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INTRODUCTION

This paper focuses on the application of computer-based, iterative
methods for deriving analytical solutions to economic models expressed as
systems of simultaneous linear and/or nonlinear equations. Practical
suggestions for using four specific methods are emphasized. Analogies
from economics are used to explain practical and theoretical points.

The primary motivation for this paper arises from methodological
constraints faced in developing quantitative tools for economic planning,
especlally in the less developed countries (LDCs), where planners increasingly
seek to simulidte economic activity at the industrial, sectoral, or national
level. Simultaneous—equation models* appear to offer several advantages over
other techniques such as input-output analysis or constrained optimization.
For instance, input-output analysis is not designed to capture supply and
demand responses to substitution possibilities. Constrained optimization
models, despite recent innovations [5,6,16], remain limited by the number
of equations nonlinear in three or more variables that can be conveniently
handled and by convexity conditions required to find an optimal activity
set. Simultanecus—equation models are also generally superior for charac-
terizing time-dependent relationships or forecasting macroeconomic activity.

A major impediment to the use of simultaneous-equation models is the
difficulty of calculating solutions. This is especlally true of large models
and models with many nonlinear equations. Procedures used to calculate
solutions have been, for the most part, either variations of Gauss-Seidel

iteration or ad hoc, model-specific methods. 1In addition to drawing scarce

*That is, quantified models consisting of an equal number of endogenous
variables and equations. These models may be termed '"nonoptimizing" because
their solutions need not depend on the optimization of an explicitly-stated
objective function. Some examples are the Kelley~Williamson-Cheetam model [15],

the Chenery-Raduchel model [1], and the Wharton and Brookings models [11].
i



resources away from model gpeclfication and estimation, model-specific

methods tend to be inflexible. Modifying the model to simulate the effects

of policy alternatives can require extensive reformulations of the solution
algorithm ~~ a costly distraction in LDC.planning. The Gauss-Seidel and

Jacobl methods used at the Wharton School, Brookings Institute and U.S. Depart-
ment of Agriculture are generally not as sensitive as model-specific methods
to changes in a few equations. However, with Gauss—-Seidel methods considerable
time and effort may be expended in rearrvanging the equations of the model
before a solution 1s obtained.

Despite these problems, economists appear to have limited theilr search
for and reporting of methods for solving simultanecus—equation models. For
instance, Shapiro and Halabuk's recent review of macroeconomic model building
[9] excluded discussion of solution procedures. The general objective of
this paper is to partially redress this failing by providing a convenient
introduction to iterative methods as solution procedures for simultaneous
equation economic models. The theory of iteration and practical suggestions
for using iterative methods are presented at a basic level requiring minimal
proficiency in mathematics. Part I begins with a very general discussion of
the nature of iteration, followed by an optional section which gives a more
mathematically detailed treatment. Parts II and III describe four specific
iterative methods useful in economic modeling. Suggestions on how to use
them are drawn from the literature and from the authors' model solving
experience. Part IV summarizes the advantages of the four methods and

suggests how to search for other algorithms.

11
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NOTATTON

Indices used as subscripts to indicate the

ith, jth, or :Ljth member of a set. Unless
otherwise indicated, i1 and j take on successive
integer values betweer. 1 and n.

Indices used as superscripts to Indicate the

k-15%, R

, O k+lSt member of a sequence of
iterates. Superscript values are nonnegative
intergers, k = 0,1,2,....

Index used to indicate the total number of
equations in a system of equations or the
number of elements in a vector or a matrix.
Lower case letters denote a real number con-
stant or a varlable that takes on real number
values. Unless otherwise indicated, variables
will be denoted by letters from the end of
the alphabet.

Upper case letters derote a vector or matrix

whose elements——a b, . yeeesX

137 13 15> 713, 13

may be real constants or variables. Unless
otherwise indicated, vectors or matrices with
variable elements will be denoted by letters
from the end of the alphabet. All matrices

used in this paper are square (number of rows =

number of columns = n).

it



0 A vector or matrix all of whose elements are
zero.
f (x) A function of one variable.
th

fi(X); or fi(xl,xz,...,xn) The 1 function in a system of n functions

in n variables.

FX) A system of n functions in n unknowns. Collec-
tively, this system of equations is also
referred to as a function or a mapping.

(0) A vector of values which are a user's initial
guess at a solution of a system of simultaneous
equations.

..,X(k—l),XQk),X(k+l),... Vectors representing the k-lSt, kth, and k+1$t

iterates in a sequence of iterates generated

by an iterative method beginning at some X(o)
and searching for the solution of a system
of simultaneous equations.
xi(k) The 1th element of the vector X(k).
x(o),...,x(k) The sequence of lterates generated by a one~
dimensional iterative method beginning at x(o).
X(k+l)=G(X(k)) A function that expresses new iterates, X(k+1),
(k)
in terms of old iterates, X .
(k+1)_ (k).
xi —gi(X ); or The ith function in the system of n iterative
xi(k+l)=gi(xi(k)x2(k),..., functions collectively denoted X(k+l)=G(X(k)).
(k)
xn )
J; or J(X) The Jacobian matrix of a system of equations,

evaluated at X.

iv



p (X)
| x|

1%l

£'(x)

32a-1)

32@+1)

The spectral radius of matrix X.

The absolute value of x.

The norm of the vector or matrix X.

A superscript that denotes a point x* or X*
that 1s an economic equilibrium, the solutlon
of a system of simultaneous equations, or

the limiting point of a sequence of iterates.
The derivative, é§£§23 of a function of one

variable, evaluated at x.

The jth first partial derivative of a function
of n variables, evaluated at X.

The jth first partial derivative of the ith

equation in a system of n equations, evaluated

of
,®)

9x]J

element of the Jacobian matrix of the system

t
at X. Thus, can represent the ij

of equations.

The summation of a sequence of terms containing
variables with the subscript j. Unless other-
wise indicated, the sum shall be formed by
taking integer values of j between 1 and n.
Same as above except that the index j takes

on integer values from 1 to i1-1, where 1 is
fixed.

Same as above except that the index j takes on

integer values from i+l to n, where 1 is fixed.



j#i Same as above except that j takes on all integer

values from 1 to n except i, where 1 1f fixed.

vi



Part I: The Nature of ITteration

A. Basic Concepts.

Iteration is a method for finding a solution to a problem by trial and
error. The method begins with an initial guess at a solution. This guess
is then tested to see if it is an adequate answer to the problem. If it is
not, a second guess is generated by modifying the initial guess according
to a well-defined rule. The second guess is tested; and, if need be, a third
guess 1s generated by modifying the second guess according to the same rule.
This process continues until a solution is found or until a decision is made
to stop looking.

There are many possible rules for generating new iterative guesses from
old ones, and each distinct rule defines a distinct iterative method. Most
rules allow information about the problem—to~be~solved to influence the
way old guesses are modified to form new guesses. Each new guess thus
depends on the rule, the problem, and the previous guesses. However, for
a given rule and problem, new guesses depend only on old guesses.

In the case of iterative solution of simultaneous-—equation economic
models, the following components of the iterative process merit identification:

1. The problem is to find a solution for an economic model expressed

as a system of n equations in n "unknowns'" (endogenous variables).
In functional notation, F(X) = 0 1s the model, where F is a function,
X is an nxl vector of endogenous variables, and 0 is an nxl vector
(*) . (*)y -
of constants, X , which satisfies the model. TI.e., F(X ) = 0.

2. The guesses, or iterates, are nxl vectors of constants to be tested

as possible solutions of the model. They are generated and tested

one at a time, beginning with X(O), the initial guess, and proceeding
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through subsequent guesses X(l), X<2), X ,...,X(k), X(k+l),

etc.,
where superscripts indicate the ordering of the sequence of guesses.

3. A test determines whether the most recent guess is an adequate
approximation to a solution. It consists of measuring (by means of
some distance formula, D) the deviation of F(X(k)) from zero. 1Il.e., the
quantity D[F(X(k)) - 0] = D[F(X(k)) - F(X(*))] must be approximately

zero for X(k) to be accepted as a solution to the model. Otherwise a

(k+1)

new iterate, X , must be chosen.

4. The rule generates new guesses from old guesses. Each application of

the rule to derive a new guess 1s called an iteration. A rule can be

Gty _ o x®

written as the function ), where G incorporates
procedures for obtaining "information' about the model's '"behavior"

near the point F(X(k)) and for using this information in the selection
of X(k+l).
Figure 1 is a flowchart of the workings of an iterative method.

If an iterative method generates a sequence of iterates that terminates

in values arbitrarily close to a solutiongj, the method is saild to converge

to a solution, or to be convergent. Methods which converge to a solution

from any initial guess are globally convergent. For some nolinear models,
globally convergent iterative methods do not exist; it is only possible to
find methods that converge when the initial guess lies in some ''region of

convergence' surrounding a solution. These methods are locally convergent.

In practice, the same method may be globally convergent when applied to
a certain class of models, and only locally convergent or not convergent at
all for other models. Convergence may also depend on the way a given model
is expressed algebraically to address the computer program for the iterative

method. A researcher seeking solutions to a model faces the twin problems
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Figure 1: Schematic Structure of an Iterative Method
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of (1) choosing an iterative method appropriate to his model, and (2) choosing
an algebrailc statement of his model appropriate to the iterative method.
Hundreds of iterative methods have been proposed for solving systems of
simultaneous equations. The four discussed in Parts II and III are (1) theore-
tically fundamental, (2) easy to program and use, (3) efficient and reliable,
and (4) applicable to both linear ahd nonlinear models. The Jacobl and Gauss-
Seidel methods presented in Part II were originally devised for linear problems.
Newton's method and the related Brown's method are discussed in Part III.
The two pairs of methods are described and suggestions are made on how to modify
either the model or the methods in order to obtain convergence. Readers may
wish to proceed directly to Parts II or III. The remainder of Part I is an
optional section which introduces some concepts and theorems important in
the theory of iterative convergence. It provides additional background for
interested readers but is not essential for understanding Parts II-IV.

B. A Sketch of the Theory of Convergence of Iterative Methods

Consider the iterative process defined over some domain D by the function

X(k+l) = G(X(k)). (Note that the function G depends both on some model,

F(X) = 0, and on the particular iterative technique used to solve the model.

(k)y _ gt

Neither G(X nor any of its derivatives should be confused with

*
F(X) = 0 and its derivatives.) The method converges to X 1if as k gets

* (k)
arbitrarily large the distance [xi - X |
(k)
Xy | and hence Ixi - X

(k) and X(k+l)

tends to zero for each element.

*
When, for sufficiently large k, ]xi - (kt1)

approach zero, the successive iterates X are approximately equal

* *
i(k) =X, = xi(k+1), or X (k)c:x (k+l). Thus, X is a fixed point of

i i
the iterative method as well as a solution to the economic model,gj and an

alternative criterion of convergence is |xi(k) - xi(k+l)|=0.

since x



The analysis of convergence in a one-equation problem can be presented
graphically. Each of the following four graphs (derived from ZZ; D. §7)
illustrates the effects of the slope of the iterative function, g(x(k)), on
the convergence of the method.

In 2A and 2B the sequence of iterates begins at the initial guess x(o)
and converges to the fixed point x*. In 2C and 2D the sequence diverges
from x* despite relatively good initial guesses. The slope of g(x(k)),
which is shallow in 2A and 2B but relatively steep in 2C and 2D, determines
the convergence or divergence of the sequence. Indeed, the sequence will always
converge if the initial guess lies in a neighborhood of the solution where

L0 (b)) ()

g( ) 1s less steep than the line x This line passes through

the origin at an angle of 45° and has a slope of +1. It follows that an
iterative method will converge to x* from any x(o) in a neighborhood of x
where the slope of g(x(k)) is less than 1 in absolute value, i.e., where
’g'(x(k))|<l.&/ This result should come as no surprise to agricultural
economists. The same sort of condition (slope of demand curve steeper than
slope of supply curve)éj determines the convergence or divergence of a cobweb
model. (This analogy is more fully developed below in the explanation of

the Gauss-Seidel method, and also in Appendix B.)

In order to better understand the nature of convergence of iterative
methods in more realistic models, these simple results must be generalized
to higher dimensions. The theorems that follow show that when the matrix of
first partial derivatives of the n-dimensional iterative function G(X) has
a "magnitude" which is less than one throughout a convex neighborhood of the

solution, a sequence of iterates in that neighborhood will have decreasing

*
first differences and will converge to the solution X . To state this
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result formally, the concepts of matrix and vector norms, Jacobian matrices,
spectral radii, and contraction mappings are introduced next.

1. Vector and Matrix Norms. For real numbers a measure of magnitude

is the absolute value, signified by ] . In the above analysis of the
convergence of an iterative method in a single equation model, this measure
was used to indicate the magnitude of the differences between successive
iterates. The corresponding measure for a vector or a matrix is called a
norm, and 1s denoted by [ {|. Norms provide a measure of "distance" in
higher dimensions and are useful both for defining convergence and in analyzing
under what circumstances convergence will take place.

A vector norm is defined by the following properties, which are analogous

to the properties of the absolute value.éj Let X and Y be vectors, o a scalar,

and 0 a vector all of whose elements are zero. Then a vector norm must

satisfy
a. || x| >01f x#0; ||X]| =0 if X = 0;
b. e x|| = Jaf o [X]];
co [x+xl] < [Ix[[+ [[¥]].

Matrix norms must also satisfy properties a.-c. (where X,Y and 0 are matrices)

as well as

d. [[xy[] < [Ix[] * [|x}].
A matrix norm and a vector norm are sald to be mutually consistent if, where
A is any matrix and X any vector (of suitable dimension)

e. [[ax|] < [lall * |Ix[].

There are an infinite number of vector and matrix norms that satisfy

a.-e. For instance, the familiar Euclidean vector norm,

2 2 2
xl] = Jeap® + @2 + o+ ),

where the x i=1, ... , n, are elements of the vector X, is only one member

i,



of the so-called Lp family of norms. These norms are defined as
- P P py1/
= AP+ |7+ e+ [ [P Pll<p<o,

It can now be stated that an iterative method converges to a solution,
%
X , of a system of simultaneous equations when, for some vector norm,
* (k) *
[]X - X [] approaches zero as k goes to infinity. Viewing X as a fixed
point of the iterative method, a convergent method can also be defined by

(k+1) _ X(k)llapproaChes zero as k goes to infinity.

the criterion that ||X
The use of vector and matrix norms in analyzing (as opposed to merely defining)
convergence will be deferred until some other useful concepts have been

defined.

2. The Jacobian Matrix.-—-~Convergence of the one-dimensional iterative

(kt1) _

method x g(x(k)) depends on the first derivative of g(x(k)) being of
absolute value less than one in a neighborhood of the solution point x*.

To generalize this result to the n-equation case requires an extension of
the concept "first derivative' to systems of equations in several variables.
For one function of n variables, g(xl, Xy eve s xn) = (0, an appropriate

generalization is the tangent hyperplane defined by the vector of first

partial derivatives of the function, g'(xl, Xps wve s xn) =

38 a8 98
[éxl (xl, Xy wee s xn),axz (xl, Xos eev s xn), e aXn (xl, Xps eev s xn)

For a system of n functions in n variables, the appropriate generalization

is the system of tangent planes formed by taking all the first partial
derivatives of each function. These first partial derivatives are arranged

in a matrix called the Jacobian matrix. It is an n x n matrix whose ijth element
is the jth partial derivative, evaluated at some point i, of the ith equation

in a system of n equations each expressed as gi(xl, Kys wee s Xn) = 0.
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The extension of this concept to iterative methods 1s as follows. The

(k1) _

iterative method X G(X(k)) is composed of n equations in n unknowns

and can be expressed in more detail as

L R O
x, (D) gz(xl(k)’ «®, L x ()
M O R C R )

The Jacobian whose :Ljth element is formed by evaluating the jth partial
(k) (k) (k)

derivative of the ith equation above at the point (xl > X, s eee 5 X )

(k).

is referred to '‘as the Jacoblan of the iterative method at X

3. Spectral Radius.--The spectral radius of an nxn matrix A is denoted

7/

by p(A) and 1s equal to the largest of the absolute values of the eigenvalues—

max

of A. That is, p(A) = 1<i<n

lki(A)I, where ki(A) is the ith eigenvalue of A,

4. Contraction Mapping.--The central concept of the general theory of

convergence of an iterative method is the contraction mapping. It allows

for generalization to higher dimensions of the rule that a one-dimensional

(0)

iterative method will converge if x lies in a neighborhood of the solution,

x*, where ]g'(x(k))] < 1. Before stating the theorems that contain this
result, contraction mappings will be explained.

A mapping refers to a function G whose domain and range are subsets of
n-dimensional real space, Rp.§/ The function assigns to each n-coordinate
point in the domain an n-coordinate point from the range. The function is
thus said to "map" the domain into the range.

Let the domain of a mapping G be a subset of R" called D. The mapping
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Oc D, if there is

a scalar o <1 such that []G(Y) - G(Z)I] < g ]]Y - Z]] for all points Y and

G is said to be contractive on a subset of its domain, D

Z in DO 1717, P. 120_7: This means that the mapping "shrinks' the domain

dovn into a range which is "smaller" than the domain.

Consider an iterative function as a mapping. Since X(k) = G(X(k"l))

(k+1) (k))

it can be seen that the range of one iteration is the

and X = G(X

domain of the next. This fact can have important implications for a contractive
iterative method. For instance, if an iterative function G is contractive

over DOC:D,then there exists an o < 1 such that

(lx(k+l)—x(k)|[ (k) X(k_l))lf <a {]X(k) _ X(k-l)ll

= |le
(k)

) - G(

k-1 . . . . .
( ) in D,. That is, a contractive iterative function

and X 0

for all X
reduces the successive first differences in the sequence of iterates. If

(kt+1) . ) .
X also belongs to DO (i.e., G maps D0 into itself), then this process

will continue and the successive differences will go to zero. This is the

reasoning behind the following contraction mapping theorem 1i7, pp. 119-121,

3857: If G, defined over domain D, maps R" into R” and is contractive on

(k)

the sequence of iterates X corresponding

a closed set D.<D, and G(DO)C D

0 0’
to any initial point X(O) in DO is well-defined and converges to a unique fixed

*
point X in DO' Note that global convergence occurs when D0 = D.

Figure 3 represents a mapping contractive over the subset DO. Dl is
the range of D0 and lies within and is smaller than DO' This is true of all
successive domains and ranges which are gradually constricted to smaller and

*
smaller regions around the fixed solution point X .

5. Convergence Theorems.--Since the property of being contractive is so

important to the convergence of an iterative method, it is also important to

know when an iterative method is contractive or how it can be made so.
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The following two theorems show that certain characteristics of the Jacobian
of an iterative method are sufficient to make it contractive.

(1) If a mapping G of R” has a Jacobian, G'(X))such that for some
norm ]{G‘(X)l[ < a <1 for all X in a convex subset of the domain of G, then
G is contractive on that subset.g/

(2) If the spectral radius of an n x n matrix A is less than one,
then there is a norm of A which is also less than one. That is, 1fp (A)< 1,

then llA{l < 1 for some norm.lg/

D. Summary

These two convergence theorems imply that an iterative method is
contractive over some subset of its domain 1f the spectral radius or any
norm of the Jacobian of the iterative method is less than one over that
subset.ll/ While contractiveness does not insure convergence (the iterative
method must also map Do into itself), it would be advantageous to know how
to make a particular iterative method contractive when applied to a particular
model. However, the results of the theorems above are difficult to apply
except in simple cases such as small linear systems. In general, users
of iterative methods rely on "rules-of-thumb'" such as those reported in
Parts 1T and III. Only some of these practical rules of thumb can be

mathematically related to the theorems of convergence, but keep in mind that

all modifications are aimed at making the iterative method into a contraction

mapping.
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Part II: The Jacobil and Gauss—-Seidel Methods

A. Explanation of the Methods

Use of the Jacobl and Gauss-Seidel methods was, for many years, limited
to linear equation systems. 1In recent years they have been slightly modifiled
and successfully applied to nonlinear systems as well lié; 17, p. 2227:

The exposition here will parallel the historic development, defining and
analyzing these methods for linear systems and generalizing to nonliinear
problems.

Both the Jacobi and Gauss-Seidel methods are very straightforward
applications of a trial~and-error strategy. Consider ﬁhe linear equation
system AX = B, where A 1s an n x n matrix of constants, X is an n x 1 vector
of unknowns, and B is an n x 1 vector of constants. Exact methods such as
matrix inversion or Gaussian elimination could be used to calculate a
solution. However, when A is large and contains many zeros, exact methods
may be computationally inferior to iterative methods.lz/

The first step in the Jacobi method for solving the linear equation
system AX = B is to express each xi, i=1, ... , n, as a function of the
other x's. Rearranging the ith equation,

13/

ailxl-!-aizx2 + ... + aiixi + ...+ a,.%n = bi’ yields—

b —
x, = /by - 41 aijxj—/ layq
These equations are used to generate new iterates from previous iterates

by substitutinginto theright-hand sides values of xj(k), j=1, ... , i-1, i+l,

... , n. The left-hand sides become the elements of the new i1terates, or
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(k+1) Ya, .x. (k)
= - 1
(k+1) _ _ La,,x, k)
(kt1) _ _La .x, (k)
*n (bn j#n 3 )/ann'
For instance, the first iterate, X(l), is generated by substituting the
elements of the initial guess, X(O), for the variables on the right~hand

e

side of the equations above. The values for the second iterate, , are

1

obtained by substituting the just-calculated elements of X into the right-

hand side of the equations. The continuation of this process yields a
sequence of Jacobi iterates, {X(k)}, k=20,1, 2,

The Jacobi method is "conservative' in its incorporation of new

+
"information". In iteration k + 1, each element of X(k D is calculated

(k+1)

independently of the other elements of X Each is a function only

(k+1)

of the previous iterate. For this reason X

(k+1)

in which its elements, X, , are calculated.

is unaffected by the order

*
However, suppose the sequence of iterates is approaching X . Then

*
(kt1) is closer to x than x (k), and it could be used to improve the

*1 1 i
(k+1) . _ .
calculations of the remaining elements, xj , 1 <j <n, of the new

iterate. For example, suppose that the first element of the new iterate,

(kt1) has already been calculated as in the Jacobi method above. Then in

Xy s
the calculation of xz(k+l) it would be possible to substitute xl(k+l) for

the xl(k) which is used in the Jacobi method. If the sequence of iterates

* k
were converging and xl(k+1) were closer to X than xl( ), this substitution

*
might result in a value closer to x2c than the value that would be calculated
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(k+1) (k+1)
1 and x2
(k+1)
3 1 2 and x,

, and so on. This method, which replaces x

using the Jacobi method. Similarly, x would be used to

(k+l); X (k+l), X (k+l), would be used to calculate

(k)
1

calculate x

x (k+1)
4

by xi(k+1)

in the Jacobi method
as soon as eagch new element of the new iterate becomes available,
is known as the Gauss-Seidel method. For the linear equation system AX = B,

the Gauss-Seldel method is algebraically expressed as

(1) _ - (k)
Xy = (b1 ij? aljxj )/all
(k+1) _ (k+1) _ (k)
X2 = by may% Y23 %25%y /%2
() ) (ltl) (k)
Xy = (by Zji(i—l)aijxj 3>(1+1) 157 /244
X = (b, iﬁ(n—l)anjxj )/ann

As a result of this rapid incorporation of '"new information" the
Gauss—Seidel method may converge in fewer iterations than the Jacobi

(k+1)

method. However, if some element of X is a poor estimate of the

corresponding element of the solution vector, this error will be incorporated
in the subsequent elements of X(k+l). For this reason, the Gauss-Seidel
method is more sensitive to a poor starting guess and may fall to converge

in a problem that could be solved using the Jacobi method. Furthermore,

the order of the equations, which is of no importance in the Jacobi method,
may strongly affect the Gauss-Seidel method. Some orders may produce

convergence, others may not. Strategies for ordering the equations in a

Gauss-Seidel method are given in Section D.
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The Jacobi and Gauss-Seidel methods are easily extended to nonlinear
systems of the form F(X) = 0, where X is an n x 1 vector of variables, and
F denotes the system of n equations in n unknowns, fi(xl’ Xps eoe s xn) = Q.

The only modifications required are due to the fact that in transforming the

system F(X) = 0 into the form X(k+l) = G(X(k)) of the iterative methods, the
equations
(k+1) _ (k) (k) (k) (k)
X = gi(xl soeee s Xy 0T K0Ty eee 5 X )

of the Jacobi method, and the equations

x.(k+l) = g.(x

(k+1)
i i1 i

(k+1) (k) (k)
cee s Xy s XyigqTe eee s X )

of the Gauss-Seidel method become nonlinear. It 1s thus impossible to state
a general formula for transforming the system F(X) = 0 to the form
X(k+l) = G(X(k)),that is required for iteration. 1In this case the user

himself must supply an algebraic statement of the model with each endogenous

variable appearing exactly once on the left-hand side of an equation.!'--[L

Transforming the system to the Jacobi or Gauss-Seidel iterative form
requires more of the user than algebraic skill, however, In both the
linear and nonlinear cases these methods are very sensitive to the pattern

of normalization chosen by the user. Normalization refers to the rewriting

of an equatilon so that one of its endogenous variables is isolated on the
left—-hand side of the equal sign. The pattern of normalization of a system

of equations refers to the choice of which equation to use to solve for

each endogenous variable so that each endogenous variable appears exactly

once on the left-hand side of an equation. (Users are cautioned that equations
must be normalized independently. No expressions for any variable in the
equation can be substituted in from other equations.) According to the

previous discussion, in linear equation systems the pattern of normalization
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is specified by the rule of solving the ith equation for the ith variable.
The user controls the pattern of normalization by his choice of the ordering
of the equations, 1, 2, ... , n, that appear in the system AX = B, 1In the
nonlinear case the user's control is even more apparent since he must also
perform the inversion of the equations himself. 1In both cases, however,

the iterative methods may converge for some patterns of normalization and
diverge for others. For instance, in solving the model F(X) = 0, the

normalization

_ _
g f1 (x2, Xgs cee s xn) = gl(XZ’ Xgs oee s xn)
- 1 -
X, = f2 (xl, Xgs wee s xn) = gz(xl, Xgs «oe s xn)
x = f_—1 (x,, x X
= ’ 3 cce - =
n n 1 2 n-1) = gn(xl, Xps see s xn—l)’

where f;l denotes the result of normalizing the ith equation of the system

F(X) = 0 and 84 refers to the ith function component of the iterative

method X(k+l) = G(X(k)), may converge. At the same time the alternative
normalization

x, = f—l (Ros Koy soe 5 X ) = 88 (Ko Xos ene 5 X )

1 n 2 73 N SO v A e > “n
= 1 =

fz = fn—l (Xl’ Xgp eev 5 X ) = ggz(xl, Xgs e Xn)

;"f_l ) = ( )

x = £ (xl,.xz, cee s X _g) = ogg (Xys Xy e X g

where the 884 denotes the iterative function components of the alternative

iterative method X(k+l) = GG(X(k)), may also converge. On the other hand,

one or both of these normalizations may lead to divergence. A normalization

which leads to convergence of the Jacobl or Gauss-Seidel method may be
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difficult to determine. The problem of choosing an appropriate pattern of

normalization is illustrated in the examples in Section C.

B. Convergence and Normalization in a Simple Model.

Figure 4 depicts the following model of price and quantity marketed of
a commodity:

Supply q=2+2p

]

Demand q 12 - 3p
There are two equations in two endogenous variables, quantity (q) and price (p).
Simple algebra reveals that the solution is ¢ = 6, p = 2, represented by
point A in Figure 4.

To discover this solution by Gauss-Seidel iteration, one of the equations
must first be rewritten to express p as a function of q. In other words,
one of the equations must be normalized on p. There are two possible
patterns of normalization, one with the demand equation normalized on p and
the supply equation normalized on q and the other vice versa. After labeling
the variables with time superscripts to distinguish new iterates from old
iterates, the two patternslé/ can be written as follows:

1. (The Clockwise Pattern or ''Cobweb Model')
() (t-1)

Supply q = 2 + 2p

Demand p(t) = (:%)q(t) + 4

2. (The Counter=clockwise Pattern)

Supply p(t) - (%Dq(t"l) -1

Demand q(t) =12 - 3p(t).
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Supply = 2 + 2p

Demand = 12 ~ 3p

Figure 4

10

11

12

«OV
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Pattern 1, as indicated, corresponds to what agricultural economists call

the cobweb model. Certain causal links between supply and demand are implicit
in the pattern of normalization of the cobweb model. The supply function
determines the quantity produced (based on a predetermined price) and the
demand function determines the price at which the commodity 1s sold (based on
a predetermined quantity). Graphically, the Gauss-Seidel method in the

cobweb model moves vertically from S to D and horizontally from D to §,

resulting in the clockwise cobweb shown in Figure 5. Note that in this
problem the cobweb pattern of normalization yields a sequence of price-
quantity guesses which tend to converge to the solution at point A.

In pattern 2, the supply function determines price (based on predetermined
quantity) and the demand function determines quantity (based on predetermined

price). Progression is horizontal from S to D and vertical from D to S,

resulting in the counterclockwise movement and divergent price quantity
sequence shown in Figure 6. Gauss-Seidel iteration would solve the model
under the first pattern of normalization but not under the second. Another
analogy from economics would be a model with one equilibrium solution and
two alternative adjustment processes, one which is stabilizing and one
which is destabilizing.

Normalization in the linear two-equation case is examined in more mathe-
matical detail in Appendix B. For more equations or nonlinear models it is
increasingly difficult to preclsely determine convergent normalizations, and
sensitivity to normalization is a serious drawback of the Gauss-Seidel and
Jacobi methods. Suggestions on how to normalize models and how to reduce
the sensitivity of the methods to the pattern of normalization are discussed

in the next section.
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C. Implementing the Jacobi and Gauss-Seidel Methods

Jacobl and Gauss-Seidel methods are mathematically similar, and much
of the same advice applies to both of them. Most of the suggestions below
are derived from the experience of economists in USDA's Economic Research
Service, who have been using Jacobi and Gauss~Seildel methods to solve
agricultural subsector models with up to 100 linear and nonlinear simultaneous
equations. A summary of thelr conclusions appears in Lizf.

In work on similar agricultural subsector models (feed grains in
particular) at the Department of Agricultural and Applied Economics,
University of Minnesota, researchers have observed a significant advantage
of the Jacobi method over the Gauss-Seidel in achieving convergence. While
most of the following suggestions apply to either method, 1t is thus
recommended that when the Gauss-Seldel method diverges the researcher should
try the Jacobil method before reordering or renormalizing the equations in
hopes of obtaining a Gauss-Seidel solution. Only where the same model 1s
to be solved a great many times may the slightly more rapid rate of conver-
gence of the Gauss-Seldel method justify the effort needed to reformulate
the model to obtain Gauss-Seidel convergence.

1. Picking an initial guess.--The user of any iterative method must

use whatever evidence is available to help select an accurate initial guess.

If the model to be solved is meant to simulate an actual economy for which

historical data are availlable on the endogenous variables, the values of those
historical

variables that prevailed in a relevant/time period frequently constitute a

good initial guess. However derived, an initial guess can often be improved

by insuring that the values chosen satisfy all linear identities (e.g., resource

constraints) in the model.
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2. Program debugging.--An advantage of the Jacobi method 1s that it

can be used to check for errors in the computer program. This is accomplished
by stopping the method after ome iteration and comparing the first iterate
calculated by the computer with the first iterate expected by the user.
Deviations indicate a programming error. In models that have been estimated
using regression analysis and for which the initial guess is set equal to

the observed values for a given time period, the residual between the first
iterate and the initial guess must be identical to the residual in the
regression on which the equation is based.

3. Ordering of the equations.--As pointed out previously, the order of

equations does not affect the Jacobi method but greatly affects the Gauss-
Seidel. Heien, Mathews, and Womack Zih, P. 227 suggest ordering the equations
as recursively as possible. This can be accomplished by writing the relation-
ship between the endogenous variables in matrix form, using the number 1

to indicate that a varilable appears in a certain equation and the number 0

to indicate that it does not. The example presented in their article would

be written as in Figure 7. The first row, for instance, indicates that the

first equation contains X, and Xy and that it has been normalized with X,

appearing on the left as a function of x

1

Figure 7. Interdependence Array

; Variables
Equation : Xy : X, Xq X, Xg
Xy 1 1
Xg 1 1
X3 1 1 1
) 1 1

X1 f 1 1 1
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The suggested strategy is to reorder the rows until the most nearly lower
triangular matrix is found. The order which yields the matrix with fewest
elements above the main diagonal is the first order to try when implementing
the Gauss-Seidel method.

This procedure can be tedious for large models or models that are
frequently modified. Dutch macroeconomists have developed a similar
procedure which has the advantage of being easily carried out on a computer.
A computer program for performing this ordering scheme appears in Appendix C.

If the first ordering does not converge, other nearly triangular orderings
may be tried. If convergence is still not achieved, it may be necessary to
segregate the full model into several smaller systems. Further attention,
including renormalization of some equations, can then be given to those
sub-systems that continue to diverge. Variables may also be ''sequentially
exogenized" (replaced, one at a time, by constants) to find the equations
which are causing divergence.

4. Normalization.--One requirement of both the Jacobi and Gauss-Seidel

method is that the model be written so that each endogenous variable appears
on the left side of the equality sign exactly once. This can be doen in as
many as n! ways for an n x n system, and often there are few a priori criteria
for selecting a normalization that will yield convergence under the Jacobi

or Gauss-Seidel method. Techniques for finding a convergent normalization
range from the very sophisticated to trial~and-error methods such as
sequentlally exogenizing variables or segregating the model iInto submodels

and confining attention to only those submodels that diverge. In the case

of a model that has been econometrically estimated, Heien, Mathews, and

Womack recommend that the dependent variable in each equation should be the



-27 -

same as the variable that was dependent when the parameters were estimated.
Their recommendation may be generalized by urging that the pattern of
normalization reflect, as much as possible, the pattern of causality believed
to prevall in the market or markets being studied. USDA experience, however,
indicates that the problem of normalization in the simple Jacobi or Gauss-
Seidel method can often be circumvented by the introduction of a dampening

factor.

5. Dampening factors.--The use of dampening factors makes the new

iterate a welghted average of the previous iterate and the iterate that
would have been chosen by the undampened method. In effect, the direction
of movement is the same as in the undampened method, but the dampening
factor controls how far along that direction the new iterate should lie.
When the dampening factor is less than one, this conservative use of new infor-
mation "helps prevent a divergent arrangement of equations from dominating
the system. A dampening factor in effect allows other equations more
rounds to converge and tends to pull the divergent arrangement back toward
convergence." [i?, p. 74Z7l

Dampened versions of both the Gauss~Seidel and Jacobi methods are
easily constructed. The dampened version of the Gauss-Seidel is frequently

referred to as the successive overrelaxation method (SOR) 1;7, pP. 2L§7,

and the dampening factor 1in this case 1s called the relaxation parameter.

Letting subscripts SOR and GS denote SOR and Gauss-Seidel iterates respec-

(k+1) (k) (k+1)

tively, the SOR method can be written XSOR = (1 - w) X + (w) XGS s

where w is the dampening or relaxation parameter. If w = 1, the SOR
method becomes identical to the Gauss-Seidel. Similarly, the dampened version

of the Jacobi can be written X§§+1) = (1 - w) X(k) + (w) X§k+l), where
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subscripts DJ and J stand for the dampened Jacobi and Jacobi methods,
respectively.

The effect of a dampening factor on an iterative method 1s to alter
the rate of convergence. Desplte their name, dampening factors do not
always slow down the rate of convergence. They may speed it up or even
achleve convergence In cases where the undampened method diverged. It
can be shown that in linear systems only dampening factors between 0 and 2
can produce convergence of the Gausgs-Seidel method, and in certaln restricted
cases 1t is possible to calculate the exact dampening factor that would
maximizghphe rate of convergence [4, p. 193].

In most cases, no attempt is made to select a priori an optimal dampening
factor. Researchers in USDA and at the Department of Agricultural and
Applied Economics of the University of Minnesota have used the Jacobi method
with a dampening factor of 0.25 applied to each equation., This puts 75 percent
of the weight in each 1teration on the previous iterate, but results in a
method of great stability and moderate cost. Experience with the method has
been limited to fairly small (15 to 100 equations) and highly linear models,
but convergence has been generally obtained without reordering or renormalizing

the equations.

6. Variable dampening factors.--While USDA researchers have been

successful using the same dampening factor (0.25) for each equation and

each 1teration, the dampening factor may be varied with each equation or

iteration. Selecting a different but constant dampening factor for each

equation is simple to program and has the advantage of allowing special

treatment of segments of the model thought to be causing divergence. A
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simple example of such a strategy, which illustrates some of the properties

of all dampened iterative methods, can again be taken from agricultural
economics. The combination of the cobweb model with the partial adjustment

of supply hypothesis gives a price determination model exactly equivalent

to a Gauss—Seidel method with one dampened equation. Consider this modification
of the previous model of supply and demand:

(t)
demand q(t) =8 - 2p(t), or p(t) = 4 > -8

* -
desired supply q(t) = ~4 + 4P(t D

supply actually _
achieved given q(t) = q(t 1)
limitations on

production adjustments

()% _ =D (e-1) sq(t)*

+ 6(q ) = (1-8)q

As Figure 8 shows, the undampened Gauss—-Seidel method, which is equivalent
to the simple cobweb model, would diverge. The introduction of a dampening
factor of 0.5 on the supply equation, which is equivalent to a cobweb model
with partial adjustment of supply, yields a convergent method.

Summary.--Jacobi and Gauss-Seidel methods are simple to program and
require relatively little computer storage space. With the addition of
dampening factors the Jacobi method especially has proven to converge quite
regularly and at moderate cost. The Jacobl method also facilitates program
and model debugging. The simplicity and dependability of these methods
argue for their continued popularity with economists.

This completes the discussion of two methods originally developed to
solve linear systems and subsequently successfully applied to nonlinear

systems as well. In the next section two methods intended primarily for

nonlinear systems are introduced.
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Part III: Newton-based Methods

A. Explanation of the Methods

The Jacobl and Gauss-Seidel methods are among the least complicated

(D) | oz 46

iterative methods. In both, the iterative function X
derived directly from a rearrangement of the equations of the system F(X) = 0.
The methods discussed in this section are more sophisticated in that
two steps are employed. First, the system of equations F(X) = 0 is replaced

by a system of linear approximating functions. Then the linear system is

() N

transformed to the form X = G(X
The first method discussed, approximation by parallel chords, is used
more commonly in pedagogy than research because it is the simplest example
of a linear approximation technique. Once the general concepts of linear
approximation techniques have been introduced with reference to the parallel
chord method, discussion will pass to the more complex but also more useful

methods of Newton and Brown.

1. Parallel Chord Methods.--Consider the problem of finding a zero for

a nonlinear function such as the one depicted in Figure 9. The sequence of

¢ (5

iterates x s e shown in the graph was generated by a parallel

chord method. The basic idea of a parallel chord method for finding the

zeros of an implicit function is to replace the function, f(x), by a linear

x(k)).

approximation, %(X), that passes through the current function value , f(

The exact zero of the linear approximating function (i.e., the value of x that

satisfles %2(x) = 0) becomes the new iterate, x(k+l). The linear approximating

k
function can be written as z(k)(x) = a(x - x(k)) + f(x( )), for some a # Q.

(k-+1) (eH) | ()

Setting ch)(x) = 0 and solving for x B x glves x - (a_l) f(x(k)).

For n x n systems of nonlinear implicit functions, F(X) = 0, the parallel
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chord method is generalized by taking linear approximations (hyperplanes

that pass through F(X)) of all n functions and calculating the zeros of

the resulting system of linear equations (intersection of the n approximating
planes and the plane F(X) = 0). These zeros become the new iterate. The

system of linear approximating functions can be written as

Rl(k)(xl,...,xn) = all(xl—x{k)) + alZ(XZ (k)) + ...+ aln(xn—xik)) + fl(xik),...x
lz(k)(xl,...,xn) = aZl(x ( )) + a 22(x2 (k)) + ... + azn(xnuxﬁk)) + fz(xik),

l'xl(k)) + anz(x2 (k)) + ... +a (x (k)) + £ (x (k)

(k) _
(x X)) = a nn “n ¥n

n 1" °"n nl

(x

In matrix notation this becomes

L(k) X) = A(X—X(k)) + F(X(k)),

where A is the n x n matrix (aij)’ and X and X(k) are the n x 1 vectors (Xi)
and (xi(k)), respectively. Solving L(k) (X) =0 for X = X(k+l) gives X<k+l)

Linear but non-parallel chord methods result when the matrix A is
allowed to vary with each iteration. Then L(k)(X) = A(k)(X - X(k)) + F(X(k)).
Many such linearization methods have been devised and implemented by numerical
analysts. They differ from one another in their choice of linear approximating
functions and in the methods used to calculate the zeros of the resulting
system of linear equations. The two linearization methods discussed below

are Newton's method and Brown's method. The Newton, or Newton-Raphson,

method is g well-known and wildely used technique. It has been modified in

™
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many ways to produce a variety of '"Newton-based" algorithms. One of these
modifications is Brown's method, which substantially reduces computer storage
requirements and has been shown to be quite reliable in solving economic

models. Familiarity with either of these methods will introduce the applied

econcmist to a large class of valuable iterative methods.lé/

(k)

2. Newton's and Brown's Methods.--In Newton's method the matrix A

is updated for each iteration. The linear approximations are

(k)

the tangents to the functions at the point F(X ). Consider the sequence
of Newton iterates for a one-dimensional problem as shown in Figure 10. The
value x(o) is supplied by the user and f(x(o)) is calculated. Then the

equation for the line tangent to f(x) at f(x(o)) is written,

y = £ + @=x®) - @),
The value of x that sets y = 0 is

(0) 1

. (0)
-— " f(x").

(L)

This value of x becomes x , and the process begins again. Thus, the one-

dimensional case is

(k+1) (k) 1 . (k)
X = x - — " f(x ).
f 1 (X (k))

The one-dimensional case is useful for i1llustrating some of the problems
of the Newton method and related techniques like Brown's method. Figure 11
below shows the case where f'(x(k)) = 0. TIn this situation the tangent line
does not intersect the x—axis and the Newton method is undefined. Figure 11b

(k)

shows that the tangent at some x may be a very poor approximation of f(x),

(k+1)

leading to a poor selection of the new iterate x and possibly causing
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divergence. Figure llc shows a special case 1in which Newton's method
neither converges nor diverges but rather cycles indefinitely between

two points. In Figure 11d the sequence of iterates becomes negative
before converging to the positive solution. Figure lle illustrates the
case when f(x) is not defined for all possible values of x. All of

these cases have counterparts in higher dimensions. 1In higher dimensions
there 1s not one function but n functions each with n first partial
derivatives. Each function can be approximated at a given point by

the hyperplane which is determined by its first partial derivatives at that

point, or

- (X(k)) " (x _ x(k)) (X(k)) " (x _ x(k)) (X(k)) ot (x x(k))ax (X(k))
f
- fz(x(k)) + (xl-x§k>)§% (x(k)) v (x,m xék))axz (x(k)) bever (xn-x§k>)-z~;,;% )

1o 2,0%0) + o) 28 (1) 4 (o 0y T 2 x) e (, x(k>> 2,
n Xl

of b
where 32; (x(k)) is the jth first partial derivative of the i’ equation of

J k k
the system F(X) = Q evaluated at the point X(k) = (Xl( >, x2( ), veey X .
These n tangent hyperplanes form an n x n system of linear equations that can

be expressed in terms of the Jacobian, J, of F(X) = 0, or
¥ = r(x8)y 4 gx () (x-x(k)y,

where
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of of
= «®) o oy L " (k)
of af of
O e I G 32 6
of of of
= (x5 o «®y L. - (x)y
Setting Y = 0 and solving for X to determine the new X(k+1) yieclds

ax8y )y~ e ®y = 5 ®)y (x), or
x(k'%l): X(k) -~ J"l (x(k>) F(x(k))}_?./

Thus X(k+l) is the intersection of the n tangent hyperplanes and the
hyperplane F(X) = 0.

Each Newton iteration requires the calculation of the Jacobian of
F(X) = 0 at the point F(X(k)) and the solution of the resulting system of
linear equations. Both of these processes are complicated when compared to
a Jacobi or Gauss-Seidel iteration and require substantially more computer
time and storage space per iteration. Frequently the derivatives are not
explicitly evaluated, it being easler to approximate the first partial

derivatives at F(X(k)) by difference quotients like

g;% (X(k)) = (%) Z?i(x§k): veuy xg%i, x§k)+ h, x§i%, veey xgk)) - fi(xﬁk), cees
J

X (k))_7
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"small" positive number called a "dis-

where i, j= 1, «¢e., n and h is a
cretigation parameter.”" In this way the function is evaluated at n2 points
in the neighborhood of X(k) and the average rate of change between F(X(k))

and these n2 other points on F(X) determines the n2 elements of the approxi-

(k)).

mately calculated Jacobian, J(X There are variants to this technique,
but the idea is always to avoid explicit calculation of the first partial
derivatives. Because these methods can be included in a computer program
for implementing a Newton-based method, it is not necessary for the user of
the program to supply algebraic expressions for the partial derivatives of
the system F(X) = 0. Newton methods employing these approximate derivatives
are referred to as "discretized” Newton methods, but the distinction between

exact and discretized Newton methods will not be maintained hereafter in

this paper.,

Once the Jacobian has been calculated there remains the problem of
solving the resulting system of linear equations. A very serious difficulty
arises when the Jacobian is singular. As in the one-dimensional case where
f'(x(k)) = 0, singularity of the Jacobian implies that no solution can be

found to the system of linear equations,
0= r(x®)y 4 5x®)y xx®)y,

Newton's method is then undefined. This problem is discussed in more detail
in the next section.

When the Jacobian is nonsingular a secondary algorithm must be supplied
to solve the system of linear equations. Matrix inversion techniques could
be used but commonly a secondary iterative method, such as the Gauss-Seidel
or Jacobi, 1s used. This further increases the number of calculations in

each Newton iteration., Offsetting the complexity of each Newton iteration
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is the fact that Newton-based methods typically require fewer iterations
to achieve convergence than either the Jacobi or Gauss-Seidel methods. In
fact, in the neighborhood of a solution X*, Newton-based methods typically
add two significant digits to the iterate in each iteration (this is referred
to as "quadratic convergence"), while the Jacobi or Gauss-Seldel add no

more than one significant digit per iteration (linear convergence) when

X(k) is near X*.

Brown's method is a Newton-based method that achieves some savings in
computer storage space without sacrificing the rapid rate of convergence per
iteration associated with the Newton method. The strategy of the method is
again to approximate functions by tangent hyperplanes, but the resulting
linear equations are treated sequentially rather than simultaneously. The

method proceeds as follows. The first equation of the model, fl(X), is

18
approximated by the tangent hyperplane”’! through the polint fl(X(k)), that

is, by

yim £ D) G-y 2 ) 4 () £, ) e oy £ (O,

where fij is an approximation of the jth first partial derivative of the ith

equation. The intersection of this tangent plane with the hyperplane F(X) = 0
is expressed by setting vy = 0. Then, the variable x5 with the first partial
derivative of largest magnitude (fli > flj' for all j#i) is expressed as a

linear function of the other xj's, F#i, or

xi = Li(xl, x2, cesy xi~l, Xi+1, veey xn)-
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Normalizing on the variable with first partial derivative of largest magnitude
has two Jjustifications. First, it prevents division by zero in most cases
[ 2 1. Secondly, it reduces the rounding errors introduced in computer cal-
culations when division by a small number occurs [ 2 1.

Next, the second equation of the original system F(X) = O, fz(xl,...,xn),
is rewritten with the function L.l substituting for X5 . It thus becomes a
function of n-1 variables.

fz(xl, ey xn) = hz(xl, Ky wees X3 19 1&’ Xipqr o0 xn).

As before, this nonlinear function h2 is replaced by a linear approximation,
which in this case is the n-1 dimensional hyperplane formed by the n-1 first
partial derivatives of h2. In order to derive another linear expression for
some xj, j%i, this linear expression is again set to zero and solved for the

xj with first partial derivative of largest magnitude, so that

X5 o= Lj(xl’ veer Xg_qs Do Xgigs eees Xgq0 Xspqa eee xn).
The expression Lj is then substituted back into Li’ reducing both Li and Lj

to linear fﬁnctions of n-2 variables. Finally, the new Li and Lj are then
substituted into fB(xl’ Xos ...xn), and the process continues. Note that
at each stage the new expressions Ik’ etc., are substituted into the previous
linearization, Li, Lj’ etc. Thus both the linear approximating functions and
the remaining equations of the system are reduced in dimension at each step.
This is what allows for the saving of computer storage space.

The method proceeds through each equation one by oﬁe until the last
equation 1is expressed as a function of one variable, x5, and n-1 lineariza-
tions, L

L L

L L£+2, ‘o Ln. This function is linearized, set

1, 2, ee

equal to zero, and an exact numerlcal value for x§k+l) determined. This
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value is substituted back into the rn~1 one-dimensional lincar expressions,

Li' i#%, and new values are calculated for

k+1 ktl k+1 k+1
0 D) ) ),

The following example explicitly illustrates these procedures:

Consider F(X) = 0, where F is the 3 x 3 system of simultaneous equations.
fl(X) = fl(xl, Xp x3) = 0
fz(X) = fz(xl, X, x3) =0
fB(X) = f3(xl, X x3) =0

Given an iterate X(k)z (xl(k), xz(k), xj(k)), solution by Brown's method

proceeds as follows.
(1) Approximate fl(X) by a tangent plane through fl(X(k)),

0= £, x5y 4 (x, x(k)) (y< D)+ (el 3~i x®y (x, x(k))
2

RS ON

ax3

(2) Assuming, for example, that

9 f

L x()y,

> ax

of
k
5-1 (x| (x(k)) and = (x( ))
solve for x2 in terms of xl and x3.

//rf (X(k)) N x(k) ( (k)) . ( ) 1 (X(k)) 5 x(k) (X(k)) /7

of k)
3§i (x))



45~

E)fl <00, .
aX3 Ml (X(k))
-(xy) ()
1y (k) 1 (x(x)
5 @) s ()

Setting L, = x, and replacing constant terms by letters from the beginning

2 2
of the alphabet ylelds

(3) Substitute L2 for X, in fz(X(k)) and repeat the steps above.

(a) substitution
6, 289, X0 _ o (9, 1,09
0, 1,

(b) approximation--let ( ) denote (x ) y X

(x)
3 ).

0=h, ( )+ (xx{) axz( )+ Gy ‘k>> £

L
(x,-x ) 3_.5( ) e ¢ >+<x—x<k>> ¢ ) 2 20

+

#

sh 3h 7
ny () G /5200 -3 FE >/

(x3-x§k>)-/ ()-32 %( )/

Replacing constant terms by letters from the middle of the alphabet

-+

yields
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0= g+ (xl—x§k>) m + (x3—x§k)) P

for example,
(c) Assumg/m > p and solve for x; in terms of X3 call it L.

I N ¢ SR p (k) _ P
Ll = mt X m <3 * I = h*3

where r = — + 2 (k)
m *3

(4) Substitute L, for x; in L,

(5) Substitute L; and L, in fB(X(k)) and solve for %3 by the same

procedure as above.

(a) substitution

(k)
x5 )

f3(x§k), XgK), ng)) = hB(Ll’ Lz’

(v) approximation--let ( ) denote (Ll° L, xgk))'

k (k) !
o=n3(>+(x3()) )+ Gl 22 (>3x3<>

v Gagnl) 522 2 ( ) 3( )=y () + Gegxd)

sh dh a oh
+/§;§( -2 2 -3/

2

Replacing constant terms by letters of the alphabet yields

0= s+ (x (k)) t

373



~47-

(c) Solve for x3, call it x3(k+l)
- " (k) _ (k1)
x3 =T Xj B x3
(6) Substitute x3(k+1) for x5 in I, and L, to determine xl(k+l) and x2(k+l)

g QD By (et)

P

1

w

- _b _a (k+1) ¢ b P
L 3 Ll g X30 50 x, =3- E—(r - (E? X,

, _c% (k+1))_(%) L (kD)

3

_ (S . bry o o(bp _ay , (k1)
- (d da ) + (dm d.) XB .
This completes an iteration of Brown's method from X(k) to X(k+l) on the 3 x 3

simultaneous system F(X) = 0.

Brown's method reduces the amount of storage space and number of
calculations per iteration by a factor of (n2+3n/2n2+2n) [ 2 ] compared
to Newton's method. This is a significant savings in large systems but

still far exceeds the complexity per iteration typical of Jacobi or Gauss-

Seildel methods.’

F. Implementing the Newton and Brown Methods

Objections frequently expressed against Newton-based methods are
that they require large amounts of computer storage and become undefined
when the Jacobian is singular at some iterate [ 12 ]. New variants, such as

Brown's method, achieve some savings in storage space, but all methods

involving linearization by first partial derivatives will require much

more storage space than Jacobi or Gauss-Seidel methods. However, given
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the capacity of modern computers, the storage requirements of Newton-based
methods are not a serious obstacle to theif use on most economic models.
The problem of sigularity is also rarely of practical concern. The
following suggestions should help achieve convergence with the Newton or
Brown method.

1. Picking an initial guess. The recommendations are identical

to those for the Gauss-Seidel and Jacobi methods (see p. 24).

2. Ordering and normalization of equations. In Newton's method the

linear approximating functions are generated and solved simultaneously.
Barring divergence of the secondary algorithm used to solve the approxi-
mating linear system, ordering and normalization of equations is not crucial
to the convergence of Newton's method.

In Brown's method, however, the equations are linearized one by one,
as explained above. Because of the sequential use of the equations it is
destrable to 1list the "most linear" equations first. This insures that
the initial linear approximations, which will be passed on by substitution
to all the remalning equations, will be reasonably accurate. Relative
linearity 1is determined by the degree of the highest polynomial term in
the equation.ig/ For example, the equation xi-+ 3xg+x5= 0 is more linear
than and would be listed before the equation xg = 0.

Though a good rule of thumb, ordering the equations by decreasing
linearity does not guarantee an optimal rate of convergence for Brown's method
in all cases. A superior ordering, when circumstances permit, is to arrange
the equations so that the Jacoblan matrix is dominant diagonal (i.e., so
that J;5 > I J.., i=1, ..., n).

441 H

3. Singularly of the Jacoblan.--0ften considered a major objection

to a Newton-based method,gg/ singularity is neither a common nor an
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insurmountable difficulty in practice.gl/ The authors have never encountered
it while using Brown's method to solve a simultaneous equation economic
model, and other usersgz! of Brown's and Newton's methods have privately
communicated their similar experiences. Singularity may be more troublesome
in other applicationsgé/, however. When singularity 1is encountered,
procedures are avallable for selecting an alternative iterate. The variant

of Brown's method in the IMSL library contains one procedure. Another has

been developed by David M. Gay [ 9 1.

4. Dampening. Dampening in Newton's or Brown's method is similar

to dampening in Jacobi or Gauss~Seidel methods. The new iterate,

x(k+l), is a weighted average of the old iterate, x(k), and the iterate

that would have been chosen by the original, undampened

method. In the dampened Newton's method, for example, Xé§+l)= GX(k) +

(l—G)XN(k+l)

the dampened Newton's method and ordinary Newton's method, respectively.

, where subscripts DN and N indicate the iterates chosen by

Since XN(k+l) = X(k) - J—l(X(k))F(X(k)), the dampened Newton's method is

(H) | o ( M _ 1 @y p @y -
Rl - " hrath) -

X(k) + 5J~1(X(k))F(X(k)). Variable dampening factors, where § is a function

often rewritten as XD §X ) + (1-8)[X
of F(X(k)), have also been used [10, pp. 46-47].

The effect of dampening is to choose a new iterate in the direction
picked by the undampened method but at a distance controlled by the
dampening factor. Usually O < § < 1 and the new iterate 18 closer to

X(k) than the new iterate that would be chosen by the undampened
method. This '"conservative" approach can be very useful for solving systems
of equations which are "well-behaved" on one side of a root but not on the

other. Figure 12a shows a function which is positively sloped for all X

greater than the root X* but first positively and then negatively sloped
D) (2)

for X < X*, Beginning at X , the undampened Newton's method chooses X
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Figure 12a  Without Dampening
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(2)

in the correct direction (leftward). X , however, lies in the portion
of X-axis where F(X) is negatively sloped. New iterates will be chosen
further and further to the left of X*, The problem in this case seems

(2)

to arise when the cholce of X overshoots the portion of the x-axis
where the undampened Newton's method chooses the correct direction.

The same example is repeated in Figure 12b except that a dampening factor
1s used to limit the changes in X(k). Convergence 1s achieved because
all the successive iterates lile within the regilon about X* where F(X) is
smooth and positively sloped. Dampening factors can also be useful

when F(X) 1is only defined to one side of X* or in some reglon around X*,

The logarithmic function shown In Figure lle 1s a good example.



-50~

Part IV. Concluding Remarks

A. General Considerations

Newton's method, Brown's method, and the Gauss—-Seidel and Jacobi
methods can be adapted to provide solutions to most economic models. This
may be more difficult for larger models, as the number of ways to order
or normalize the equations increases rapidly. For thils reason it is
sometimes necessary to initially solve the model in separate blocks
before applying the algorithm to the entire model. It is advisable to begin
using iteration in the early stages of the model building process.
Experience gained at the outset, when models are typically smaller,
simpler, and easier to solve, may help considerably in preparing the

final model for iterative solution.

B. Selecting an Iterative Method

The four iterative methods described in Parts IT and ITII are all
suitable for solving economic models composed of n equations in n unknowns.
Many other iterative methodszg/ could also be used. There is no single
best method to recommend, and much practical information about current
iterative methods is only available by word of mouth. Time can be saved
by asking for help before writing and running a program. Advice should

be sought from a computer sclentist or numerical analyst 1f one or

several models must be solved repeatedly, and especially if the models
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In many cases one of the four methods described above will be
adequate to solve the economic model. Experience with nonlinear
simultaneous—equation economic models at the Department of Agricultural
and Applied Economics of the University of Minnesota supports the
following conclusions:

1. The dampened Jacobl and dampened Gauss—Seidel methods

are more likely to converge than the corresponding
undampened methods.

2. The dampened Jacobl method solves economic models more

regularly than the dampened Gauss-Seidel method.

3. The dampened Jacobl method is especially suited to solving

simultaneous—equation econometric models.

4, The dampened Jacobi method is very competitive with Brown's

or Newton's method. In a series of tests on three simultaneous
equation economic models, the dampened Jacobi method solved

the models at least as frequently as Brown's method and
required from slightly more to significantly fewer seconds of
computer time. However, in one case the Jacobi method failed
to solve the model as initially normalized and had to be
renormalized [21, pp. 52-59].

The dampened Jacobl method, Brown's method, and Newton's method are
all currently being used to solve simultaneous—-equation economic models
and can be recommended to other researchers for this purpose. Use of the
methods for other purposes (e.g., solving first-order conditions of
maximization of likelihood functions) i1s not ruled out, but for many other
problems there exist distinct types of competing solution procedures

(e.g., algorithms for constrained optimization).
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APPENDIX A: Computer Programs for Implementing Brown's Method and
the Dampened Jacobi method.

Fortran programs used to implement Brown's method and the dampened
Jacobl method on a specific model are presented here to clarify some
of the practical aspects of using these techniques. The model used is
a modified version of the l4d-equation dualistic growth model developed
by Kelly, Williamson, and Cheetam [15; pp. 22-57]. The model consists

of the following set of equations:
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Production Relationships
((o,- 1)/a,)  ((oy= 1)/0) (V0. /(o — 1))
1) Ql - Al[Kl 1 1 + L1 1 1 ] 1"1°V%1

(Co- 1)/a.) (Co,~ 1)/0,) (V,0,/(c,~ 1))
2) q, = A,lK, 2 A L, 2 27y V272 02

Factor Demands
(o, - /o) (1/o) [ (o, (V;-1)+1)/V;0,]

3) w=P"'V A L1 Q1

(o, - 1)/V,0,) (-1/0,) [ (o, (v, -1)+1)/V,o,]
b wev, A 2 2727 . L, 27 . 0, 242 22

((o,- 1)/V,0.) (-1/0,) [ (o, (V.-1)+1)/V.o0,]
5y r=P°V. A 1 117 . K, 1’ . o 1''1 171

((o,~1)/V.0,) (-1/0,) [(o, (V. ~-1)+1)/V,0,]
o v, a2 T T 2%2

Commodity Demands

7) Dy, = (Ll/P) "Bll W -6

8) D (L2/P) " B, & - G)

12

9) D Ll(G + le(w - G))

21

10) D22 = LZ(G + B22(w - G))

Investment

11) I=(r - C - XM)/P



12)

13)

14)

15)

6)

7)
3)

4)

1)

2)

5)

8)

9)

10)
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Full Employment

C =X +K,

L=1 +1L,

Market Balance
+D,, + I

Q =Dy; Dy

Q) = Dyy + Dyye
The variables are defined as follows:
Endogenous

Q1 = output in the first (industrial) sector

Q? = output in the second (agricultural) sector

L. = laborers employed In the first sector

L, = laborers employed in the second sector

Kl = capital employed in the first sector

K, = capital employed in the second sector

P = price of industrial goods in terms of agricultural goods
w = returns (wages) to a unit of labor

r = returns (rent) to a unit of capital

I = investment, the amount of Q1 bought for other than consumption purposes



57~

I

11) D the amount of Ql consumed by laborers In the industrial sector

1l

12) D12 = the amount of Ql consumed by laborers in the agricultural sector

13) D21 = the amount of Q2 consumed by laborers in the industrial sector

14) D22 = the amount of Q2 consumed by labors in the agricultural sector.

Exogenous, or Predetermined
C = total amount of capital available
L = total amount of labor availlable
Vl,V2 = the degree of homogeneity in the constant elasticlty of substitution
(CES) production functions for Ql and Q2

ag,,0, = the elasticity of substitution of labor for capital in the CES

1’72
production functions for Ql and QZ'

G = the minimum or subsistence amount of food which each laborer must
consume to sustain life

XM = the aggregate amount of food necessary to sustain the owners of
capital

Bll = the proportion of discretionary income (income remaining after
satisfaction of the subsistence food consumption requirement)
spent on industrial goods by industrial laborers.

312 = the proportion of discretionary income spent on industrial goods
by agricultural laborers.

B21 = the proportion of discretionary income spent on agricultural goods
by industrial laborers

B22 = the proportion of discretionary income spent on agricultural

goods by agricultural laborers.
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Finally the values assigned to the exogenous varlables were the

following:

Cc = 30.0
L = 100.0

V1 = Vé = 1.0

o, = 0.5
g, = 1.5

G = 0.648
™M = 0.0

Bll = 0.8

B, = 0.5

B 0.2

21

B22 = 0.5

The reader should note that the model as just stated is not in a form
compatible with any of the iterative methods discussed in this paper. The
model is not normalized in the form suitable for Jacobl or Gauss-Seidel
iteration; neither is it written in the implicit function form required
for Brown's or Newton's method. More fundamentally, the model has 15
equations but only 14 endogenous variables. If all 15 equations were
independent the model could be inconsistent and have no solution.
Economic theory must be used to discover a 'square'" model (one with an
equal number of equations and endogenous variables, an n x n system) having
the same solution as the original model. Otherwise, iterative techniques

cannot be applied. In the Kelley-Williamson-Cheetam model, "if we assume
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that there is at least one positive value for the terms of trade [P} that
will satisfy the equilibrium conditions, it is a simple matter to show that
equilibrium in the two factor markets and im eilther commodity market
necessarily implies equilibrium in the remaining commodity market. Thus,
one of the two commodity market equations can be ignored; the model then
becomes a system of fourteen equﬁtions and fourteen variables [15, ps 511."
Equation 15 will henceforth be omitted from the model without affecting

the solution values.

1. Programming Brown's Method.--Brown's method is availlable as a

library subroutine NONLIN on the University of Minnesota computer system.
A similar version 1s also available at many locations in the International
Mathematics and Statistics Library (IMSL), under the name ZSYSTM. To
implement either of these algorithms the user must first rewrite the model
in implicit function form. This can be accomplished by subtracting the
right4hand side of each equation from the left~hand side. The next step
is to set each implicit function equal to an arbitrary function name, "FF"
for example, and to lgbel the function with a statement number. The
market-balance equations of the Kelley-Williamson-Cheetam model would thus
be rewritten as follows:

12 FF = C -~ Kl —AKZ

13 FF = 1L - L1 - L2

14 FF=gQ -D, =D, I

However, the equations must also be written in matrix notation. Each
endogenous variable must be designated as an element of an n-unit vector,

which will be called X in this example. The elements of X will be as follows:



x(1) =
X(2) =
X(3) =
X(4) =
X(5) =
x(6) =
x(7) =
x(8) =
x(9) =

x(10)

il

it

Xx(11)

x(12) =

I

x(13)

Il

X(14)
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Dy

D12

Dy

D22.

The market balance equations, in final form, are written

12 FF

i

13 FF

14 FF

i

¢ - x(1) - x(2)
L~ X(3) - x(¥)
x(6) - x(11) -~ x(12) - x(10).

When all the functions have been rewritten in this form they are arranged

as in the funct

The remainder o

ion FF which appears in the program reproduced in Figure 10,

f the program follows directly from the instructions accom-

panying the NONLIN or ZSYSTM packages. In Figure 13 the required statements

which are probl

but cannot be o

em specific (i.e., must be changed for each different model

mitted) are underlined. Cards pertaining only to the
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l4~equation model are starred. Besides the function statements and the
data relating to exogenous parameters and the initial guess, there are only
five problem-specific Fortran statements (numbered 2, 48, 52, 2, and 7 in
the right-hand column).

The ordering of the equations in function FF is important (see p. 48)
and in Figure 13 1is controlled by the following statement number 7:

Go TO (60, 65, 70, 25, 30, 15, 20, 5, 10, 35, 40, 45, 50, 55), J.

The equations will be treated by the algorithm in the order that they are
listed in this GO TO statement. The linear equations 60, 65, and 70 thus
appear first, the quadratic equations second, etc. Terms of the form
X(1)** FP, where FP is a real noninteger number, are considered to be of
the same degree as the number of the last term in the series expansion of
eFP(logX(i)) which adds a significant digit on the particular computer
being used (see footnote 19).

Where NONLIN or ZSYSTM is available, implementing Brown's method
requires a statement of the model in implicit function form plus a small
Fortran deck. Only five statement modifications are required to use the
deck oﬁ other models.

2. Implementing a Dampened Jacobi Method.--To prepare the model for

a Jacobl algorithm, the equations must be normalized, with each endogenous
varlable appearing exactly once on the left side of an equation. The
following equations of the Kelly-Williamson-Cheetam model were modified

to obtaln the normalized version of the model.
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(0, (V,=1)+1.0)/V.0, 7 (0,-1)/V,0, o©
3) L = [ (®/w) - vy . le— 11 11~ A 1 1 1~7 1

o, (V-1)+1 g o, - o
5 K = [(®/x) « v, Ql[( (2o Al( /M 1g01

11) P= (r + C - XM)/T
12) K,=C-K
13) L,=1-L

) I= Ql~ Dyy- Dlz.

The equations must also be written in terms of the vector elements
corresponding to the endogenous variables (see p. 59). In Jacobi's method
(or any dampened method) dual vectors must be maintained, one for the
previous iterate and one for the undampened figures used in generating the
new iterate. Call the vector containing the previous iterate XL and the
vector containing the undampened new iterates X. Then, in each equation of
the dampened Jacobl algorithm, the endogenous variables on the right—hand
side are replaced by the corresponding elements of XL. The left-hand sides

are written as members of X. The market-~balance equations, for instance,

would be written as follows:

c-XL (1)

it

12 Xx(2)

It

13 X(4) = L - x(3)

14 X(10) = x1(6) - X1(11) = XL(12)

A statement of the l4-equation model written in this form is included in

the program presented in Figure 14.

Figure 14 is a copy of a simple algorithm written by the author to

implement the dampened Jacobl method. This program calculates new undampened
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iterates from the previous iterate, takes a weighted average, and iterates
again until convergence is achieved or the maximum number of iterations
equaled. Once again the cards which cannot be dispensed with but which must
be modified for each specific problem are underlined (card number 10).
Cards pertaining only to the l4-equation model are starred.

Programs for using Brown's method or the dampened Jacobi method are
easily adapted for use on other models if the user can supply an
appropriate Fortran statement of the model to be solved. Other iterative
methods, such as Newton's or the Gauss~Selidel, are available at most

computer facilities or can be written by the user.
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APPENDIX B: The Relationship Between the Gauss-Seidel Method and the
Cobweb Model, A More Mathematical Treatment
The cobweb model, originally worked out by Ezekial [ 7 ] to explain
agricultural price movements, is a dynamic two-equation model well-known to

economists. The cobweb model can be written in the form of a two-equation

Gauss~Seidel method, and the conditions under which each will converge to

a fixed point can be shown to be equivalent. Demonstrating this result will
provide an 1llustration of lterative methods and contraction mappings in
terms more familiar to economists.

Consider the following model:

demand o P= 12 - 3p(t)

supply  q(t= 2+ 2p(t1),

where q indicates quantity of some commodity, p its price, and superscript t
indicates the time period. The model is dynamic because it relates current
year supply, and indirectly current year price, to price 1 the previous
year. The model thus explains year-to-year changes in p and q. Only if
p=2 ahd q = 6 does the model show no change in either price or quantity.
Thus, the point (p,q) = (2,6) is an "equilibriumy or fixed point,

of the cobwebd model.

The cobweb version of the model given above would be written with

the demand equation normalized on price, or

demand p(t)=(q(t)" 12)/-3

supply q(t)= 2+ ZP(t'l)-
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This form reflects the pattern of causality implied by the cobweb model.
Previous year price determines current supply, which in turn determines
current price. This form also conforms to the Causs-Seidel method since
each variable appears exactly once on the left~hand side of an equation. It
1s therefore possible to show the equivalence of the convergence criteria

of the cobweb model and the Gauss-Seidel method.

The main result on convergence of the cobweb model is the cobweb theoren.
This states that the sequence of price-quantity points of a cobweb model will
converge to the stable or fixed point determined by the intersection of the

supply and demand curve when the slope of the demand curve is of greater
magnitude than the slope of the supply curvezé/ in a region containing some
starting point. Since the slope of the demand curve is -3 in the above

example and the slope of the supply curve is 2, the cobweb theorem indicates

that the model would converge. Figure 15 illustrates this result. Note that
the clockwlse orientation of the "cobweb" is an implication of its pattern

of causality. The path traced out moves horizontally towards the supply
curve as previous price determines quantity and vertically towards the
demand curve as current quantity determines current price.

The contraction mapping theorem and theorems 1 and 2 of Part I imply
that sufficient conditions for the Gauss-Seldel method to converge are
that the Jacoblan of the iterative function have a spectral radius whose
absolute value is less than 1 in a region containing the solution, and that
this reglon be convex and be mapped into itself by the iterative function.

These latter conditions are trivial in the linear case because the Jacoblan

is constant at all points. Thus, for the two equation model presented above,
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1t suffices to show that the iterative function has a Jacobian whose norm is
less than 1. More general notation will then be employed to expand the analy-
81s to higher dimensilons.,

In the general linear supply and demand model we have

supply qQ=1x+ sp

demand g=1t+ vp

The AX = B form of the systemgzjvis

1

Transforming this system to the form of the Gauss-Seidel method yields

(k)

q(k+l)= r + sSp

p(k+l)= (t - q(kﬂ))/-v,

or, in matrix form,

(0e+2) o o [0\ o L\ [
NCON AN T 1) |\ ple) o o\ p®
Thus,
1 0 0 © q(k+l) 1 O q(k+l) 0 s q(k) r
o 1] \% o Pr1) [ TR Ge) J T ) () ¥
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10 0 s (%)
= + N
% 1 0 0 p<k)
0 s q(k)
0 s/v p(k)
1 0\Y/
where N = _ + is a vector of constants. The Jacobian of this
v ! v
0 s
linear iterative method is the matrix s | which shall be denoted M.
° 3
The eigenvalues of M are given by the formula‘—kl (% - Az) = 0.§§/ Thus,

A =0, 2, = % , and 1f |v] > [s], o(¥) =|2,] < 1 and the Gauss-Seidel

iterative method will converge. The criterion Iv{ > |s| is exactly the sane
as 1n the cobweb theorem. As indicated above, in the current model ‘v‘ =
3 > 2= |s|, so convergence is confirmed by the theorems of both economics
and numerical analysis. This shows that the cobweb model can be thought of
as a mapping whose contractiveness depends on the relative slopes of the
demand and supply curves., It also shows that economists are familiar with
the problems of convergence of an iterative method even if by another name.
The cobwebd model is a Gauss~Seidel method adapted to a two-equation model
and embodying a particular pattern of causality in its normalization.,

The above analysis can now be extended to the general linear case
AX = B, Taking the Gauss-Seidel iteraﬁive equations for the linear case

(ps 16) and dividing through by ay,; yields

xi(k+1)= E%I _ é%g L Gerl)_ g i%g 5 (&)
j<(1-1) @ 7 32(1+1) J
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The first term is the ith element of D_lB, where D is a diagonal matrix of

the diagonal elements of A, D = diag (aii). The second term 1s the ith ele-

(k+1)

ment of ~LX » where L 1s a lower triangular matrix of elements of A,

each divided by their corresponding diagonal element. That is, L = (%lj)

where
0, if j >1
L . =
iJj alj .
ali’ g <1

The thirdtmrmistheith element of *UX(k), where U is defined as L but on

the upper triangular elements of A, U = (uij)' where
0, if <1

uij = alj

i if j > 1|

Thus
xOerL) (k) (k) 1y
Réarranging this yields
(1), g (erd) (k) g1,
or
1+ 0)x® s _®y 5ln, multaplying through by (T + 1)™: reveals
ply gh by
the Gauss-Seidel iterative function,
2+ 0s _p 4 1) x®y (14 1) plp - ®s oy,

where M = —(+L)™1 U and ¥ = (=+1)™* p7! B.
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Since the last term is a constant, the Jacobilan of the function 1s M, and
the Gauss-Seidel method will coverge if p(M) < 1, as was the case in the
model as normalized above.

If instead the model had been normalized with a price-dependent

supply equation and quantity-dependent demand equation, the results would

have been exactly opposite, as shown below. This alternative model,

demand q=12 - 3p
supply p= (2~q)/2

can be written in the form AX = B as

1 3 q 12

1-2 P 2 .

The Jacobian of the iterative function for this model is given by the

matrix M, defined on page 77 .,

1 0\t [o 3 -1 o\ /o 3 0 -3
M = - = =z
11 0 0 -1/ \o o 0 ~% :

Then eigenvalues of M satisfy
(fll)(‘% - 12) =0, or & =0, kz = g.,

Thus, p(M) = % > 1, and the Gauss-Seidel iteration based on this normalization

diverges. The model in effect becomes a cobweb in reverse, tracing a counter-

clockwige and divergent path as shown in Figure 6.
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APPENDIX C

Van Der Geissen's Method for Ordering Equations

Prior to Gauss-Seldel TIteration
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A method for ordering the equations of an economic model in a recursive
pattern amenable to solution via Gauss-Seldel iteration has been reported by
A. A. van der Giessen [ 22]. A simple computer program for implementing the
technique 1s presented in this appendix and applied to the l4-equation
Kelley-Williamson model explained in Appendix A (also see [15]).

To use the technique, one must express the model in the normalized form
required for Gauss—Seidel iteration (i.e., each of the n endogenous variables
must be isolated exactly once on the left-hand side of an equation). The
user then supplies a set of zero-one varilables indicating the structure of

the model, and the algorithm automatically orders the equations 1n a
more recursive pattern. Increased recursiveness reduces the number

of endogenous variables whose initial estimate must be supplied by the
user and enhances the chances of achieving convergence via Gauss—-Seidel
itération.

The pattern of interdependence among the endogenous variables is
represented by the zero-one elements of the "interdependency matrix" supplied
by the user. This matrix has n.rows and n columns, one for each endogenous
variable in the model to be solved. A 1 in the ijth position indicates that
the ith variable depends on the jth variable; a 0 indicates that the ith
variable does not depend on the jth variable.gg/ Figure 16 gives the inter-

dependency matrix for the normalized version of the Kelley-Williamson model
presented in Appendix A.

To implement the ordering routine, three additional columns are
appended to the interdependency matrix. The n+lSt column is called the
"auxiliary" column. Its elements are equal to the row sums of the first n
columns. Thus, the ith row of the auxiliary column lists the total number
of endogenous variable appearing in the equation of the ith variable, The

n+2nd and n+3rd columns are for accounting purposes. The n+3rd column lists
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Variables Whose Initial
Guess Must be Given

Order in Which Equations
Are to Be Solved

1

3

11

12

2

4

14

13

10

11

12
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the equations in the order in which they should be solved. For example,

if 2 appears in the first row of the n+3rd column, the equation for the 2"

d

variable must be solved first in implementing the Gauss-Seidel method. The

ti+2nd column lists the variables for which an initial guess must be supplied

by the user. Figure 17 shows the results of applying the algorithm to the

l4~equation model.

From the initially supplied interdependency matrix, the method

proceeds as follows:

ll

2.

3.

Calculate the auxiliary column (for variables not already listed in

in the n+3T¥d column).

Check for zeroces in the auxiliary column, If a zero appears

in the ith colum, the ith variable depends on no remaining

endogenous variables and 1s therefore predetermined.

Accordingly, the 1th column is deleted (set equal to zero).

To indicate that the ith variable is next in the order of

equations to be solved; the value i is placed in the highest unoccupied
cell in column n+3. A large number M (M > n) is placed in the

ith

cell ' of the auxiliary column. The method returns to step
1.‘

After all zeroes are cleared from the auxiliary columm, check for
1's on the main diagonal of the interdependency matrix (i.e.,

the 11} cells). Initially there should be no 1's on the main
diagonal if the user has properly normalized the model. However,
1's may be introduced into the iith cell of the main diagonal
as the method proceeds. 1In this case they indicate that the ith
variable can no longer be expressed as a function of the remaining
endogenous variables and must therefore be listed in column n+2

among the variables for which an initial guess must be given by

the user. If so, the ith column 1s deleted. The method then returns to

step 1,
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4, After all 1's are cleared from the main diagonal, an index
variable r is set equal to one.

5. Check the auxiliary column for an r. If the ith cell of the
auxiliary colummn is r, the ith variable is a function of «r
endogenous variables. If r=1, the ith varlable is a function of
just one other variable j and can be replaced by substituting

x, for x, wherever X, appears. This is accomplished by "adding"

3 i

th th " " -
the 17 column to the j column, where "'addition' is8 defined as
H-0=0
0+1l=1+0=1) . In this manner variables dependent upon X1 are made
1+1=1
dependent upon X, as well. If r > 1, the procedure 1s the same

3

except that 1's from column i are "added" to the r other columns
containing a 1.
After the first r has been processed in this manner, go to step 7.
If no r is found, go to step 6. (for variables not already listed
in the n+3rd column).
6. If no r appears in the auxiliary column, increase r by one and
repeat step 5.
7. Recalculate the auxiliary matrix.
8. Check for 1's on the main diagonal. If a 1 is found, proceed as
indicated in step 3 and return to step 1. If a 1 is not found,
go to step 9.
9. Check the remainder of the auxiliary column for an r. If found,
return to step 5 and proceed as indicated there. Otherwise
increase r by one and then return to step 5.

10. Terminate the method listed in Steps 1-9 when all equations

have been ordered, that is when columm n+3 1is full.

A flow-chart of this method is shown in Figure 18and a program for

implementing the method on the li4~equation model listed in Figure 19
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FOOTNOTES

l/ Iterative methods can be more generally expressed as X(k+1) =
e, (D) g (kme),
s = 0 and X(k+l) = GXX(k),

17, Ch. 7; 4, Ch. 1].

For the methods discussed in this paper

Many useful methods are of this form [see

g/ This 1is, if for any € > 0, there is integer M such that for any
*
k>, D[F&®) - rx™)y] < c.

3/ A fixed point of a function G(X) is a point X* where the value of
the function is equal to 1ts argument. That is, a point X* such that
X* = G(X*).

4/ Justification for this result is given by the mean value theorem
of calculus, which states that between any two points on a continuous and
differentiable segment of a function G(x) there is a third point where
the slope of the function equals the average rate of change of the function
between the first two points. That is, if G(x) is continuous and differentiable

on the interval [ﬁ(k), x(k—l)], then

(k) _ ., (k=1) _
[G(x ) G(x )] o G' (%),
() (L),
where x lies in the interval between x(k) and x(k—l). Rearranging terms and

recalling that [x(k+1) - x(k)] = [G(x(k)) - G(X(k_l))], it can be seen that
[x(k+l) - x(k)] = [x(k) - x(k-l)]G' (x). If G'(x) is less than one for all
(o)

x in a neighborhood of x* containing x , then the absolute value of the
differences between successlve iterates grows progressively smaller and
tends to zero. The 1lterates would form a Cauchy sequence converging to the

limiting fixed point value x*.
5/ See [19, p. 265].
6/ These properties are derived from [4, p. 175].

Zj An eigenvalue of a matrix A, here denoted A(A), is a number such
that AX = [A(A)]X, for some vector X. See [13, Chapter 7].

8/ Functions with n-dimensional domains and m-dimensional ranges
are also mappings but are not discussed here.
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9/ Ortega and Rheinboldt [17, p. 69] show that if a mapping G from rR®
to RM has a well-defined Jacobian on a convex set D% D, then for any X, YeD',

He(y) - G| < o2 IIG'(x+t(Y—£j)f| C XY Since for 0 <t <1

0<tel
Zi+t(Y~X27 = Zrl—t) X+t¥7 eD' by convexity, and since it is assumed above that

[1G'(X)|] < o <1 for all points in D', it follows that !|G(Y) - G(X)|] < o

PIXx-Y]]. Q.E.D.

Ortega and Rheinboldt /17, p. 43/ show that (&) < | ‘&l a
narms, but that for any number ¢ > 0, there is some choice ¢f norn such that

)

t

PA]] < p(8) + e AT, po 44/, If o(A) <1, choose T < = <1 - (&), The
theorem follows.
;l/ Only strictly true if the subset is convex.

12/ ZTarger than 100 x 100. Exact methods are also inappropriate 1f
any equation is nonlinear.

13/ Note that by interchanging rows and columns of A it is always
possible to write the system AX = B in such a way that Aii #0, 1=1, «vuay 0,
as long as A is nonsingular.

yg/ There are systems of equations where this normalization procedure
is either impossible or exceedingly difficult. In such cases a secondary

(k+1)

iterative method must be supplied to solve for each X, from a nonlinear

. . e oo . k k k k .
implicit function of the form fi(xl( ), ceey XiEl)’ X§+i’ cee xé ) - 0 in

(k+1) (k+1) (k)
1 ] LU ] Xi...l ) i‘*‘l,
Seidel method. The authors feel that this situation will rarely arise in

economic models since they are usually constructed with fairly simple
functional forms,

the Jacobi method or fi(x ceey xﬁk)) in the Gauss-

15/ There are the following two additional patterns if the ordering
of equations is considered:
3. (clockwise)
-1 t~-1
®) . @y oD 4y

(t)

Demand p

Supply q(t) =2+ 27p
4. (Counter clockwise)
(t) 215 -3 p(t—l)

t 1 t

Supply p( e & q( ) o1

In this 2-equation, linear model only the normalization, and not the
ordering, of equations affects convergence. Ordering does affect Gauss-

Seidel convergence in the general case.

Demand q
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16/ The Picard Method, the Secant Method and the Steffensen Method

are some of the other important linearization methods. They are discussed
in numerical methods texts such as /47 and /177.

17/ One justification for choosing A = J is derived from the spectral
radius convergence criterion. Iet X¥ be a solution of F(X) = 0. Then, i
a neighborhood of X*, convergence is assured if the Jacobian of X(k+1)= X?k) +
a-l g X*) has spectral radius o magnitude less than one. At X¥* this
Jacobian can be written /I - A7 F'(x*) 7. 1If iim X(K) = X% than o =
-~ - >

o/I - At F'(X*) 7 will approach zero if A = F'(X(k>)“
{i/ The approximation may also be thought of as a Taylor series expansion.

19J/ Logarithmic, exponential, or trigonometric expressions are assigned
a degree equal to the last term in their infinite series expansicn which is
significantly different from zero (determined by the machire tolerance of
‘the computer on which the method is implemented.

20/ See [12, p. 71].

gi/ It is possible, however, to introduce singularity into the calcula-
tion of a Jacobian 1f Brown's method is altered in an attempt to precltde
selection of negative iteratess . For instance, one of the
author once altered Brown's method in such a way as to substitute the value
0.1 for any negative element of an iterate. This caused several rows of
zeros to appear in the discretely estimated Jacobian matrix used in Brown's

method.

22/ (Chiefly Professor Kenneth M. Brown, Department of Computer Science,
University of Minnesota, and David M. Gay, Research Associate, National
Bureau of Economic Research, Cambridge, Mass.

Zé/ Researchers in the Department of Agricultural and Applied
Economics of the University of Minnesota have used Brown's method to
solve systems of equatlons characterizing the necessary first-order
conditions for maximization of likelihood functions. Singularity of the
Jacobian has been encountered in these problems.

24" This is still a welghted average as before, since X( ) [T1-8) + &/
X(k) and [i(k)+ gt (x(k)) F(X(k))_7 is the undampened Newton iterate.
25/ See [4; 17].

‘26, "Slope" in this context refers to the derivative of quantity with
vespect to price in both the supply and demand curve. These slcopes are most
easily evaluated when both equations are written with quantity as the
dependent variable. See also /39 p. 265/ .

23/ Normalization in the AX = b fornm is implied by the order of the
equations. The first equation is normalized on the first variable, q; and
the second equation is normalized on the second variable, p. If the systenm
were written as 1 v q) (t) » the result on convergence of the system

1l - g P r

would be exactlv the onnosite of the resnult that FAllows ahava
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28/ See [13, Chapter 7].

29/ The interdependence matrix will change if the numbering of
the variables i1s altered. Such changes can affect the order in which
equations will be listed for solution and also the variables that will
be listed as requiring an initial guess. Van der Geissen claims,
however, that the changes are slight and do not significantly affect
the Gauss-Seidel solution of the model [22, pp. 47-48].
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