.tialguesses. The slope of g(x ,

which is shallow in 2A and 2B but relatively steep in 2C and 2D, determines

the convergence

converge if the

or divergence of the sequence. Indeed, the sequence will always

initial guess lies i.na neighborhood of the solution where

(k-tl)
steep than the line x = x(k). This line passes through

the origin ac an angle of 45° and has a slope of +1.

*
iterative method will converge to x from any x(o) in

(k)
where the slope of g(x ) is less than 1 in absolute

It follows that an

a neighborhood of x*

value, i.e., where

/g’(x(k))/<l.A’ This result should come as no surprise to agricultural

economists. The same sort of condition (slope of demand curve steeper than

5/
slope of supply curve)— determines the convergence or divergence of a cobweb

model. (This analogy is more fully developed

the Gauss-Seidel method, and also in Appendix

In order to better understand the nature

below in the explanation of

B.)

of convergence of iterative

methods in more realistic models, these simple results must be generalized

to higher dimensions. The theorems that follow show that when the matrix of

first partial derivatives of the n-dimensional iterative function G(X) has

a “magnitude” which is less than one throughout a convex neighborhood of the

solution, a sequence of iterates in that neighborhood will have decreasing

first differences and will converge to the solution X*. To state this
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result formally, the concepts of matrix and vector norms, Jacobian matrices,

spectral radii, and contraction mappings are introduced next.

1. Vector and Matrix Norms. For real numbers a measure of magnitude

is the absolute value, signified by \ 1. In the above analysis of the

convergence of an iterative method in a single equation model, this measure

was used to indicate the magnitude of the differences between successive

iterates. The corresponding measure for a vector or a matrix is called a

norm, and is denoted by II I1. Norms provide a measure of “distance” in

higher dimensions and are useful both for defining convergence and in analyzing

under what circumstances convergence will take place.

A vector norm is defined by the following properties, which are analogous

6/
to the properties of the absolute value.– Let X and Y be vectors, a a scalar,

and O a vector all of whose elements are zero. Then a vector norm must—

satisfy

a.JJxJ/>oifx+Q;llxll=oif X=Q;

b. jlaX\l=lal ~ 11X11;

c. ]]x+y]l~llxl[+[ly[[.

Matrix norms must also satisfy properties a.-c. (where X,Y and~are matrices)

as well as

d. IIxylls][xll “ 11X11.

A matrix norm and a vector norm are said to be mutually consistent if, where

A is any matrix and X any vector (of suitable dimension)

e. llAx\ls[lAll “ 11X11.

There are an infinite number of vector and matrix norms that satisfy

a.-e. For instance, the familiar Euclidean vector norm,

]Ixll=l (X1)2 + (X2)2 + .** + (xn)2,

where the x , i=l, ... , n,
i

are elements of the vector X, is only one member
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of the so-called Lp family of norms. These norms are defined as

pl/Pl<p<m.
I]x[[p=(/xl[ p+\x21p+. .*+lxn]) ,_ _

It can now be stated that an iterative method converges to a solution,

x*, of a system of simultaneous equations when, for some vector norm,

IIX* - x(k)II approaches zero as kgoes to infinity. Viewing X*as a fixed

point of the iterative method, a convergent method can also be defined by

the criterion that l/X(k+l)- X(k)llapproaches zero as k goes to infinity.

The use of vector and matrix norms in analyzing (as opposed to merely defining)

convergence will be deferred until some other useful concepts have been

defined.

2. The Jacobian Matrix.--Convergence of the one-dimensional iterative

method x(k+l) = g(x‘k)) depends on the first derivative of g(x‘k)) being of

*
a%solute value less than one in a neighborhood of the solution point x .

To generalize this result to the n-equation case requires an extension of

the concept “first derivative” to systems of equations in several variables.

For one function of n variables, g(xl> X2> .-. , Xn) = O, an appropriate

generalization is the tangent hyperplane defined by the vector of first

partial derivatives of the function, g’(xl, X2, ... , Xn) =

[
x),~(xl, X2, ..* , Xn), . . . , ax 1~ (xl, X2, ... , Xn)a(~l, ‘L> ““” ‘ n ax2

axl n

For a system of n functions in n variables, the appropriate generalization

is the system of tangent planes formed by taking all the first partial

derivatives of each function. These first partial derivatives are arranged

in a matrix called the Jacobian matrix. It is an n x n matrix whose ij
th

element

is the j
th

partial derivative, evaluated at some point ~, of the i
th

equation

in a system of n equations each expressed as gi(xl, X2, ... , Xn) = O.
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The extension of this concept to iterative methods is as follows. The

(k+l)iterative method X = G(x(k)) is composed of n equations in n unknowns

and can be expressed in more detail as

(k+l) (k), x (k)
= gl(xl (k)~

‘1 2’”” ”’xn

(k+l) (k), ~ (k)
= g2(xl

(k)~
‘2 2’”” ”’xn

.

.

.

x (k+l) (k), ~ (k) (k)~
n = gn(x~ 2’”” ”’xn

The Jacobian whose ijth thelement is formed by evaluating the j partial

derivative of the i
th (k), x (k) (k)~equation above at the point (xl

2 ‘ ““” ‘ ‘n

is referred to ‘asthe Jacobian of the iterative method at X(k).

3. Spectral Radius.--The spectral radius of an nxn matrix A is denoted

by p(A) and is equal to the largest of the absolute values of the eigenvalues–7/

of A. That is, P(A) = ~<n lAi(A)l,where Ai(A) is the ith eigenvalue of A.
.—

4. Contraction Mapping.--The central concept of the general theory of

convergence of an iterative method is the contraction mapping. It allows

for generalization to higher dimensions of the rule that a one-dimensional

(o)iterative method will converge if x lies in a neighborhood of the solution,

x*, where Ig’(x(k))] <1. Before stating the theorems that contain this

result, contraction mappings will be explained.

A mapping refers to a function G whose domain and range are subsets of

n 8/n-dimensional real space, R .— The function assigns to each n-coordinate

point in the domain an n-coordinate point from the range. The function is

thus said to “map” the domain into the range.

Let the domain of a mapping G be a subset of Rn called D. The mapping
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G is said to be contractile on a subset of its domain, DO< D, if there is

a scalar a <1 such that llG(Y) - G(Z)II < a IIY - Z]] for all points Y and

Z in DO ~–17, p. 120_T. This means that the mapping “shrinks” the domain

down into a range which is “smaller” than the domain.

Consider an iterative function as a mapping. Since X(k) = G(X(k-l))

and X(k+l) ~ G(x(k)), :itcan be seen that the range of one iteration is the

domain of the next. This fact can have important implications for a contractile

iterative method. For instance, if an iterative function G is contractile

over DocD@Ehen there exists an a < 1 such that

I 1xO+U_x(@ (/ = //G(X(k)) -G(X(k-l))ll <(x //x(k)_x(k-l)/t

fOr all x(k-~) and x(k) in I).
o

That is, a contractile iterative function

reduces the successive first differences in the sequence of iterates. If

X(k+l)
also belongs to Do (i.e., G maps Do into itself), then this process

will continue and the successive differences will go to zero. This is the

reasoning behind the following contraction mapping theorem ~~7, pP. 119-121,

38~7: If G, defined over domain D, maps Rn into Rn and is contractile on

a closed set DoCD, and G(Do)c Do, the sequence of iterates X
(k)

corresponding

to any initial point X
(o)

in Do ib well-defined and converges to a unique fixed

point X* in D
o“

Note that global convergence occurs when Do = D.

Figure 3 represents a mapping contractile over the subset Do. D1 is

the range of Do and lies within and is smaller than D
o“

This is true of all

successive domains and ranges which are gradually constricted to smaller and

smaller regions around the fixed solution point X*.

5. Convergence Theorems---Since the property of being contractile is

important to the convergence of an iterative method, it is also important

know when an iterative method is contractile or how it can be made so.

so

to



-12-

.
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The following two theorems show that certain characteristics of the Jacobian

of an iterative method are sufficient to make it contractile.

(1) If a mapping G of Rn has a Jacobian, G’(X))such that for some

norm IIG’(X)II < a <1 for all X in a convex subset of the domain of G, then—

9/G is contractile on that subsec.–

(2) If the spectral radius of an n x n matrix A is less than one,

then there is a norm of A which is also less than one. That is, ifp (A)< 1,

10/
then IIAII < 1 for some norm.—

D. Summary

These two convergence theorems imply that an iterative method is

c.ontractiveover some subset of its domain if the spectral radius or any

norm of the Jacobian of the iterative method is less than one over that

11/
subset.— While contractiveness does not insure convergence (the iterative

method must also map Do into itself), it would be advantageous to know how

to make a particular iterative method contractile when applied to a particular

model. However, the results of the theorems above are difficult to apply

except in simple cases such as small linear systems. In general, users

of iterative methods rely on “rules-of-thumb” such as those reported in

Parts 11 and 111. Only some of these practical rules of thumb can be

mathematically related to the theorems of convergence, but keep in mind that

all modifications are aimed at making the iterative method into a contraction

mapping.
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A.

to

Part 11: The Jacobi and Gauss-Seidel Methods

Explanation of the Methods

Use of the Jacobi and Gauss-Seidel methods was, for many years, limited

linear equation systems. In recent years they have been slightly modified

and successfully applied to nonlinear systems as well ~~2; 17, p. 22~T.

The exposition here will parallel the historic development, defining and

analyzing these methods for linear systems and generalizing to nonlinear

problems.

Both the Jacobi and Gauss-Seidel methods are very straightforward

applications of a trial-and-error strategy. Consider the linear equation

system AX = B, where A is an n x n matrix of constants, X is an n x 1 vector

of unknowns, and B is an n x 1 vector of constants. Exact methods such as

matrix inversion or Gaussian elimination could be used to calculate a

solution. However, when A is large and contains many zeros, exact methods

12/
may be computationally inferior to iterative methods.—

The first step in the Jacobi method for solving the linear equation

system AX = B is to express each xi, i = 1, ... , n, as a function of the

other X’S. Rearranging the i
th

equation,

ailxl+ai2x2 + ““” + aiixi + ““” + ainxn = bi, yields~’

‘i
“&i- zj+l %jxj-~%

These equations are used ~0 generate new iterates from previous iterates

(k)
by substitutinginto theright-hand sides values of Xj , j=l, ... , i-l, i+l,

... , n. The left-hand sides become the elements of the new iterates, or
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(ki-1)= (b _ ‘ljxj ‘k))/all
‘1 i j#1

(k-t-l)= (b Z a2jxj(k)
‘2 2- )la22j+2

.

.

.

(k-t-1) Za .x.(k)
x = (bn - j+n ‘J J )la
n nn”

(1)
For instance, the first iterate, X , is generated by substituting the

(o)
elements of the initial guess, X , for the variables on the right-hand

side of the equations above.

obtained by substituting the

hand side of the equations.

sequence of Jacobi iterates,

The values for the second iterate, X
(2)

, are

(1)
just-calculated elements of X into the right-

The continuation of this process yields a

{X(k)}, k=O, 1, 2, ....

The Jacobi method is “conservative” in its incorporation of new

(k+l)
“information”. In iteration k + 1, each element of X is calculated

(k+l)
independently of the other elements of X . Each is a function only

(k+l)
of the previous iterate. For this reason X is unaffected by the order

(k+l)
in which its elements, x, , are calculated.

1

However, suppose the sequence of iterates is approaching X*. Then

(k+l)
is closer to xi* than x

(k)

‘i i
, and it could be used to improve the

(k+l)
calculations of the remaining elements, x. ,i<j~n, of the new

J

iterate. For example, suppose that the first element of the new iterate,

(k+l)
‘1

, has already been calculated as in the Jacobi method above. Then in

(k+l) (k+l) for
the calculation of x2 it would be possible to substitute xl

the X ‘k)
1

which is used in the Jacobi method. If the sequence of iterates

(ki-1) * (k)
were converging and x1

were closer to x1
than xl , this substitution

Ye
might result in a value closer to x2

than the value that would be calculated
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(k+l)
using the Jacobi method. Similarly, xl and X2‘k+’) would be used to

(k+l); ~ (k-i-l),x (k+l), and ~ (k+l)
calculate x

3 1 2 3
would be used to calculate

(k-tl)
, and so on. This method, which replaces xi

(k)
‘4

in the Jacobi method

by ~ (k+l)
as soon as eagh new element of the new iterate becomes available,

i

is known as the Gauss-Seidel method. For the linear equation system AX = B,

the Gauss-Seidel method is algebraically expressed as

(k-t-l)= (b
‘k))/all

‘1 1 - ‘j~2 aljxj

(k+l) = (b (k+l) - ~
‘k))/a22

‘2 2
- a21x1

j~3 a2jxj

.

.

.

x (k-i-l)= (b (k+l) _ ~
‘k))/aii

i i - ‘j~(i-l)aijxj j~(i+l) aij‘j

.

.

.

x ‘k+l)=(bn -~j5(n-l)anjxj(k+l))/ann
n

As a result of this rapid incorporation of “new information” the

Gauss-Seidel method may converge in fewer iterations than the Jacobi

(k+l)
method. However, if some element of X is a poor estimate of the

corresponding element of the solution vector, this error will be incorporated

(k+l)
in the subsequent elements of X , For this reason, the Gauss-Seidel

method is more sensitive to a poor starting guess and may fail to converge

in a problem that could be solved using the Jacobi method. Furthermore,

the order of the equations, which is of no importance in the Jacobi method,

may strongly affect the

convergence, others may

Gauss-Sefdel method are

Gauss-Seidel method. Some orders may produce

not. Strategies for ordering the equations in a

given in Section D.
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The Jacobi and Gauss-Seidel methods are easily extended to nonlinear

systems of the form F(X) = ~, where

F denotes the system of n equations

The only modifications required are

X is an n x 1 vector of variables, and

in n unknowns, fi(xl, X2, ... , Xn) = O.

due to the fact that in transforming the

(k+l)
system F(X) = ~ into the form X = G(X(k)) of the iterative methods, the

equations

of the Jacobi method, and the equations

x (k+l) (k+l) (k-tl) (k) (k)~
i = gi(x~ ~ ““” > ‘i_~ ‘ ‘1+1 ‘ ““” ‘Xn

of the Gauss–Seidel method become nonlinear. It is thus impossible to state

a general formula for transforming the system F(X) = O to the form ,—

X(k+l)
= G(X(k)),that is required for iteration. In this case the user

himself must supply an algebraic statement of the model with each endogenous

14/
variable appearing exactly once on the left-hand side of an equation.—

Transforming the system to the Jacobi or Gauss-Seidel iterative form

requires more of the user than algebraic skill, however, In both the

linear and nonlinear cases these methods are very sensitive to the pattern

of normalization chosen by the user. Normalization refers to the rewriting

of an equation so that one of its endogenous variables is isolated on the

left-hand side of the equal sign. The pattern of normalization of a system

of equations refers to the choice of which equation to use to solve for

each endogenous variable so that each endogenous variable appears exactly

once on the left-hand side of an equation. (Users are cautioned that equations

must be normalized independently. No expressions for any variable in the

equation can be substituted in from other equations!) According to the

previous discussion, in linear equation systems the pattern of normalization
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th th
is specified by the rule of solving the i equation for the i variable.

The user controls the pattern of normalization by his choice of the ordering

of the equations, 1, 2, ... , n, that appear in the system AX = B. In the

nonlinear case the user’s control is even more apparent since he must also

perform the inversion of the equations himself. In both cases, however,

the iterative methods may converge for some patterns of normalization and

diverge for others. For instance, in solving the model F(X) = O_,the

normalization

‘1 = ‘1 (X2, X3, ... , Xn) = gJx2> X3, ... , Xn)‘1

.

.

.

x= f-~ (xl, X2, ““” * xn_l) ~ g (X1, X2, ... , xn_~)3
n n

n

-1
where fi denotes the result of normalizing the i

th
equation of the system

F(X) = ~and gi refers to the ith function component of the iterative

method X(k+l) = G(X(k)), may converge. At the same time the alternative

normalization

f-l
‘l=n

(X2, X3, ... , Xn) =

f-l
:2 = n-1

(xl, X3, ... , Xn) =

0
8
x= -1 (X1,.X2, ..* , X*-1)
n ‘1

where the ggi denotes the iterative

iterative method X
(k+l)

= GG(X(k)),

one or both of these normalizations

function components of the alternative

may also converge. On the other hand,

may lead to divergence. A normalization

which leads to convergence of the Jacobi or Gauss-Seidel method may be
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difficult to determine. The problem of choosing an appropriate pattern of

normalization is illustrated in the examples in Section C.

depicts the following model of price and quantity marketed of

q =2+”2p

q=12-3p

equations in two endogenous variables, quantity (q) and price (p).

B. Convergence and Normalization in a Simple Model.

Figure 4

a commodity:

supply

Demand

There are two

Simple algebra reveals that the solution is q = 6, p = 2, represented by

point A in Figure 4.

To discover Ehis solution by Gauss-Seidel iteration, one of the equations

must first be rewritten to express p as a function of q. In other words,

one of the equations must be normalized on p. There are two possible

patterns of normalization, one with the demand equation normalized on p and

the supply equation normalized on q and the other vice versa. After labeling

the variables with time superscripts to distinguish new iterates from old

15/
iterates, the two patterns— can be written as follows:

1. (The Clockwise Pattern or “Cobweb Model”)

supply q(t) =2+2p(t-1)

Demand p(t) =(~)q(t)+4

2. (The Counter-clockwise Pattern)

SUPPIY P(t) =+q(t-lb

Demand q
(t)

= 12 - 3p(t) ,



-20-

Figure 4

I
I
I
I

,---- ----

%

II

w
N

I

1

I
I

I

4
II

m

+

mm



-21-

5?attern1, as indicated, corresponds to what agricultural economists call

the cobweb model. Certain causal links between supply and demand are implicit

in the pattern of normalization of the cobweb model. The supply function

determines the quantity produced (based on a predetermined price) and the

demand function determines the price at which the commodity is sold (based on

a predetermined quantity). Graphically, the Gauss-Seidel method in the

cobweb uiodelmoves vertically from S to D and horizontally from D to S,

resulting in the clockwise cobweb shown in Figure 5. Note that in this

problem the cobweb pattern of normalization yields a sequence of price-

quantity guesses which tend to converge to the solution at point A.

In pattern 2, the supply function determines price (based on predetermined

quantity) and the demand function determines quantity (based on predetermined

price). Progression is horizontal from S to D and vertical from D to S,

resulting in the counterclockwise movement and divergent price quantity

sequence shown in Figure 6. Gauss-Seidel iteration would solve the model

under the ffrst pattern of normalization but not under the second. Another

analogy from economics would be a model with one equilibrium solution and

two alternative adjustment processes, one which is stabilizing and one

which is destabilizing.

Normalization in the linear two-equation case is examined in more mathe-

matical detail in Appendix B. For more equations or nonlinear models it is

increasingly difficult to precisely determine convergent normalizations, and

sensitivity to normalization is a serious drawback of the Gauss-Seidel and

Jacobi methods. Suggestions on how to normalize models and how to reduce

the sensitivity of the methods to the pattern of normalization are discussed

in the next section.
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C. Implementing the Jacobi and Gauss-Seidel Methods

Jacobi and Gauss-Seidel methods are mathematically similar, and much

of the same advice applies to both of them. Most of the suggestions below

are derived from the experience of economists in USDA’s Economic Research

Service, who have been using Jacobi and Gauss-Seidel methods to solve

agricultural subsector models with up to 100 linear and nonlinear simultaneous

equations. A summary of their conclusions appears in /12/.
.—

——

In work on similar agricultural subsector models (feed grains in

particular) at the Department of Agricultural and Applied Economics,

University of Minnesota, researchers have observed a significant advantage

of the Jacobi method over the Gauss–Seidel in achieving convergence. While

most of the following suggestions apply to either method, it is thus

recommended that when the Gauss-Seidel method diverges the researcher should

try the Jacobi method before reordering or renormalizing the equations in

hopes of obtaining a Gauss-Seidel solution. Only where the same model is

to be solved a great many times may the slightly more rapid rate of conver-

gence of the Gauss-Seidel method justify the effort needed to reformulate

the model to obtain Gauss-Seidel convergence.

1. Picking an initial guess.--The user of any iterative method must

use whatever evidence is available to help select an accurate initial guess.

If the model to be solved is meant to simulate an actual economy for which

historical data are available on the endogenous variables, the values of those
historical

variables that prevailed in a relevant/time period frequently constitute a

good initial guess. However derived, an initial guess can often be improved

by insuring that the values chosen satisfy all linear identities (e.g., resource

constraints) in the model.
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2. Program debugging.--An advantage of the Jacobi method is that it

can be used to check for errors in the computer program. This is accomplished

by stopping the method after one iteration and comparing the first iterate

calculated by the computer with the first iterate expected by the user.

Deviations indicate a programming error. In models that have been estimated

using regression analysis and for which the initial guess is set equal to

the observed values for a given time period, the residual between the first

iterate and the initial guess must be identical to the residual in the

regression on which the equation is based.

3. Ordering of the equations.--As pointed out previously, the order of

equations does not affect the Jacobi method but greatly affects the Gauss-

Seidel. Heien, Mathews, and

as recursively as possible.

ship between the endogenous

Womack /_”2,p. 7~T suggest ordering the equations

This can be accomplished by writing the relation-

variables in matrix form, using the number 1

to indicate that a variable appears in a certain equation and the number O

to indicate that it does not. The example presented in their article would

be written as in Figure 7. The first row, for instance, indicates that the

first equation contains X4 and xl and that it has been normalized with x
4

appearing on the left as a function of x .
1

Figure 7. Interdependence Array

:
Variables:

: : : : :
Equation :

‘1 : ‘2
:

‘3
:

‘4 : ‘5—

‘4
:

1 1:

‘5
: 1 1:

‘3
:

1 1 1
:

‘2 : 1 1
:

‘1
:

1 1 1:
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The suggested strategy is to reorder the rows until

triangular matrix is found, The order which yields

elements above the main diagonal is the first order

the Gauss-Seidel method.

This procedure can be tedious for large models

the most nearly lower

the matrix with fewest

to try when implementing

or models that are

frequently modified. Dutch macroeconomists have developed a similar

procedure which has the advantage of being easily carried out on a computer.

A computer program for performing this ordering scheme appears in Appendix C.

If the first ordering does not converge, other nearly triangular orderings

may be tried. If convergence is still not achieved, it may be necessary to

segregate the full model into several smaller systems. Further attention,

including renormalization of some equations, can then be given to those

sub-systems that continue to diverge. Variables may also be “sequentially

exogenized” (replaced, one at a time, by constants) to find the equations

which are causing divergence.

4. Normalization.--One requirement of both the Jacobi and Gauss-Seidel

method is that the model be written so that each endogenous variable appears

on the left side of the equality sign exactly once. This can be doen in as

many as n! ways for an n x n system, and often there are few a priori criteria

for selecting a normalization that will yield convergence under the Jacobi

or Gauss-Seidel method. Techniques for finding a convergent normalization

range from the very sophisticated to trial-and-error methods such as

sequentially exogenizing variables or segregating the model into submodels

and confining attention to only those submodels that diverge. In the case

of a model that has been econometrically estimated, Heien, Mathews, and

Womack recommend that the dependent variable in each equation should be the
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same as the variable that was dependent when the parameter~ were estimated.

Their recommendation may be generalized by urging that the pattern of

normalization reflect, as much as possible, the pattern of causality believed

to prevail in the market or markets being studied. USDA experience, however,

indicates that the problem of normalization in the simple Jacobi or Gauss-

Seidel method can often be circumvented by the introduction of a dampening

factor.

5.

iterate

Dampening factors.--The use of dampening factors makes the new

a weighted average of

would have been chosen by the

of movement is the same as in

factor controls how far along

the previous iterate and the iterate that

undampened method. In effect, the direction

the undampened method, but the dampening

that direction the

When the dampening factor is less than one, this

mation “helps prevent a divergent arrangement of

the system. A dampening factor in effect allows

new iterate should lie.

conservative use of new infor-

equations from dominating

other equations more

rounds to converge and tends to pull the divergent arrangement back toward

convergence.“ ~T2, p. 7417.

Dampened versions of both the Gauss-Seidel and Jacobi methods are

easily constructed. The dampened version of the Gauss-Seidel is frequently

referred to as the successive overrelaxation method (SOR) ~T7, p. 215_~,

and the dampening factor in this case is called the relaxation parameter.

Letting subscripts SOR and GS denote SOR and.Gauss-Seidel iterates respec-

tively, the SOR method can be written X
(k+l) = (l - ~, ~(k)
SOR + (w) x~)

where w is the dampening or relaxation parameter. Ifw= 1, the SOR

method becomes identical to the Gauss-Seidel.. Similarly, the dampened

of the Jacobi can be written
s) = ‘1 - ‘) ‘(k) + ‘w) ‘\k+l)‘ ‘here

9

version
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subscripts DJ and J stand for the dampened Jacobi and Jacobi methods,

respectively.

The effect of a dampening factor on an iterative method is to alter

the rate of convergence. Despite the:firname, dampening factors do not

always slow down the rate of convergence. They may speed it up or even

achieve convergence in cases where the undampened method diverged. It

can be shown that in linear systems only dampening factors between O and 2

can produce convergence of the Gauss-Seidel method, and in certain restricted

cases it is possible to calculate the exact dampening factor that would

maximize the rate of convergence [4, p, 193].-—

In most cases, no attempt is made to select a priori an optimal dampening

factor. Researchers in USDA and at the Department of Agricultural and

Applied Economics of the University of Minnesota have used the Jacobi method

with a dampening factor of 0.25 applied to each equation. This puts 75 percent

of the weight in each iteration on the previous iterate, but results in a

method of great stability and moderate cost. Experience with the method has

been limited to fairly small (15 to 100 equations) and highly linear models,

but convergence has been generally obtained without reordering or renormalizing

the equations.

6. Variable dampening factors.--While USDA researchers have been

successful using the same dampening factor (0.25) for each equation and

each iteration, the dampening factor may be varied with each equation or
- ..——-_.—___ .

iteration. Selecting a different but.constant dampening factor for each

equation is simple to program and has the advantage of allowing special

treatment of segments of the model thought to be causing divergence. A
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simple example of such a strategy, which illustrates some of the properties

of all dampened iterative methods, can again be taken from agricultural

economics. ‘Thecombination of the cobweb model with the partial adjustment

of supply hypothesis gives a price determination model exactly equivalent

to a Gauss-Seidel method with one dampened equation. Consider this modification

of the previous model of supply and demand:

demand q(t) = 8- 2P(’), or p(t) = ‘(:)-8

desired supply q(t)* = -4+ 4p(t-1)

supply actually
q(t) = q(t-l) ,-6(q(t)*- q(t-l), = ~1-6)q(t-1) + ~q(t)*

achieved given
limitations on
production adjustments

As Figure 8 shows, the undampened

to the simple cobweb model, would

Gauss-Seidel method, which is equivalent

diverge. The introduction of a dampening

factor of 0.5 on the supply equation, which is equivalent to a cobweb model

with partial adjustment of supply, yields a convergent method.

Summary.--Jacobi and Gauss-Seidel.methods are

require relatively little computer storage space.

dampening

regularly

and model

argue for

This

factors the Jacobi method especially has

and at moderate cost. The .Jacobimethod

simple to program and

With the addition of

proven to converge quite

also facilitates program

debugging. The simplicity i~d dependability of these methods

their continued popularity with economists.

completes the discussion of

solve linear systems and subsequently

systems as well. In the next section

two methods originally developed to

successfully applied to nonlinear

two methods intended primarily for

nonlinear systems are introduced.
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A.

Part 111: Newton-based Methods

Explanation of the Methods

The Jacobi and Gauss-Seidel methods are among the least complicated

iterative methods. In both, the iterative function X
(k-t-1)

= G(X(k)) iS

derived directly from a rearrangement of the equations of the system F(X) = ~.

The methods discussed in this section are more sophisticated in that

two steps are employed. First, the system of equations F(X) = O is replaced—

by a system of linear approximating functions. Then the linear system is

transformed to the form X
(k)

= G(X(k)).

The first method d5scussed, approximation by parallel chords, is used

more commonly in pedagogy than research because it is the simplest example

of a linear approximation technique. Once the general concepts of linear

approximation techniques have been introduced with reference to the parallel

chord method, discussion will pass to the more complex but also more useful

methods of Newton and Brown.

1. Parallel Chord Methods.--Consider the problem of finding a zero for

a nonlinear function such as the one depicted in Figure 9. The sequence of

iterates X(l), .,. , X(5) shown in the graph was generated by a parallel

chord method. The basic idea of a parallel chord method for finding the

zeros of an implicit function is to replace the function, f(x), by a linear

approximation?

The exact zero

satisfies l(x)

(k),
L(X), that passes through the current function value , f(x .

of the linear approximating function (i.e., the value of x that

(k+l)
= O) becomes the new iterate, x . The linear approximating

function can be written as l(k)(x) = a(x -x(k)) + f(x(k)), for some a # 0.

Setting l(k)(x) = O and solvhg for x(Id-1)~ x gives x(k+l) = X(k) - (a-l) f(x(k)).

For n x n systems of nonlinear implicit functions, F(X) = O_,the parallel
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chord method is generalized by

that pass through F(X)) of all

the resulting system of linear

taking linear approximations (hyperplanes

n functions and calculating the zeros of

equations (intersection of the n approximating

planes and the plane F(X) = ~). These zeros

system of linear approximating functions can

become the new iterate. The

be written as

(k)) +a12(X2-x~!,(k)(Xl,
1

....xn) = all(xl-xl ‘k)) + ... +aln(xn-x~k)) + fl(x$k),...x

1 (k)(Xl,.,.,x
n)

(x -x(k)
= a21 1 1 ) + a22(x2-x2(k)) + ... + a2n(xn-x~)) + f2(x~k),...x

2 n

. . .

. ● .

. . .

fl~)(xl, ....xn)= anl(xl-xl ‘k)) + ... +ann(xn--x$)) +fn(x~k), ...x(k)) + an2(x2-x2

In matrix notation this becomes

~(k)
(X) = A(X-X‘k)) +F(X(k)),

(k)
where A is the n x n mtrix (a .), and X and X

iJ
are the n x 1 vectors (xi)

(k) (x) (k+l) gfvf?sX(k+’)‘k)), respectively.and (xi Solving L =OforXsX

= X(k) - A_’ F(X(k)).

Linear but non-parallel chord methods result when the matrix A is

allowed to vary with each iteration.

Many such

analysts.

functions

system of

linearization methods have

Then L(k)(X) = A(k)(X - X(k)) -i-F(X(k)),

been devised and implemented by numerical

They differ from one another in their choice of linear approximating

and in the methods used to calculate the zeros of the resulting

linear equations. The two linearization methods discussed below

are Newton’s method and Brown~s method. The Newton, or Newton-Raphson,

method is swell-known and widely used technique. It has been modified in
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many ways to produce a variety of “Newton-based” algorithms. One of these

modifications is Brown’s method, which substantially reduces computer storage

requirements and has been showm to be quite reliable in solving economic

models. Familiarity with either of these methods will introduce the applied

16/econcimistto a large class of valuable iterative methods.—

2. Newton’s and Brown~s Methods.--In Newton’s method the matrix A(k)

is updated for each iteration. The linear approximations are

(k),the tangents to the functions at the point F(X . Consider the sequence

of Newton iterates for a one-dimensional problem as shown in Figure 10. The

value x(o) is supplied by the user and f(x‘0)) is calculated. Then the

equation for the line tangent to f(x) at f(x‘0)) is written,

y = f(x(o)) + (x-x(o)) “ f’(x@)).

The value of x that sets y = O is

(0) _x=x f’(k), “ f(x(o)].

(1)This value of x becomes x , and the process begins again. Thus, the one-

dimensional case is

The one-dimensional case is useful for illustrating some of the problems

of the Newton method and related techniques like Brown’s method. Figure 11

below shows the case where f’(x
(k), = o

. In this situation the tangent line

does not intersect the x-axis and the Newton method is undefined. Figure llb

(k)shows that the tangent at some x may be a very poor approximation of f(x),

lead:hg to a poor selection of the new iterate x
(k+l)

and possibly causing
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divergence. Figure lIc shows a special case in which Newton’s method

neither converges nor diverges but rather cycles indefinitely between

two points. In Figure lld the sequence of iterates becomes negative

before converging to the positive solution. Figure Ile illustrates the

case when f(x) is not defined for all possible values of x.
All of

these cases have counterparts in higher dimensions. In higher dimensions

there is not one function but n functions each with n first partial

derivatives. Each function can be approximated at a given point by

the hyperplane which is determined by its first partial derivatives at that

point, or

(k))g (x(k))+- (X2- x:+ ~afl (x(k))+***+(’k)) * (xl- Xl ~yl= fl(x (xn-x~k))~(x(k))
2 n

(k))~f2 ~x(k)) +O,.+ ~ ~(k))g (x(k)) -1-(X2-X2 ~Y2= f2(x(k)) + (xl-xl
‘1 2

(xn-x(k))~f~ (x(k))
‘n

* ●
☛

● ✎
●

9 ●
,

Yn= fn(x(k)) + (xl-$))+ (x(k)) + (x2.x$@)~ (x(k)) +,.,+ (x -x(k))~:(x(k)),
1 2 nn ~Xn

thwhere ~ (X(k)) 5.sthe jth first partial derivative of the i equation of
j

(k) = (x$, Xz(k), .... Xn(k)).the system F(X) = Q evaluated at the point X

These n tangent hyperplanes form an n x n system of linear equations that can

be expressed in terms of the Jacobian, J, of F(X) = Q, or

Y = F(X(k)) + J(X(k}) (x-x(k)),

where
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5 (x(k))
&n

1 ● m *

@ 9 ●

* ● ●

5 (x(k))

\
axl

-:3 (x(k)) ● ,,
2

.5 (x(+,
axn

I
Setting Y ==Q and solving for X to determine the new Y

(k+l) yiclcls

J(x(k)) (x(k)) - ~’(x(k))= J(X(k)) (X), or

x(k-~l)= x(k) - # (x(k)) ~(~(k)) :3

.

Thus X(k+l) is the intersection of the n tangent hyperplanes and the

hyperplane F(X) = Q.

Each Newton itera-bionrequires

F(X) = O at the point F(X‘k)) and the

the calculation of the Jacobian of

solution of tkleresulting system of

linear equations. Both of these processes are complicated when compared to

a Jacobi or Gauss-Seidel iteration and require substantially more compu-ter

time and storage space per iteration. Ilrequentlythe derivatives carenot

explicitly evaluated it being easier to approximate the first partial

‘k)) by difference quo-~ientslikederivatives at F(X

(k) (k) ~(k)+ h, #], ,.,, X~)) - fi(x$% ● *oI~ (X(k)) = (+) @i(xl , ‘**$ ‘i.~t i
axj

x (k))7
n-~
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where is j = 1, .... n and h is a “small” positive number called a “dis-

cretization parameter,” In this way the function is evaluated at n2 points

in the neighborhood of X
(k)

and the average rate of change between F(X(k))

and these n2 other points on F(X) determines the n
2
elements of the approxi-

(k)), mere are variants to this technique,mately calculated Jacobian, J(X

but the idea is always to avoid explicit.calculation of the first partial

derivatives. Because these methods can be included in a computer program

for implementing a Newton-based method, it is not necessary for the user of

the program to supply algebraic expressions for the partial derivatives of

the system F(X) = Q. Newton methods employing these approximate derivatives

are referred to as “discretized” Newton methods, but the distinction between

exact and discret.izedNewton methods will not be maintained hereafter in

this paper.

Once the Jacobian has been calculated there

solving the resulting system of linear equations.

remains the problem of

A very serious difficulty

arises when the Jacobian is singular. As in the one-dimensional case where

~l(x(k)) = 0, singularity of the Jacobian implies that no solution can be

found to the system of linear equations,

Q= F(X(k))+ J(X(k)) (X-X(k)),

Newton’s method is then undefined, This problem is discussed in more detail

in

to

be

or

the next section.

When the Jacobian is nonsingular a

solve the system of linear equations,

secondary algorithm must be supplied

Matrix inversion techniques could

used but commonly a secondary iterative method, such as the Gauss-Seidel

Jacobi, is used. This further increases the number of calculations in

each Newton iteration, Offsetting the complexity of each Newton iteration
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is the fact that Newton-based methods typically require fewer iterations

to achieve convergence than either the Jacobi or Gauss-Seidel methods. In

fact, in the neighborhood of a solution X*, Newton-based methods typically

add two significant digits to the iterate in each iteration (this is referred

to as “quadratic convergence”), while the Jacobi or Gauss-Seidel add no

more than one significant digit per iteration (linear convergence) ~~

x(k)
is near X*.

Brown’s method is a Newton-based method that achieves some savings in

computer storage space without sacrificing the rapid rate of convergence per

iteration associated with the Newton method. The strategy of the method is

again t.oapproximate functions by tangent hyperplanes, but the resulting

lineax equations axe treated sequentially rather than simultaneously. The

method proceeds as follows. The first equation of the model, fl(x)~ is

“~8/
(k)), thatapproximated by the tangent hyperplane— through the point fl(X

is, by

(k)) + (xl-xl(k)) fll(x (k))+’(X2-X2 (k)) f12(x (k)) fln(x (k)),of)) +.. .+-(Xn-xnyl= f~(x

.th th
where f~ ~ is an approximation of the J first partial derivative of the i

J-d

equation. The intersection of this tangent plane with the hyperplane

is expressed by setting yl = 0. Then, the variable xi with the first

derivative of laxgest magnitude (fli> flj, for all J#i) is expressed

linear function of the other x.’s, j#i, or
J

F(X) = Q

partial

as a

‘i
= Li(xl?x~s ..*, x.

1-1’ ‘i+l’ *“” Xn)“
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Normalizing on the variable with first partial derivative of

has two justifications. First$ it prevents division by zero

largest magmitude

in most cases

[ 2 1. Secondly, it reduces the rounding errors introduced in computer cal-

culations when division by a small number occws [ 2 ].

Next~ the second equation of the original system F(X) = ~~ f2(x1~ooo~xn}~

is rewritten with the function Li substituting for xi. It thus becomes a

function of n-l variables.

qxlv avm~ Xn) = h2(xl~ X2$ .*.$ x. L
1-1’ i’ Xn)“‘i+l’ “o”’

As before$ this nonlinear function h2 is replaced by a linear approximation,

which in this case is the n-1 dimensional hyperplane formed by the n-1 first

partial derivatives of h2. In order to derive another linear expression for

~ ~i, this linear expression is againsome x .~ set to zero and solved for the

with first partial derivative of largest magnitude~ so that
‘j

The expression L.
J
is then substituted back into Li, reducing both Li and L.

J

to linear functions of n-2 variables. Finally, the new Li and Lj are then

substituted into f (x , x ,312 .O.Xn)~ and the process continues. Note that

at each stage the new expressions ~, etc., are substituted into the previous

linearization, Li, Ljp etc. Thus both the linear approximating functions and

the remaining equations of the system are reduced in dimension at each step.

This is what allows for the saving of computer storage space.

The method proceeds through each equation one by one until the last

equation is expressed as a function of one variable, XY,,and n-1 lineariza-

tion, Ll, L2~ ,.. Li-l~ Lg+2~ ..*S Ln* This function is line=ized, set

(k+l)
equal to zero, and an exact nmerical value for xl determined. This
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substituted back into the rl-lorlc-diroerl~ji.onti.l].inca.rexpreofilon~,

and new values are calculated for

~l(k+l), ~g $-H) , ~i+ktl) ,,.,~(k+l),
● ... 9 n

The following example explicitly illustrates these procedures:

Consider F(X) = Q, where F is the 3 x 3 system of simultaneous

f@ = fl(xl$ ‘*9 X3) = o

f200 = f2(x19 x2i X3) = o

f3(@ = f3(xl) X2, x ) = o
3

(k), x
‘k)), solution by Brown(k)= (xl(k), X2 jGiven an iterate X

proceeds as follows.

(1) Approximate fl(X) by a tangent plane througlnfl(X(k)),

afl (x(k)) -+ (X2-X2 ~o =’fl(x(k)) -t(X1-xfk)) ~ (k)) ::1 (x(~))

1

3 (x(k))
ax

3

equations.

‘s method

(k)
+ (X3-X3 )

(2) Assuming, for example, that

a$ (x(k)) >: (x(@) ~n~ 3$ (X(k)) > ~ (X(k)),

2 1 ‘2 3

solve for x in terms of x
2 1

and x..
3

fl(x(k)) + x$)
~fl (X(k)) + x$) > (X(k))

~ (x:)) + $) ~
ax2 3

‘2 =
a (x(k))
ax2
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Setting L. = X9 and replacing constant terms by letters from the beginning

of the

L &

alphabet yields

:‘2 ‘– -:x3-

(3) Substitute L2 for x2

(a) substitution

in f (X(k)) and repeat the steps above.
2

(k),x(~),x$+ = h2(xf),L2 , +))
f2(xl 2

(k), ~ (q,
(b) approximation--let ( ) denote (Xl ~ , X3

o h2 ( ) + (X1-X~)) ~
(k)] ah2

= ( ) + (X3-X3 %()
1

(k))~( )5 (k}) $()~()( ) + (X3-X3 ;+ (xl-xl
2

3X1 3

[h2 ( ) + (X1-X$)) ~ ( )
b ah2 -

=
-a= ( )]

1

+ (x -x(k)) _
33 [ *()-:*()]

2

Replacing constant terms by letters from the middle of the alphabet

yields
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----
(k)) *(k)) ~ + (X3-X3o = 1+ (xl-xl

for example,
(c) A..ume,/m>pandsolve forxlintermsofxjj callitL~*

~=~+xwz +L(k)=r-:xj,
1 mx3 m 3

-fl +2xwhere r = —
(k),

m m3

(4) Substitute Ll for xl in L2

‘2=– :
b Ll

-5 X3-5

(5) Substitute LI and 1.12in f3(X(k)) and solve for X3 by the same

procedure as above.

(a) substitution

(~), x$), X!)) =f-j(xl

(b) approximation--let ( )

0 = h3 ( ) + (x3-x$))

+ (x -x(k)) * ( )
332

[
+ ~()-:y:a()]

3

(k))h3(& L2? X3

(k)),denote (Llq L29 x3

(k))& )+( )g ( ) + (X3-X3

3

(+
+( )=h3( )+(x3-x3

Replacing constant terms by letters of the alphabet yields

o (k)) t= s-i-(x-x
33
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(c) Solve for X3, call it x3(k+1)

-:+x
(k) = (k+l)

‘3 = 3 ‘3

(6) Substitute x3(k+1) 3for x in Ll and L2 to determine xl
(k+l)

and X$’]

‘1=r- (g) x3, 50 xl(k+l)= r-(~) x3(k+1)

b a 50 x (k+l)=s _
‘2=~-TL1-Zx3’ 2 d ~ (r - (~) x3(k+1))-(~) X3(k+1)

=
(:-:)+(*-

:) #@ ,

This completes an iteration of Brown’s method from X
(k) to X(k+l)

onthesxs

simultaneous system F(X) = Q.

Brown’s method reduces the amount of storage space and number of

calculations per iteration by a factor of (n2+’jn/2n2+2n)[ 2 1 compared

to Newton’s method. This is a significant savings in large systems but

still far exceeds the complexity per iteration typical of Jacobi or Gauss-

Seidel methods.

F, Implementing the Newton and Brown Methods

Objections

that they require

when the Jacobian

frequently expressed against Newton-based methods are

large amounts of computer storage and become undefined

is singular at some iterate [ 12 ]. New variants, such as

Brown’s method, achieve

involving linearization

more seorage space than

some savings in storage space, but all methods

by first partial derivatives will requfre much

Jacobi or Gauss-Seidel methods. However, given
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the capacity of modern computers, the storage requirements of Newton-based

methods are not a serious obstacle to their use on most economic models.

The problem of singularityis also rarely of practical concern. The

following suggestions should help achieve convergence with the Newton or

Brown method.

1. Picking an initial guess. The recommendations are identical

to those for the Gauss-Seidel and Jacobi methods (see p. 24).

2. Ordering and normalization of equations. In Newton’s method the

linear approximating functions are generated and solved simultaneously.

Barring divergence of the secondary algorithm used to solve the approxi-

mating linear system, ordering and normalization of equations is not crucial

to the convergence of Newton’s method.

In Brown’s method, however, the equations are linearized one by one,

as explained above. Because of the sequential use of the equations it is

desirable to list the “most linear” equations first. This insures that

the initial linear approximations, which will be phssed on by substitution

to all the remaining equations, will be reasonably accurate. Relative

linearity is determined by the degree of the highest polynomial term in

19/
the equation.— For example, the equation x;+ 3x:+x5= O is more linear

than and would be listed before the equation x: = O.

Though a good rule of thumb, ordering the equations by decreasing

linearity does not guarantee an optimal rate of convergence for Brown’s method

in all cases. A superior ordering, when circumstances permit, is to arrange

the equations so that the Jacobian matrix is dominant diagonal (i.e., so

that Jii >
z ‘ij’ ‘=1’

.... n).
j+l

3. Singularly of the Jacobian.--Often considered a major objection

20/
to a Newton-based method,— singularity is neither a common nor an
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insurrnountable

it while using

difficulty in practice.a’ The authors

Brown’s method to solve a

22/
model, and other users--, of Brown’s and

communicated their similar experiences.

in other application%’, however. When

simultaneous

have never encountered

equation economic

Newton’s methods have privately

Singularity may be more troublesome

singularity is encountered,

procedures are available for selecting an alternative iterate. The variant

of Brown’s method in the IMSL library contains one procedure. Another has

been developed by David M. Gay [ 9 ].

4. ~. Dampening in Newton’s or BrownVs method is similar

to dampening in Jacobi or Gauss-Seidel methods. The new iterate,

~(k+l)
, is a weighted average of the old iterate, x(k), and the iterate

that would have been chosen by the original, undampened

method. In the dampened Newtonts method, for example, $N+l)= ‘x(k) +

(&@k+l) , where subscripts DN and N indicate the iterates chosen by

the dampened Newton’s method and ordinary Newton’s method, respectively.

Since
%

(k+l) = x(k) - J-l(X(k))F(X‘k)), the dampened Newton’s method iS

often rewritten as %F) = ‘x(k) + @-6)[x(k) - ‘-l(x(k))F(x(k))l =
x(k) + ~J-l(X(k))F(X(k)). Variable dampening factors, where 6 is a function

of F(X(k)), have also been used [10, pp. 46-47].

The effect of dampening is to choose a new iterate in the direction

picked by the undampened method but at a distance controlled by the

dampening factor. Usually O < d < 1 and the

x(k) than the new iterate that would be

method. This “conservative” approach can be

of equations which are “well-behaved” on one

other.

greater

for X <

Figure 12a shows a function which is

new iterate is closer to

chosen by the undampened

very useful for solving systems

side of a root but not on the

positivelysloped for all X

than the root X* but first positively and then negatively sloped

X* ●

(1)
Beginning at X , the undampened Newton’s method chooses X

(2)
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Figure 12a Without Dampening

f(x)

Figure 12b With Dampening

f (x)

——F————+
x(o)Xk x

/’
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in the correct direction (Ieftward).
X(2)

*

of X-axis where F(X) is negatively sloped.

further and further GO the left of X*. The

to arise when the choice of X
(2)

overshoots

however, lies in the portion

New iterates will be chosen

problem in this case seems

the portion of the x-axis

where the undampened Newton’s method chooses the correct direction.

The same example is repeated in Figure 12b except that a dampening factor

is used to limit the changes in X (k). Convergence is achieved because

all the successive iterates lie within the region about X* where F(X) is

smooth and positively sloped. Dampening

when F(X) is only defined to one side of

The logarithmic function shown in Figure

factors can also be useful

X* or in some region around X*.

lle is a good example.
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Part IV. Concluding Remarks

A. General Considerations

Newton’s method, Brown’s method, and the Gauss-Seidel and Jacobi

methods can be adapted to provide solutions to most economic models. ThiS

may be more difficult for larger models, as the number of ways to order

or normalize the equations increases rapidly. For this reason it is

sometimes necessary to initially solve the model in separate blocks

before applying the algorithm to the entire model. It is advisable to begin

using iteration in the early stages of the model building process.

Experience gained at the outset, when models are typically smaller,

simpler, and easier to solve, may help considerably in preparing the

final model for iterative solution.

B. Selecting an Iterative Method

The four iterative methods described in Parts 11 and 111 are all

suitable for solving economic models composed of n equations in n unknowns.

Many other iterative method~’ could also be used. There is no single

best method to recommend, and much practical information about current

iterative methods is only available by word of mouth. Time can be saved

by asking for help before writing and running a program. Advice should

be sought from a computer scientist or numerical analyst if one or

several models must be solved repeatedly, and especially if the models
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In many cases one of the four methods described above will be

adequate to solve the economic model. Experience with nonlinear

simultaneous-equationeconomic models at the Department of Agricultural

and Applied Economics of the University of Minnesota supports the

following conclusions:

1. The dampened Jacobi and dampened Gauss-Seidel methods

are more likely to converge than the corresponding

undampened methods.

2. The dampened Jacobi method solves economic models more

regularly than the dampened Gauss-Seidel method.

3. The dampened Jacobi method is especially suited to solving

simultaneous-equationeconometric models.

4. The dampened Jacobi method is very competitive with Brown’s

or Newton’s method. In a series of tests on three simultaneous

equation economic models, the dampened Jacobi method solved

the models at least as frequently as BrownVs method and

required from slightly more to significantly fewer seconds of

computer time. However, in one case the Jacobi method failed

to solve the model as initially normalized and had to be

renormalized [21, pp. 52-59].

The dampened Jacobi method, Brown’s method, and Newton’s method are

all currently being used to solve simultaneous-equationeconomic models

and can be recommended to other researchers for this purpose. Use of the

methods for other purposes (e.g., solving first-order conditions of

maximization of likelihood functions) is not ruled out, but for many other

problems there exist distinct types of competing solution procedures

(e.g., algorithms for constrained optimization).
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APPENDIX A: Computer Programs for Implementing Brown’s Method and
the Dampened Jacobi method.

Fortran programs used to implement Brown’s method and the dampened

Jacobi method on a specific model are presented here to clarify some

of the practical aspects of using these techniques. The model used is

a modified version of the 14-equation dualistfc growth model developed

by Kelly, Williamson, and Cheetam [15; pp. 22-571. The model consists

of the following set of equations:
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Production Relationships

((cJ*- 1)/51) ((02- W@ (v2q(u2- H)
2) Q2 = A2[K2 + L2 1

Factor Demands

( (al - l)nlul)e (-l/ul) [(u#p)+l)/vlull
3) W=P” V1”A1 ‘1 “ Q1

[(U2(V2-1)+1)/v2u21((U2- u/v2u2) . L (-1/9 . ~
4) VV2”A2 2 2

( (al- 1) /vlul). (-l/ul) [ (ul(vl-l)+l)/vpll
5) r=P” V1*Al %. “ Q1

( (C@ /v2a2) ● ~ (-ucq) [ (U2(v2-1)+1)/v2021
6) r=V2”A2 2 “ Q2

Commodity Demands

7) Dll = (L1/P) ● Bll “ (w - G)

8) D12 = (L2/P) “ B12 (w - G)

9) D*l = L#+B21(w -G))

10) D22 = L2(G + B22(w - G))

Investment

11) I=(r”C-XM)/P



-56-

Full Employment

12) C=~+K2

13) L= L1+L2

“Marke~Balance

15) Q. = Do, +Do,.

Endogenous

6) Ql = output in

7) Q2 = output in

are defined as follows:

the first (industrial) sector

the second (agricultural) sector

3) L1 = laborers employed in the first sector

4) L2 = laborers employed in the second sector

1] 1$ = capital employed in the first sector

2) K. = capital employed in the second sector
&

5) P=

8) W=

9)r=

10) I =

price of industrial goods in terms of agricultural goods

returns (wages) to a unit of labor

returns (rent) to a unit of capital

investment, the amount of Q1 bought for other than consumption purposes
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11) Dll = the amount of Q1 consumed by laborers in the industrial sector

12) D12 = the amount of Q1 consumed by laborers in the agricultural sector

13) D21 = the amount of Q2 consumed by laborers in the industrial sector

14) D22 = the amount of Q2 consumed by labors in the agricultural sector.

‘Exogenous,or Predetermined

c=

‘L=

V1,V2 =

‘I’az -

G

XM

’11

’12

’21

’22

total amount of capital available

total amount of labor available

the degree of homogeneity in the constant elasticity of substitution

(CES) production functions for Ql and Q2

the elasticity of substitution of labor for capital in the CES

production functions for Q1 and Q2.

the minimum or subsistence amount of food which each laborer must

cofisumeto sustain life

the aggregate amount of food necessary to sustain the owners of

capital

the proportion of discretionary income (income remaining after

satisfaction of the

spent on industrial

subsistence food consumption requirement)

goods by industrial laborers.

the proportion of discretionary income spent on industrial goods

by agricultural laborers.

the proportion of discretionary income spent on agricultural goods

by industrial laborers

the proportion of discretionary income spent on agricultural

goods by agricultural laborers.
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Finally the values assigned to the exogenous variables were the

following:

c = ~oao

L= 100,0

v, = V9 = 1.0
J. &

‘1
= ().5

a2
= 1.5

G = 0.648

XM= 0.0

’11 = ().8

’12
= 0.5

’21
= 0.2

’22
= 0.5

The reader

compatible with

should note that the model as just stated is not in a form

any of the iterative methods discussed in this paper. The

model is not normalized in the form suitable for Jacobi or Gauss-Seidel

iteration; neither is it written in the implicit function form required

for Brown’s or Newton’s method. More fundamentally, the model has 15

equations but only 14 endogenous variables. If all 15 equations were

independent the model could be inconsistent and have no solution.

Economic theory must be used to discover a “square” model (one with an

equal number of equations and endogenous variables, an n x n system) having

the same solution as the original model. Otherwise, iterative techniques

cannot be applied. In the Kelley-Williamson-Cheetarnmodel, “if we assume
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that there is at least one positive value for the terms of trade [P] that

will satisfy the equilibrium conditions, it is a simple matter to show that

equilibrium in the two factor markets and in either commodity market

necessarily implies equilibrium in the remaining commodity marlcet. Thus,

one of the two commodity market equations can be ignored; the model then

becomes a system of fourteen equations and fourteen variables [15, P~ 51~0”

Equation 15 will henceforth be omitted from the model without affecting

the solution values.

1. Programming Brown’s Method.--Brown’s method is available as a

library subroutine NONLIN on the University of Minnesota computer system.

A similar version is also available at many locations in the International

Mathematics and Statistics Library (IMSL), under the name ZSYSTM. To

implement either of these algorithms the user must first rewrite the model

in implicit function form. This can be accomplished by subtracting the

right-hand side of each equation from the left-hand side. The next step

is to set each implicit function equal to an arbitrary function name, “Fl?”

for example, and to label the function with a statement number. The

market-balance equations of the Kelley-Williamson-Cheetam model would thus

be rewritten as follows:

12FF=c- ~ -K2

13 FF=L-L1-L2

14 FF=Q1-D11-D12-I.

However, the equations must also be written in matrix notation. Each

endogenous variable must be designated as an element of an n-unit vector,

which will be called X in this example. The elements of X will be as follows:
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x(l) = K1

X(2) = K2

X(3) = Ll

X(4) = L2

x(5) = P

x(6) = Q1

X(7) = Q2

X(8) = w

x(9) = r

X(lo)= I

X(U) = Dll

X(12) = D12

X(13)= D21

X(14)= D22a

The market balance equations, in final form, are written

12 FF=C- X(l) - x(2)

13 FF==L- X(3) - x(4)

14 FF = x(6) - X(n) - X(12) - X(10).

When all the functions have been rewritten in this form they are arranged

as in the function FF which appeers in the program reproduced In Figure 10.

The remainder of the program follows directly from the instructions accom-

panying the NONLIN or ZSYSTM packages. In Figure 13 the required statements

which sre problem specific (i.e., must be changed for each different model

but cannot be omitted) are underlined. Cads pertaining only to the
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14-equation model are starred. Besides the function statements and the

data relating to exogenous parameters and the initial guess, there are only

five problem-specific Fortran statements (numbered 2, 48, 52, 2, and 7 in

the right-hand column).

The ordering of the equations in function FF is important (see p. 48)

and in Figure 13 is controlled by the following statement number 7:

GO TO (60, 65, 70, 25, 30, 15, 20, 5, 10, 35, 40, 45, 50, 55), J.

The equations will be treated by the algorithm in the order that they are

listed in this GO TO statement. The linear equations 60, 65, and 70 thus

appear first, the quadratic equations second, etc. Terms of the form

X(i)** FP, where FP is a real noninteger number, are considered to be of

the same degree as the number of the last term in the series expansion of

FP(logX(i)) which add@
e a significant digit on the particular computer

being used (see footnote 19).

Where NONLIN or ZSYSTM is available, implementing Brown’s method

requires a statement of the model in implicit function form plus a small

Fortran deck. Only five statement modifications are required to use the

deck on other models.

2. Implementing a Dampened Jacobi Method.--To prepare the model for

a Jacobi algorithm, the equations must be normalized, with each endogenous

variable appearing exactly once on the left side of an equation, The

following equations of the Kelly-Wi.lliamson-Cheetammodel were modified

to obtain the normalized version of the model,
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ll)P=(r. C- XM)/I

12) K2=c-Kl

13) L2=L-~1

14) I = Q1- D1l- D12,

The equations must also be written in terms of the vector elements

corresponding to the endogenous,variables (see P* 59J0 In Jacobi’s method

(or any dampened method) dual vectors must be maintained, one for the

previous iterate and one for the undampened figures used in generating the

new iterate, Call the vector containing the previous iterate XL and the

vector containing the undampened new iterates X. Then, in each equation of

the dampened Jacobi algorithm, the endogenous variables on the right-hand

side are replaced by the corresponding elements of XL. The left-hand sides

are written as members of X. The market-balance equations, for instance,

would be written as follows:

12 x(2) = C-XL (1)

13 x(4) = L - XL(3)

14 X(10)= XL(6) - XL(U) = XIJ(12)

A statement of the l&-equation model written in this form is included in

the program presented in Figure 14.

Figure 14 is a copy of a simple algorithm written by the author to

implement the dampened Jacobi method. This program calculates new undampened
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iterates from the previous iterate, takes a weighted average, and iterates

again until convergence is achieved or the maximum number of iterations

equaled. Once again the cards which cannot be dispensed with but which must

be modified for each specific problem are underlined (card number 10).

Cards pertaining only to the 14-equation model are starred.

Programs for using Brown’s method or the dampened Jacobi method are

easily adapted for use on other models if the user can supply an

appropriate Fortran statement of the model to be solved. Other iterative

methods, such as Newton’s or the Gauss-Seidel, are available at most

computer facilities or can be written by the user.
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APPENDIX B: The Relationship Between the Gauss-Seidell,Method
Cobweb Model, A More Mathematical Treatment

The cobweb model, originally worked out by Eze’kial[ 7 1

agricultural price movements, is a dynamic two-equation model

economists. The cobweb model can be written in the form of a

Gauss-Seidel method, and the conditions under which each will

and the

to explain

well-known to

two-equation

converge to

a fixed point can be shown to be equivalent.. Demon.etratingthis result will

provide an illustration of iterative methods and contraction mappings in

terms more familiar to economists.

Consider the following model:

demand
q(t)

==12- #

supply
~(t)= 2 + 2p@),

where q indicates quantity of some commodity; p its price, and superscript t

indicates the time period. The model is dynamic because it relates current

year supply, and indirectly current yea.xprice, to price i’ the previous

yeax. The model thus explains year-to-year changes in p and q. only if

P .z~dq. 6 does the model show no change in either price or quantity.

llms, the point (p,q) = (2,6)is an “~wili’brfum~o~ fixed point,

of the cobweb model.

The cobweb version of the model given above would be written with

the demand equation normalized on price, or

demand ~(t)=(q(t)- 12)/-3

supply
~(t)= , + 2P(W
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This form reflects the pattern

Previous year price determines

current price. This form also

of causality implied by the cobweb model,

current supply, which in turn determines

conforms to the Gauss-Seidel method since

each variable appears exactly once on the left-hand side of an equation. It

is therefore possible to show the equivalence of the convergence criteria

of the cobweb model and the Gauss-Seidel method.

The main result on convergence of the cobweb model is the cobweb theorem.

This states that the sequence of price-quantity points of a cobweb model will

converge to the stable or fixed point determined ‘by
.

supply and demand curve when the slope of the demand

261magnitude than the slope of the supply curve- in a

the intersection of the

curve is of greater

region containing some

starting >oint. Since the slope of the demand curve is -3 in the above

example and the slope of the supply curve is 2S the cobweb theorem indicates-.. .... , .

that the model would converge. Figure M illustrates this result. Note that

the clockwise orientation of the “cobweb” is an implication of its pattern

of cauoalityg The path traced out moves horizontally towards the supply

curve as previotisprice determines quantity and vertically towards the

demand curve as current quantity determines current price.

The contraction mapping theorem and theorems I and 2 of PaintI imply

that sufficient conditions for the

that the Jacobian of the iterative

absolute value is less than 1 in a

Gauss-Seidel method to converge are

function have a syectral radius whose

region containing the solution, and that

th$s region be convex and be mapped into itself by the

These latter conditions are trivial in the linear case

is constant at all points. Thus, for the two equation

iterative function.

because the Jacobian

model presented above,
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it suffices to show that the iterative function has a Jacobian whose norm is

less than 1.

sis to higher

In the

supply

demand

More general notation

dimensions.

general linear supply

q=r+sp

q =t+v-p

will then be employed to expand the analy-

and demand model we have

271The AX = B form of the syster is

Transforming this system to the form of the Gauss-Seidel method yields

~(k+l)
=1’ i- Sp(k)

P
(k+l)= (*.

or, in matrix form,

uq(k+l)P(ktl) =

Thus ,
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fd /q(k)\

linear iterative method is the

The eigenvalues of M are given

/

a vector of constants. The Jaco”bianof this

H0s
matrix ~ , which shall be denoted M.

[o :/

by the formula ,-A1

and if IVl > ISl, p(M) =IA21 < 1
..

will converge. The criterion Id

theorem, As indicated above, in

(:. J= oo?~~Thus,
and the Gauss’Seidel

the current model

the same

]Vl =

iterative method

as in the cobweb

s > 2 = ~s], so convergence is confirmed by the theorems of both economics

and numerical analysis. This shows that the cobweb model can be thought of

as a mapping whose contractiveness depends on the relative slopes of the

demand and supply curves. It also shows that economists axe familiar with

the problems of convergence of an iterative method even if by another name.

The cobweb model is a Gauss-Seidel method adapted to a two-equation model

and embodying a particular pattern of causality in its normalization.

The above analysis can now be extended to the general linear case

AX=B, ‘&king the Gauss-Seidel iterative equations for the linear case

(p. 14) and dividing through byaii yields
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The first term is the i
th

element of D-lB~ where D is a diagonal matrix of

the diagonal elements of A, D = diag (aii). The second term is the ith ele-

ment of -l.X(k+l), where L is a lower triangular matrix of elements of A,

each divided by their corresponding diagonal element. That is, L = (k )
lj

where

The thirdtermisthei th
element of -UX(k), where U is defined as L but on

the upper triangular elements of A, U= (Uij), where

Thus

#@= .L#+% Ux(k)+ #&

Rearranging this yields

~(k+l)+u(k+l)= -w(k)+ ~-lB,

or

(I -t-L)X(W1)= -uX(k)+ D-lB, Multiplying tkrough by (I i-L)-l reveals

the Gauss-Seidel iterative function~

Jk+l)= -(1 +

where M = -(I+L)-l U

L)-l ‘JX(k)+ (1 + L)-l &B= ~(k)+ N,

and N = (I+L)-l D-l B.
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Since the last term is a constant, the Jacobian of the function is M, and

the Gauss-Seidel method will coverge if p(M) < 1, as was the case in the

model as normalized above.

If instead the model had been normalized with a price-dependent

supply equation and quantity-dependent demamd equations the results would

have been exactly opposite, as shown below, This alternative model,

demand q=lZ-3p

supply p.= (2-q)/2

can be written in the form AX = B as

The Jacobian of the iterative function for this model is given by the

matrix M, defined on page 77 ,

-..

Then eigenvalue.sof M satisfy

(-AJ(+- @ =

ThUS, P(M) ‘j ‘1, and

diverges. The model in

clockwise and divergent

0$ or Al= O, ~2

the Gauss-Seidel

effect becomes a

path as shown in

s~,

iteration based on this normalization

cobweb in reverse$ tracing a counter-

Figure 6.
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APPENDIX C

Van Der Geissen’s Method for Ordering Equations

Prior to Gauss-Seidel Iteration
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A method for ordering the equations of an economic model in a recursive

pattern amenable to solution via Gauss-Seidel iteration has been reported by

A. A. van der Giessen [ 22]. A simple computer program for implementing the

technique is presented in this appendix and applied to the 14-equation

Kelley-Williamson model explained in Appendix A (also see

To use the technique, one must express the model in

required for Gauss-Seidel iteration (i.e.~ each of the n

[15]).

the normalized form

endogenous variables

must be isolated exactly once on the left-hand side of an equation). The

user then supplies a set of zero-one variables indicating the structure of

the model, and the algorithm automatically orders the equations in a

more recursive pattern. Increased recursiveness reduces the number

of endogenous variables whose initial estimate must be supplied by the

user and enhances

iteration.

The pattern

the chances of achieving

of interdependence

represented by the zero-one elements

by the user. TM.s matrix ‘hasn.rows

variable in the model to be solved.

among

convergence via Gauss-Seidel

the endogenous variables is

of the “interdependency matrix” supplied

and n columns, one for each endogenous

A 1 in the f,j
th

position indicates that

the i’h thvariable depends on the -j thvariable; a O indicates that the i. .

th 29/variable does not depend on the j variable.— Figure 16 gives the inter-

dependency matrix for the normalized version of the Kelley-Williamson model

presented in Appendix A.

To implement the ordering routine, three additional columns are

appended to the interdependency matrix. The n+lst column is called the

“auxiliary” column. Its elements are equal to the row sums of the first n

‘h
columns. Thus, the i row of the auxiliary column lists the total number

th
of endogenous variable appearing in the equation of the i variable, The

nd rd
. n+2 and n-t-3 columns are for accounting purposes. The n+3rd column lists
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Figure 17.

Variables Whose Initial Order in Which Equations
Guess Must be Given Are to Be Solved

1 2

3 4

11 7

12 8
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the equations in the order in which they should be solved. For example,

if 2 appears in the first row of che n+3
rd nd

column, the equation for the 2

variable must be solved first in implementing the Gauss-Seidel method. The

nd
n-t2 column lists the variables for which an initial guess must be supplied

by the user. Figure17 shows the results of applying the algorithm to the

14-equation model.

From the initially supplied interdependency matrix, the method

proceeds as follows:

1. Calculate the auxiliary column (for variables not already listed in
in the n+3rd column).

2. Check for zeroes in the auxiliary column. If a zero appears

in the i
th th

column, the i variable depends on no remaining

endogenous variables and is therefore predetermined.

Accordingly, the i
th

column is deleted (set equal to zero).

To indicate that the i
th

variable i.snext in the order of

equations to be solved, the value i is placed in the highest unoccupied

cell in column n+3. A large number M (M > n) is placed in the

~th
cell: of the auxiliary column. The method returns to step

1.

3. After all zeroes are cleared from the auxiliary column, check for

1’s on the main diagonal of the interdependency matrix (i.e.,

the ii’h cells). Initially there should be no 1’s on the main

diagonal if the user has properly normalized the model. However,

1’s may be introduced into the ii
th

cell of the main diagonal

th
as the method proceeds. In this case they indicate that the i

variable can no longer be expressed as a function of the remaining

endogenous variables and must therefore be listed fn column n+2

among ~he varfables for which an initial guess must be

th
the user. If SO, the i column is deleted. The method

step 1.

given by

then returns to
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40 After all IVS are cleared from the main diagonal, an index

variable r is set equal to one.

5. Check the auxiliary column for an r. If the ith cell of the

th
auxiliary column is r$ the i variable is a function of r

endogenous variables. If r=l, the ith variable is a function of

just one other variable j and can be replaced by substituting

‘~ for xi wherever xi

the ith column to the

[)

0+0-0
0+1=1+0=1 . In this
1+1=1

appears. This is accomplished by “adding”

j
th

column, where “addition” is defined as

manner variables dependent upon X
1.

are made

~ependent-upon X as well.
j

If r > 1, the procedure is the same

except that 1’s from column i are “added” to the r other columns

containing a 1.

After the first r has been processed in this manner, go to step 7.

If no r is found, go to step 6,(forvariables not already listed
in the n+3rd column).

6. If no r appears in the auxiliary column, increase r by one and

repeat step 5.

7. Recalculate the aukiliary matrix.

8. Check for 1’s on the main diagonal. If a 1 is found, proceed as

indicated in step 3 and return to step 1. If a 1 is not found,

go to step 9.

9. Check the remainder of the auxiliary column for an r. If found,

return to step 5 and proceed as indicated there. Otherwise

increase r by one and then return to step 5.

10. Terminate the method listed in Steps 1-9 when all equations

have been ordered, that is when column n+3 is full.

A flow-ch~t of this meth&l is shown in Fig-we 18and a program

implementing the method on the l&equation model listed in Figure19,

for
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FOOTNOTES

~/ Iterative methods can be more generally expressed as X
(k+l) =

G(X(k), X(k-l), .... X(k-s). For the methods discussed in this paper

s =Oand X(k+’)= .G:@(k) Many useful methods are of this form [see

17, Ch. 7; 4, Ch. 1].

2/ This is, if for any c > 0, there is integer M such that for any

k >M; D[F(X(k)) - F(X(*))] < ~.

,~/ A fixed point of a function G(X) is a point X* where the value of

the function is equal to its argument. That is, a point X* such that

X* . G(X*).

~/ Justification for this result is given by the mean value theorem

of calculus, which sta~es that between any two points on a continuous and

differentiable segment of a function G(x) there is a third pdint where

the slope of the function equals the average rate of change of the function

between the first two points. That is, if G(x) is continuous and differentiable

on the interval [k
(k), X(k-l)l, then

[G(x(k) )- G(x(k-l))]=G, ~-,
({k) - X(k-l)l

where = lies in the interval between x
(k)

and X(k-l). Rearranging terms and
(k+l) -x(k)] ~ ~G(x(k)) - G(x(k-l))], it can be seen thatrecalling that [x

~x(k+l) _x(k)l = [x(k) _x(k-l)lG, ~--,
. If G’(x) is less than one for all

x in a neighborhood of x* containing x (o), then the absolute value of the

differences between successive iterates grows progressively smaller and

tends to zero. The iterates would form a Cauchy sequence converging to the

limiting fixed point value x*.

y See [19, p. 265].

g/ These properties are derived from [4, p. 175].

~/ An eigenvalue of a matrix A, here denoted A(A), is a number such
that AX = [A(A)]X, for some vector X. See [13, Chapter 7].

~/ Functions with n-dimensional domains and m-dimensional ranges
are also mappings but are not discussed here.



-90-

~/ Ortega and Rheinboldt [17, p. 69] show that if a mapping G from Rn
to Rm has a well-defined Jacobian on a convex set D*cD, then fiorany X, YcD’,

~]G(y) - G(X)I1 ~ & l/ G’(x+W-xDl ● [lx-Y j]. Since for O < t < 1-.

@+t(Y-X~T = fil-t) X+t~y cD’ by convexity, and since it is assumed above that

IIG’(X)II <a<lfor allpointsin D’, it follows that \\G(Y) -G(X)]l <U

\]X-yll. ;.E.D.

~ Ortega and Rheinbol.dtF17; p, 427 show that .(~) < ~’.’.~~for all
narms, but that for any number Z > 0, there is some ckjoice-c: nor:,s“~chthat

theorem follows.

~ Only strictly true if the ::ubsetis convex.

I.& Larger than 100x 1OO. Exact methods are also inappropriate if
any equation is nonlinear.

!_?/ ~otethat by interchangingrows and colunns of’A it is always
possible to write the system AX = B in such a way that Aii # 0, i ‘=1, ct., n,
as long as A is nonsingular.

~/ There are systems of equations where this normalization procedure
i.seither impossible or exceedingly difficult. In such cases a secondary

iterative method must be supplied to solve for each xi
(k+l) from a nonlinear

(k),,,., x._
(k), x~k) x(k) = o in

implicit function of the form fi(xl i+l~ ‘**$ n

(k+l), ,4,, ~(k+l), x~k;
x(k)) in the Gauss-the Jacobi method or fi(xl i-1 i-+1$‘c-? n

Seidel method. The author@ feel that this situation will rarely arise in
economic models since they are usually constructed with fairly simple
functional forms.

15/ There are the following two additional patterns if the ordering
of eq~tions is considered:

3. (clockwise)

Demand p(t) = (+) &l)+ 4

supply q(t) = 2 + 2 P(t)
4. (Counter clockwise)

~emand q(t) =12 -3 P(t-l)

(t)= (+) q(t) - 1supply p
In this 2-equatf.on,linear model only the normalization, and not the
ordering, of equations affects convergence. Ordering does affect Gauss-

Seidel convergence in the general case.
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lfj/ The Picard Method, the
are some of the other important
in numerical methods texts such
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.- . .

Secant Method and the Steffensen Method
linearization methods, They are discussed
as ~~ and @~.

~ @ejustifj-cation forchoosing A= Jisderived from the spectral
radius convergence criterion. Iet X* be a solution of F(X) = 00 Then, i
a nei hborhood of XY-,convergence is assured if the Jacobian of X(k+l)= X?k) +

fA-l F X*) has spectral radius o magnitude less than one.
f

At X* this
Jacobian can be written /~ - A- F’(X*) 1. If lim X(k) = X*, ~ben ~J =

k TkJ,,,F’(X*) ~ will ap~roach zero if A = F’(X~~ - A-l _

!8~ Theapproximation mayalso bethought of asa Taylor series expansion.

d Logarithmic, exponential, or trigonometric expressions are zssiegned
a degree equal to the last term in their infinite sezies expansicn which is
significantly different from zero (determined by the ;:acj-j.:.etole~ance of
the computer on which the method is implemented.

20/ See [12, p. 71].—

@ Itis’possible, however, to introduce singularity into the calcula-
tion of a Jacobiaa if Erown’s method is altered in a? attempt to preclude
selection of negative iterates~ I For instance, one of the
author once altered Brown’s method in such a way as to substitute the value
0.1 for any negative element of an iterate, This caused several rows of
zeros to appear in the discretely estimated Jacobian matrix used in Brown’s
method.

y Chiefly prClfessorKenneth M. Brown, Department of Computer Science,
University of Minnesota, and David M. Gay, Research Associate, National
Bureau of Economic Research, Cambridge, .MkLss.

~/ Researchers in the Department of Agricultural and Applied
Economics of the University of Minnesota have used Brown’s method to
solve systems of equations characterizing the necessary first-order
conditions for maximization of likelihood functions. Singularity of the
Jacobian has been encountered in these probleq~. .,-—...—._ .._.--—.—_.—.&_, ..

(k)=/71-6)+47~’ This is stiU a weighted average as before, since X -

x(k) and [X
(k)+ ~-l (Xfd) F(X(k)) 7istheundampened Newton iterate,,-

25/ See [4; 17].—
.————..——..... ——.,___

‘~ “Slope’;~~-”this context refers to the ‘derivativeof cjuantitywith
~’espectto price in both the SUpyly and ~emand curve, These slopes are most
easily evaluated when both equations are written with quantity as the
de~en’dentvariable. See also ~$9, p, 26~7.

~ Normalization in the AX = b form is implied by the order of the
equations. The first equation is normalized on the first variable, q; and
the second equation .isnormalized on the second variable, p. If the system
were written as

~ ::)($ =(;)’

the result on conver~ence of the system

would be exactlv the onnosite of the ?%s111+ +.h~+,fnl ‘IOWQ ~h,,d
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28/ See [13, Chapter 7].—

29/ The interdependence matrix will change if the numbering of
the v~iables is altered. Such changes can affect the order in which
equations will be listed for solution and also the variables that will
be listed as requiring an initial guess. Van der Geissen claims,
however, that the changes are slight and do not significantly affect
the Gauss-Seidel solution of the model [22, pp. 47-48].
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