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The Deterministic Equivalents of 
Chance-Constrained Programming 

C.S. Kim. Glenn Schaible. and Eduardo Segarra 

Abstract Three concepts combtne to show both the 
feaBlblllty and deo lrabl/lty of mcorporatl ng probabIlity 
unthln programm mg models Flnt, the'rellOblllty of 
est l'IIlOtes obta med by usmg Cheb1jshev's mequaht1j 
mcteases as vanatwll measured by the coeffwwnt of 
uallOtlOn, declines Second, the coeff,CIent of va1'latlOn 
can be substantwlly, educed by the use ofthe nwan and 
varlUnce of a truncated normal d,stnbutwn Tlllrd, 
chance-constramed programmmq can be converted 
mto determl",stw equwalent quad"atw proqrammmg 
by usmg the p01'a meters of a truncated normal 
d"tnbutlOn 

Keywords Chance-constramed progl ammmg, quad
Tatw risk progTammmg, truncated normal dlstnbu
tlOn, Chebyshev's InequalIty 

The developments of the past three decades In the 
theory of chOice under risk or uncertainty have 
followed the expected mean-variance approach The 
decIsIOnmaker IS assumed to select among alternative 
activities on the baSIS of a utilIty functIOn defined In 
terms of the expected mean and variance of the 
portfolIO return Accordingly, much has been wntten 
about quadratic risk programming (5, 7, 13, 16) I 
Researchers have not paid enough attentIOn, however, 
to the burdensome data requirements and mathe
matical compleXity associated with the risk and 
uncertainty pertal n I ng to Input-output coeff,c,ents(.9) 

An activity analysIs model usually optimizes some 
objective functIOn subject to linear constraints Co
effiCients for both the objective functIOn and the 
constraints are assumed to be known with certainty 
Chance-constraint programming (CCP), originally 
proposed by Charnes and Cooper (4), makes use of 
IndiVidual probabilIstic constraints A probabilIty IS 
attached to the linear constraint In such models The 
probabilIstic constraint IS slibJect to some prede
termined critical level, and Its coefficients are assumed 
to be randomly distributed ProbabilIstic constraints 
of thiS type often appear In deCISion analysIs In the 
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lItahclzed numbers In parentheses Cite sources listed In the 
References sectIon at the end of thIS article 

form of a safety-first rule In portfolio selectIOn 
problems (6,11,12.14,15), or m problems associated 
With feed-grain mixture (5) 

Many researchers, therefore, have attempted to 
convert probabilistiC constraints mto deterministic 
eqUivalents under varIOUS assumptIOns Examples 
mclude the works of Charnes (3), Pyle and Turnovsky 
(11), Roy (12), Telser (15), Paris and Easter (.9), 
Sengupta (14), and Atwood (1) ParIS and Easter, and 
Pyle and Turnovsky obtam their CriterIOn based on 
the normality assumptIOn With respect to the random 
variable Roy and Telser, In contrast, obtam deter
ministIC eqUivalents of a probabilistiC constraint by 
USing Chebyshev's inequalIty, which does not reqUire 
any knowledge about the probabilistIC density functIOn 
of a random variable Sengupta claIms that estimates 
obtamed from the use of Chebyshev's inequality may 
"sometimes" be very mefflcIent, In the sense that they 
may provide very rough apprOXimatIOns for the actual 
probability when the distributIOn of the random 
variable IS known However, Sengupta faIled to 
indicate when the use of Chebyshev's Inequality pro
Vides ineffiCient estimates of the actual probability 

Recently, Atwood and others (1,2) rejected the use of 
Chebyshev's inequalIty on the grounds that the 
estimates are too conservatIve They proposed the use 
of lower partial moments (LPM) to obtain a determm
IStIC equivalent of a probabilistiC condition The LPM 
approach uses the concept of a truncated distributIOn, 
whICh Sengupta suggested to Improve reliability of 
estImates However, the LPM approach makes use of 
the parameters of a complete normal distribution 
Unknown IS how much the relIabilIty of estimates IS 
Improved by use of a truncated distributIOn USing 
parameters of a complete normal distributIOn over 
the use of the Chebyshev inequalIty 2In thiS paper, we 
first demonstrate that the relIabll!ty of estimates 
obtained by makmg use of Chebyshev's mequality 
Increases as the coeffiCient of variatIOn decreases 
Second, we demonstrate that, under certam conditIOns, 
use of a truncated normal distributIOn does'not neces
sarily Improve the reliabilIty of estimates, and that 
estimates obtained from the use of Chebyshev's In

2The relJabilltv of an estimate IS defmed as the probaullity of the 
absolute value of the difference between the estlmdte and ItS true 
valu-e as bemg less than a predetermmed small number 
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equalIty are generally relIable If the analysIs Includes 
the use of the mean and variance of a truncated 
normal distributIOn Third. we show how one can 
convert the CCP problem Into adetermInlstlc equiva
lent quadratic programming (DEQP) problem USing 
Chebyshev's inequalIty Finally. we diSCUSS the 
properties of'DEQP solutIOns 

A Complete Normal Distribution and 
Chebyshev's Inequality 

The normalIty assumptIOn has been Widely used In 
economic lIterature, and ItS use IS JustIfied for many 
cases due to the Central Limit Theorem However. 
without any knowledge about the probabilIty denSity 
functIOn of a random variable x, we can consider 
Chebyshev's inequalIty for any h > O. such that 

1Pr [Ix-pi ~ hal 2: 1· -- . 
h2 (1) 

wherep and a are the mean and standard deViatIOn of 
the complete normal distributIOn 

For any symmetric distributIOn. the quantity Q*(h). 
which IS the probabilIty assigned to the Interval 
where,the random variable x IS defined as Ix (p. h a) 
< x'~ 00 }. may be represented as 

1 

Q*(h) 2: 0 5 + 0 5 [1 - -l 


h2 

2: 1 - 1/(2h2) (2) 

It IS clear from equatIOns 1 and 2 that the probabilIty 
of an observed val ue for a random variable x In the 
Interval (x (p - hal < x ~ 00) approaches one as h 
Increases infinitely, and that the probabilIty Increases 
faster for symmetric distributIOns than for non
symmetric distributIOns 

Table 1 shows probabilIties estimated with equation 2 
for h = 1. 2. . 5 By makIng use of Chebyshev's 
InequalIty. we estimated that probabilIties are rela
tively relIable estimates for a random variable with a 
small coefficient of variatIOn (a/p). and that the 
relIabilIty Increases as h Increases J Table 1 indicates 
that for h > 4, the probabilIstic constraint of a chance
constrained programming problem can be converted 
Into a deterministic equI~alent by making use of 
Chebyshev's inequalIty 

3Parzen (JO) showed for a two SIded confidence level. Pr(IX-hpl) 
2: p: for a complete normal distribution, that estimate!:; obtamed 
uSing Chebyshev's mequallty converge to aclual probability as h 
Increases 

Table I-Estimated probabilities Pr (x > p-hu) for a 
complete normal distribution and the use of 
Chebyshev's inequalitv 

Reliability of 

h </>(W 
1 -

1 

2h2 

estimates with 
Chebyshev 
Inequality 

Perrent 

1 
2 
3 
4 
5 

08413 
9772 
9987 

10000 
10000 

05000 
8750 
9444 
9688 
9800 

5943 
8954 
9456 
9688 
9800 

I¢ IS the CDF of N (0 I) 

A Truncated Normal Distribution and 
Chebyshev'S Inequality 

There eXist cases In which economiC variables are not 
defined over the entire range of a normal distributIOn 
For I nstance. water applIed In the productIOn of 
irrigated cotton or the final mix of feed grainS In 
lIvestock production cannot be negative. Indicating 
that the random variable. say x. would have a trulj
cated normal distributIOn to the left at x = 0 

When we assume that x has a truncated normal 
distributIOn to the left at T. the probabilIty denSity 
functIOn of x IS then defined as follows (Ii) 

f(x) = 0 If x <T 

If X 2:T. (3)= ~ a'f[; exp[1..(~)j2 a 

where 

1 
K= 

1 - ¢(';f) 

¢ 'IS the cumulative denSity functIOn (CDF) of the 
normal distributIOn With mean zero and Unity var
Iance. N(O.I). and p and a are the mean and standard 
deViatIOn of a complete normal distributIOn of x " 

To compare estImates from a truncated normal diS
tributIOn and estImates obtained by USing Chebyshev's 
inequalIty, we define the quantIty Q(h), for any h > O. 

4Meyer (8)erroneously defIne<i,.1( as the quant.ty 1- </> rI'#). rather 
than the quant.ty K = 1/[ I . ¢(~)I 
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as the probability assigned to the Interval where the 
random variable x IS Ix (p - hu) < x S ""I For the 
truncated normal probability densltv functIOn (with 
mean 11 and standard deviatIOn u of the complete 
normal distributIOn). the quantity Q(h) IS given by 

f
+""K 

Q(h) =- (4)
u''2rr (P-hu) 

EquatIOn 4 can be compactlv rewritten as 

1 - ¢(-h) ¢(h) 
Q(h) = = (5) 

1 - ¢( r;t) ¢W/) 

It IS easy to see that Q(h) In equatIOn 5 becomes 1for r= 
(11- hu) In cases.where (p-r)/u 2: 3 9sothat¢[(p-r)/u]= 
1. equatIOn 5 becomes Q(h) = ¢(h), which IS the 
probability estimated from a complete normal 
distributIOn That IS, use of a truncated normal 
distributIOn does not Improve the reliability of esti
mates If (p-r)/u IS greater than or equal to 3 9 

We will show (equatIOn 22 and footnote 5) that (p-r)j 
u 2: (1_,8)-1/2, where {JIS the reqUired minimum proba
bility of success For {J = 095, a traditIOnal criterIOn In 

deCISIOn analysIs, (1-,8)-1/2 equals 44721 which IS 
greater than 3 9 Use of a truncated normal distribu
tIOn, therefore, does not necessarily Improve relia
bility of estimates 

So far, the mean and standard deViatIOn of a complete 
normal distributIOn are used for the measurement of 
the coefficIent of variatIOn m equatIOn 5 However, the 
expected value E(x) and variance V(x) of a random 
variable x, which has a truncated normal distributIOn 
as given In equatIOn 3, are expressed as follows (see 
appendix) 

I 
E(x) = 11+ 0, (6) 

and 

V(X) =u 2 + O[(r -11) - OJ. (7) 

where 0 = u exp [- y,( r;y )2]

-v'2iT[1 -¢ ( r;t)] 


In equatIOns 6 and 7, 0> 0, and therefore, E(X) > 11, 
V(X) < u2, and U/11 > [V(X)]1I2/E(X) That IS, the 
coefficient of variatIOn IS reduced when the mean and 
standardized deViatIOn of a truncated norlT\al distribu
tIOn are substituted for those of a complete normal 
distributIOn, respectively However, we have shown 

that the reliability of estimates obtamed by makmg 
use of Chebyshev's Inequality Increases as the coef
fiCient of variatIOn IS reduced Therefore, parameter 
estimates of a chance-constrained problem can be 
Improved by making use of the mean and variance of 
the truncated normal distributIOn 

Deterministic Equivalent 
Quadratic Programming 

A probabilistIC constraint can be converted Into a 
deterministic eqUivalenfuslng Chebyshev's Inequality 
Consider a chance-constrained programming problem 
such as the one used by Chen 

Minimize C'X, (8) 

subject to Pr(P'X 2: d) 2: {J (9) 

AX2:b (10) 

X 2: 0, (11) 

where C IS an (n x 1) vector of cost coefficients, X IS an 
'In x1) vector of chOice variables, P IS an 'In x 1) vector 
of stochastic variables, which has a truncated distri
butIOn to the left at zero, with a truncated normal 
mean vector P and variance-covariance matrix W, d 
IS a prespeclfled constant, {J IS the reqUired minimum 
probability ,of success, A IS an (m x n) technical 
coeffiCient matrix, and b IS an (m X 1) vector of 
minimum resource reqUirements 

To formulate a deterministic eqUivalent constraint, 
the probabilistic constraint 9 can be rewritten as 

Pr(P'X 2: d) = 1 - Pr (P'X S d) 

= 1 - Pr[(P'X - P'X) 2: (p'X - d)] 

2: 1 - Pr[(IP'X - P'XI) 2: (P'X - d)] 

X'WX
2: 1 - Chebyshev's Inequality, 

(P'X - d)2 

(12) 

or equivalently, 

1- X'WX 2: {JPr(P'X2:d) 2: (13)
(P'X - d)2 

The coeffiCient of variatIOn clearly must be smaller 
for a large reqUired probability of success 
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Mlnlmum costs that satIsfy the probabIlIstIc con
straInt 9 are attaIned at Pr(P'X 2: d) = {3, or more 
strIngently at 

X'WX 
1 - (P'X _d)' = {3, 

In equatIOn 13 Consequently, the problem of fIndIng 
mlnlmum costs, C'X = K, subject to the probabIlIstIc 
constraInt 9, IS equIvalent to the problem of fIndIng 
the mlnlmum of" ' 

\ 
X'WX 

(1 - {3) - 2: 0, (14)(P'X - d)2 

at any gIven cost K ThIS can be verIfIed by comparIng 
the Kuhn-Tucker condItIons from each optImIzatIOn 
problem The mInImIzatIOn of equatIOn 14 IS eqUIva
lent to the maXImIzatIOn of 

P 'X + 1.. (X'MX) < i (15)2d - 2 ' 

whereM=[W(I-{3)-I- P P'llsanegatlvesemldeflmte 
matrIx 

When the equalIty holds In equatIOn 15 for any level of 
requ Ired success, {3, the probabIlIty constraInt 9 IS met 
at mInImum cost, say K~ In cases where the InequalIty 
holds, the probabIlIty constraInt 91s satIsfIed, but at a 
hIgher cost than K~ Consequently, the folloWIng 
determInIstIc eqUIvalent QP (DEQP) problem can be 
formulated, whIch IS eqUIvalent to the CCP problem 
In equatIOns 8 through 11 

MaXImIze P'X+ l(X'MX) <..<! (16)
2 - 2 

subject to C'X = K O<K~K~ (17) 

AX~ b (18) 

X~ 0 (19) 

The optImal chOIce varIables X satIsfYIng the CCP 
problem In,equatlOns 8 through 11 may be approxI
mated by solVIng the DEQP problem In equatIOns 16 
through 19 by SImply IncreaSIng cost (K) para
metrIcally untIl the objectIve value approaches d/2 

Properties of DEQP Solutions 

To derIve the propertIes of DEQP solutIOns, we 
rewrote the objectIve functIOn In equatIOn 16 as 

Z = P'X + (1/2d)X'[(1- f3)-IW - P P'lX 
(1_f3)-1 

= P'X + -- X'WX - (l/2d) X' PP'X
2d 

~ 2"
d 

(20) 

MultIplYIng both SIdes of the InequalIty In equatIOn 20 
by 2d, we can obtaIn the foll,oWIng 

2d P'X + (1_f3)-1 X'WX - X' P P'X :s d2 (21) 

From equatIOn 21, we can obtaIn the follOWIng 
InequalIty 

P'X - d > (1-{3)-1/2 (22)(X'WX)I/2 - , 

or eqUIvalently 

P'X - (1_f3)-1/2(X'WX)1/2 2: d (22') 

When the condItIOn gIven In equatIon 22' IS met, It can 
be sala that one IS {3-percent confIdent, and that P'X 
wIll be greater than or equal to a predetermIned 
constant, d 5 

To further InvestIgate the propertIes of DEQP 
solutIOns, conSIder the LagrangIan equatIOn asSOCIated 
WIth the DEQP problem In equatIOns 16 through 19 
such that 

F(X, AI' ,'12) = P'X + (1/2d)X' [(I-f3)-IW - P P'lX 

- A I(K - C'X) - jI'ib - AX), (23) 

where jI lIS a LagrangIan multIplIer, such that AI~ 0; 
and ,'12 IS an (m X 1) vector of posItIve LagrangIan 
multIplIers 

Part of the Kuhn-Tucker condItIOns are expressed as 

of = P + 
ax 

(24) 

5The conditIOn In equatIOn 22' IS,more stringent than the one 
Imposed llY_negatlve semldeflnlleness Because M:: 
[(l_,B)-lW - P P'Lgt.1L negative semidefinite matriX X'MX:: 
(I-Il) -IX'WX - X' P P'X" 0 and therefore 

X'PP'X 2: (1-f3) I,
X'WX 

or eqUivalently piX - (l-tn 1/~X'WX)1/2 ~ 0 which 1<; Ie"" 
stringent than the condition expressed In the mequality 22' 
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(aF )X= P'X + (1-/3)-1 X'WX _(l/d)X'P P'X 
ax d 

+ APX + A'~X = 0 (25) 

X2:0 (26) 

There eXists a dual programmmg problem associated 
With the prImal programmmg problem given m 
equatIOns 16 through 19 The objective functIOn to be 
mmlmlzed m a dual programmmgproblem IS obtamed 
by simply subtractmg equatIon 25 from the La' 
granglan equatIOn 23, represented by_ 

G(X. AI' A2) = -AIK -A'2b 

+ (1/2d)X'P P'X - (1_/3)-1 X'WX (27) 
2d 

The objective value of the prImal programmmg 
problem. equatIOn 16. equals the objectIve value of the 
dual programmmg problem. equatIOn 27. atoptImum 
Equatmg equatIOns 16 and 27 results m the followmg 

P'X + (1-/3)-1 X'WX - (l/d)X'PP'X 

d 


(28) 

By multlplymg both Sides of the equalIty m equatIOn 
28'by d. and With mmor manIpulatIOn. we obtam 

d[P'X - AIK - A' 2b) = 2d P'X + (1_/3)-IX'WX 

- X'PP'X (29) 

:0; d2' (from equatlOn 21). 

or eqUivalently. 

(30) 

EquatIOn 30 shows that the mean value ofthe random 
varIable P'X must be 'less than or equal to the 

predetermmed value d plus the sum of the opportunIty 
costs of expenditures and the opportunIty costs of 
other resources 

Combmmg conditIOns m equatIOns 22' and 30 reveals 
that 

d + (1_/3)-I/2(X'WXP/2 ~ P'X ~ d + AIK + J.' 2b. (31) 

or eqUivalently. 

P'X - (1_/3)-I/2(X'WX)I/2 2: d 2: P'X - AIK - A'2b (32) 

Both sld~s of the first mequallty sign m equatIOn 32 
are IdentIcal With t~e conditIOn given m equation 22' 
However. the conditIOn Imposed by equatIOn 32 IS 
more restrICtIve than the one given m equatIOn 22' by 
requlrmg an additIonal conditIOn given m equatIOn 
30 

Conclusions 

Chebyshev's mequallty often has been used to convert 
a probabilIstiC constramt m a chance-constramed 
programmmg problem mto a determmlstlc constramt 
Researchers. however. 'have CrIticized the use of 
Chebyshev's mequallty which sometimes provides 
very rough approximatIOns for the actual probabilIty 
We have shown that the use of Chebyshev's mequallty 
provides relatively very good approximatIOns for the 
actual probabilIty when the coefficient of varIatIOn IS 
relatively very small We also have shown that the use 
of the mean and varIance of a truncated normal 
distributIOn reduces the size of the coefficient of 
varIatIOn. compared With the case of usmg the mean 
and,varIatlOn of a compJete normal distrIbutIOn We 
have also demonstrated how a chance-constramed' 
programmmg problem can be converted mto a deter
mmlstIc eqUivalent quadratiC programmmg problem 
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Appendix 1- Mean and Variance of a Truncated Normal Distribution 

1+00 +001 - Y.! (.lUi J2E(x) = xf(x)dx = e u dx. 
T T 

W,th S = (xl), and therefore udS = dx, then 

1 +00 __1_ S'I 
E(x) = ---- (/1 + uS)e 'udS 

1 - ¢( Tl) 1 u&rrkjJ 
u 

1 1 
= e 8'1, dS + U f +00 _S_. >"'dS] 

1 - ¢( Tl) -v-2,; kjJV:;:; 
ur'

1 
= r' »'"tll • ~ (,>" ._)]

1 - ¢el) Y2; kM 

u 


1 1 u (e- Y.! ( T;/)') 
= /1 + l-¢(~) V2rr[ 

E(x 2) =1 +00 x2f(x)dx = 
T 
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1 ( 1 ).~ +~ (Ji + o-S)l e (~IS'dS= 

~ 1 - ¢( T;t) LM 


0

= 

= 
1 [Jilll _¢( T;tll] + __1	__ • _2Ji_0-

LM V2ri1 - ¢( T;t) 1 - ¢( ;,. 	 ) 

+ 

1 

u=S du = dS 

Then the last term of the above equatIOn can be rewritten as follows 

1 1 
= 

l-¢( T;t) 
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- -

1 
= 

l-I/>(T;/) 

1 +00_1 

+ 
 2u -~ ~27T1 - 1/>( T;/) [ 1

u 
kM 

1 __1__ • u2 [1 -1/>( Tt)]
= 

l-I/>(Tt) 1- I/>('t) 

Therefore 

1 1 
• 

1 - I/>(';,u) 1 - 1/>( Tt) 

Consequentlv. we have the followmg 

V(x) = E(x 2) - [E(x)J" 

1 
= JJ2 + u2 + + ~(~)l"V2; u ·(.",""'1{.:::"1 - l/>(kM) 

+ 
u 


1 _u_ e' if (-"I!)2 


1 - 1/>(-ljfJ Y'2;' -,,)[ (~' 
= /1' + u 2 + 

1 
o (e' ~(7)2) 0 [~]

l-I/>(Tt) 

~7 

/1 2 



Therefore 

V(x) = a 2 + 
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