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The Deterministic Equivalents of
Chance-Constrained Programming

C.S. Kim, Glenn Schaible, and Eduardo Segarra

Abstract Three concepts combine to show both the
feasibility and deswrabulity of incorporaiing probability
wthin programming models Fust, the-reliability of
estimates obtamed by using Chebyshev's wequalily
inereases as variation measured by the coefficient of
varration, declines Second, the coefficient of variation
can be substantially reduced by the use of the mean and
variance of a truncated normal distribution Thwrd,
chance-constrained programming can be converted
mto determanistic equivalent quadratic programniing
by using the parameters of a truncated normal
distribution

Keywords Chance-constrained progr amming, quad-
ratie risk programming, truncated normal distribu-
tion, Chebysheu's tnequality

The developments of the past three decades in the
theory of choice under risk or uncertainty have
followed the expected mean-variance approach The
decisionmaker s assumed toselect among alternative
activities on the basis of a utility function defined 1n
terms of the expected mean and variance of the
portfolio return Accordingly, much has been written
about quadratic risk programming (5, 7, 13, 16)!
Researchers have not paid enough attention, however,
to the burdensome data requirements and mathe-
matical complexity associated with the risk and
uncertainty pertaining to input-output coefficients(3)

An activity analysis model usually optimizes some
objective function subject to hinear constraints Co-
effictents for both the objective function and the
constraints are assumed to be known with certainty
Chance-constraint programming (CCP), originally
proposed by Charnes and Cooper (4), makes use of
individual probabilistic constraints A probability 15
attached to the linear constraint in such models The
probabilistic constraint 1s subject to some prede-
termined critical level, and its coefficients are assumed
to be randomly distributed Probabilistic constraints
of this type often appear in decision analysis 1n the
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form of a safety-first rule in portfolio selection
problems (6,11,12,14,15), or 1n problems associated
with feed-grain mixture (5)

Many researchers, therefore, have attempted to
convert probabilistic constraints into deterministic
equivalents under various assumptions Examples
include the works of Charnes (9), Pyle and Turnovsky
(11), Roy (12), Telser (15), Paris and Easter (9),
Sengupta (74), and Atwood (1) Paris and Easter, and
Pyle and Turnovsky obtain their criterion based on
the normahity assumption with respect to the random
variable Roy and Telser, in contrast, obtain deter-
ministic equivalents of a probabilistic constraint by
using Chebyshev’s inequality, which does not require
any knowledge about the probabilistic density function
of arandom variable Senguptaclaimsthat estimates
obtained from the use of Chebyshev's inequality may
“sometimes” be very inefficient, in the sense that they
may provide very rough approximations for the actual
probability when the distribution of the random
variable 1s known However, Sengupta failed to
indicate when the use of Chebyshev’s inequality pro-
vides 1nefficient estimates of the actual probability

Recently, Atwood and others (1,2) rejected the use of
Chebyshev’s inequality on the grounds that the
estimates are too conservative They proposed the use
of lower partial moments (LPM) to obtain a determin-
1st1e equivalent of a probabihistic condition The LPM
approach uses the concept of a truncated distribution,
which Sengupta sugpested to improve rehability of
estimates However, the LPM approach makes use of
the parameters of a complete normal distribution

Unknown 1s how much the reliability of estimates 15
improved by use of a truncated distribution using
parameters of a complete normal distribution over
the use of the Chebyshev inequality 2In this paper, we
first demonstrate that the reliability of estimates
obtained by making use of Chebyshev's mequality
increases as the coefficient of variation decreases

Second, we demonstrate that, under certain conditions,
use of a truncated normal distribution does'not neces-
sarily improve the rehability of estimates, and that
estimates obtained from the use of Chebyshev's in-

2The rehiabilitv of an estimate 1s defined as the probability of the
absolute value of the difference between the estimate and 1ts true
value as being less than a predetermined small number
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equality are generally reliable 1f the analysisincludes
the use of the mean and variance of a truncated
normal distribution Third, we show how one can
convert the CCP problem into a deterministic equiva-
lent quadratic programming (DEQP) problem using
Chebyshev’s mequality Finally. we discuss the
properties of DEQP solutions

A Complete Normal Distribution and
Chebyshev’s Inequality

The normality assumption has been widely used 1n
economic literature, and 1ts use 18 justified for many
cases due to the Central Limit Theorem However,
without any knowledge about the probability density
function of a random variable x, we can consider
Chebyshev’s inequality for any h > 0, such that

Pr[ix-ul <hg]=1- N

hZ (1)

where gand ¢ are the mean and standard deviation of
the complete normal distribution

For any symmetric distribution, the quantity Q*(h),
which 1s the probability assigned to the interval
where.the random varable x 1s defined as {x (u- h o)
< x'= o}, may be represented as

1
Q*h)=05+05[1 - F]
- 1/(2h?) (2)

It 1s clear from equations 1 and 2 that the probability
of an observed value for a random variable x in the
interval (x (4 - ha) < x = =) approaches one as h
increases infinitely, and that the probability increases
faster for symmetric distributiens than for non-
symmetric distributions

Table 1 shows probabihities estimated with equation 2
for h =1, 2 .5 By making use of Chebyshev’s
inequality, we estimated that probahilities are rela-
tively rehable estimates for a random variable with a
small coefficient of varmation (o/u), and that the
reliability increases as h increases 3 Table 1 indicates
that for h >> 4, the probabilistic constraint of a chance-
constrained programming problem can be converted
into a determimstic equivalent by making use of
Chebyshev’s inequality

3Parzen (1M showed for a two sided confidence level, PriiX-hul)
= fi, for a complete normal distribution, that estimates obtamned
using Chebyshev's imequality converge to actual probability as h
Increases

Table 1—Estimated probabilities Pr (x > p-ho) for a
complete normal distribution and the use of
Chebyshev's inequalhty

Rehability of
1 estimates with
1- — Chebyshev
h @(h)! 2h?2 inequality
Percent
1 08413 0 5000 59 43
2 9772 8750 89 54
3 9987 9444 94 56
4 1 0000 9688 96 88
5 1 0000 9800 98 00

¢ 15 the CDF of N (0 1)

A Truncated Normal Distribution and
Chebyshev’s Inequality

There exist cases in which economic variables are not
defined over the entire range of a normal distribution
For instance, water applied 1n the production of
irrigated cotton or the final mix of feed grains in
livestock production cannot be negative, indicating
that the random variable, say x, would have a trug-
cated normal distribution to the leftat x = 0

When we assume that x has a truncated normal
distribution to the left at r, the probability density
function of x 1s then defined as follows (¥)

flx)= 0 fx <r
- _K exp-—l-(%ﬂ)2 if x =7, (3
o¥2r 2
where
1
K= ——
1- ¢(#)

@ 1s the cumulative density function (CDF) of the
normal distribution with mean zero and unity var-
1ance, N(0,1), and u and o are the mean and standard
deviation of a complete normal distribution of x *

To compare estimates from a truncated normal dis-
tribution and estimates obtained by using Chebyshev’s
inequality, we define the quantity Q(h), for any h >0,

4Meyer {8)erroneously de[med Kasthequantity 1-¢ (—-"—') rather
than the quantity K=1/[ 1 - ¢( )]
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as the probability assigned to the interval where the
random variable x 1s {x (4 - ho) < x < =} For the
truncated normal probamhity density function {with
mean p and standard deviation ¢ of the complete
normal distribution), the quantity Q(h) 1s given by

K f e o Y (_X_F_‘)Zd
h) = - g X
Qth) V57 Jiyeno (4)

Equation 4 can be compactly rewritten as

1-9¢(-h) @(h)
Q(h) = = (5)
1- ¢p(-5H) &1

It 15 easy tosee that Q(h)in equation bbecomes 1 for 7=
{(#-he) Incaseswhere (u-7)/0=3 9sothat ¢ [(u-7Y/ o]=
1, equation 5 becomes Q(h) = @(h), which 1s the
probability estimated from a complete normal
distribution That 1s, use of a truncated normal
distribution does not improve the reliability of esti-
mates 1f (u-7)/¢ 18 greater than or equal to 39

We will show (equation 22 and footnote 5) that {g-71)/
o = (1-8)Y V2, where B8 1s the required minimum proba-
bility of success For 8=0 95, atraditional eriterionin
decision analysis, (1-8)Y2 equals 4 4721 which 1s
greater than 3 9 Use of a truncated normal distribu-
tion, therefore, does not necessarily improve reha-
bility of estimates

Sofar, the mean and standard deviation of a complete
normal distribution are used for the measurement of
the coefficient of variation in equation 5 However, the
expected value E(x) and variance V(x) of a random
variable x, which has a truncated normal distribution
as given 1n equation 3, are expressed as follows (see
appendix)

Ex)=u+D, (3]
and
V{x) = o2+ D[(r - ) - DI, (7)
o .
where D= ———— exp - %(-TH)?
VEF[1 - (1) [ 7 ]

In equations 6 and 7, D > 0, and therefore, E(X) > g,
V(X) < o2, and o/u > (VX)]V¥E(X) That 15, the
coefficient of variation 1s reduced when the mean and
standardized deviation of a truncated normal distribu-
tion are substituted for those of a complete normal
distribution, respectively However, we have shown

that the reliability of estimates obtained by making
use of Chebyshev's inequality increases as the coef-
ficient of variation 1s reduced Therefore, parameter
estimates of a chance-constrained problem can be
improved by making use of the mean and variance of
the truncated normal distribution

Deterministic Equivalent
Quadratic Programming

A prebabilistic constraint can be converted into a
deterministic equivalentusing Chebyshev’s inequality
Consider a chance-constrained programming problem
such as the one used by Chen

Minimize C'X, (8)
subjectto Pr(P’X=d)=8 9
AX=b (10)
X=0, (11)

where C1san (n x 1) vector of cost coefficients, X1san
(n x 1) vector of choice variables, P 15 an (n x 1) vector
of stochastic variables, which has a truncated distri-
bution to the left at zero, with a truncated normal
mean vector P and variance-covarance matrix W, d
1s a prespecified constant, B 1s the required mimimum
probability .of success, A 15 an (m x n) technical
coefficient matrix, and b 1s an (m x 1) vector of
minimum resource requirements

To formulate a deterministic equivalent constraint,
the probabilistic constraint @ can be rewritien as

Pr(P’X=d) =1-Pr(P’X=d)
=1-Pr[(P'X-PX)2(PX-d)]

=1-Pr{(IP’X-PX)=(PX-d)

=1- EWX Chebyshev's inequality,
(P'X-d)?
=p (12)
or equivalently,
Pr(PX2d) = 1- =X _ 5 4 (13)
(P'X - d)2

The coefficient of variation clearly must be smaller
for a large required probability of success




Mimimum costs that satisfy the probabilistic con-
straint 9 are attained at Pr(P’X = d) = 8, or more
stringently at

X'WX

(P'X- d)3= g

in equation 13 Consequently, the problem of finding
minimum costs, C'X = K, subject to the probabilistic
constraint 9, 1s equivalent to the problem of finding
the minimum of

X'WX -
B Fxag = (14)

atany given cost K This can be verified by comparing
the Kuhn-Tucker conditions from each optimization
problem The minimization of equation 14 1s equiva-
lent to the maximization of

=) l I E
P)(+2d (XMX)Sz, (15)

where M=[W(1 - 8)!- P P']isanegative semidefinite
matrix

When the equality holds in equation 15 for any level of
required success, 8, the probability constraint 91s met
at minimum cost, say K; In cases where the inequality
holds, the probability constraint 91s satisfied, butata
higher cost than K, Consequently, the following
deterministic equivalent QP (DEQP) problem ean be
formulated, which 1s equivalent to the CCP problem
1in equations 8 through 11

Maximize P'X + —;(X’MX) s% (16)
subject to CX= K 0<K<K, (17)
AX > b (18)

Xz 0 (19)

The optimal choice variables X satisfving the CCP
problem 1n.equations 8 through 11 may be approx-
mated by solving the DEQP problem in equations 16
through 19 by simply inereasing cost (K) para-
metricaily until the objective value approaches d/2

Properties of DEQP Solutions

To derive the properties of DEQP solutions, we
rewrote the objective function 1n equation 16 as

Z =PX+ (1/2d)X'[(1 - BY'W - ??’]X
o (l-ﬁ)-] ' Y
= X+—E X'WX-(1/2d) X' P P'X
<4 (20)
-2

Multiplying both sides of the inequality 1n equation 20
by 2d, we can obtain the following

2d P'X + (1-8)!X'WX - X'PPX <d2 (21)

From equation 21, we can obtain the following
inequality

(x%}éﬁ,z > (1-pyV2, (22)

or equivalently
PX-(1-8)VAX'WX)/2=d (22')

When the condition given 1n equation 227 18 met, 1t can
be said that one 1s B-percent confident, and that P'X
will be greater than or equal to a predetermined
constant, d ®

To further investigate the properties of DEQP
solutions, consider the Lagrangian equation associated
with the DEQP problem in equations 16 through 19
such that

F(X, A, A) = P'X + (1/2d)X’ [(1-8)'W - PP'IX
- A(K-CX)- Xyb - AX), (23)
where A, 1s a Lagrangian multiplier, such that 2,20,
and A, 1s an (m x 1) vector of positive Lagrangian

multiphers

Part of the Kuhn-Tucker conditions are expressed as

aF — (1- )-1 1
o - —£ WX -
P + X-{1/d}PP'X+

AC+MN,A <0 (24)

5The condition In equation 22’ is, more stringent than the one
imposed by _negative semidefiniteness Because M=
[{(1-8Y'W - P P']is a negative semidefinite matrix X'MX =
(1-8) TX'WX - X" P P'X < 0 and therefore

X’—P_P.‘X 1
“xwx = AL

or equivalently X - (1-8) IIZ(X’WX)Uz = 0 which 15 less
stringent than the condition expressed in the imequahity 22
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(aF )X=PX + (1-8) !3)

5 X'WX - (1/d)X'"PPX

+A,CX + A,AX =0 (25)
X=0 (26)

There exists a dual programming problem associated
with the primal programming problem given in
equations 16 through 19 The objective function to be
minimized in a dual programming problem is obtained
by simply subtraeting equation 25 from the La:
granglan equation 23, represented by,

G(X, A, A)=-AK-A"b
D (1'16)-1 r
+(172) X" PPX - ——— X'WX 27
2d
The objective value of the primal programming
problem, equation 16, equals the objective value of the

dual programming problem, equation 27, at optimum
Equating equations 16 and 27 results in the following

(1-8)"

PX+—
d

XWX - (V)X PPX
=-A,K-Ab (28)

By multiplying both sides of the equality 1n equation
28'by d, and with minor mantpulation, we obtain

d[P’X-A,K-A5b]=2dP'X + (1-8)'X'WX
-X"PPX (29)
=< d2 (from equation 21),
or equivalently,
PX<d+AK+ab (30)

Equation 30 shows that the mean value of the random
variable P’X must be less than or equal to the

predetermined valued plus the sum of the cpportumty
costs of expenditures and the opportunity costs of
other resources

Combining conditions 1n equations 22’ and 30 reveals
that

d+ (1A VAX'WX)2<P'X <d+ A K+ Ay, (31)

or equivalently,

PX-1-B8VHX'WX)2=d = P'X -2 K-Ab (32)

Both sides of the first inequality sign 1n equation 32
are 1dentical with the condition given in equation 22
However, the condition 1mposed by equation 32 15
more restrictive than the one given 1n equation 22’ by
requiring an additional condition given 1n equation
30

Conclusions

Chebyshev's inequality often has been used to convert
a probabilistic constraint in a chance-constrained
programming problem ntoa deterministic constraint

Researchers, however, have criticized the use of
Chebyshev's 1nequality which sometimes provides
very rough approximations for the actual probability

We have shown that the use of Chebyshev’s inequality
provides relatively very good approximations for the
actual probability when the coefficient of variation is
relatively very small We also have shown that the use
of the mean and variance of a truncated normal
distribution reduces the size of the coefficient of
variation, compared with the case of using the mean
and.variation of a complete normal distribution We
have also demonstrated how a chance-constramed’
programming problem can be converted into a deter-
muinistic equivalent quadratic programming problem



Appendix 1— Mean and Variance of a Truncated Normal Distribution
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