

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

The Deterministic Equivalents of Chance-Constrained Programming

C.S. Kim, Glenn Schaible, and Eduardo Segarra

Abstract Three concepts combine to show both the feasibility and desirability of incorporating probability within programming models First, the relıabulity of estimates obtained by using Chebyshev's inequality increases as variation measured by the coefficient of varıation, declines Second, the coefficient of variation can be substantiallyreduced by the use of the mean and variance of a truncated normal distribution Third. chance-constrained programming can be converted into deterministıc equivalent quadratic programming by using the parameters of a truncated normal distribution

Keywords Chance-constrained progi amming, quadratic risk programming, truncated normal distributhon, Chebyshev's inequalty

The developments of the past three decades in the theory of choice under risk or uncertainty have followed the expected mean-variance approach The decisionmaker is assumed to select among alternative activities on the basis of a utility function defined in terms of the expected mean and variance of the portfolo return Accordingly, much has been written about quadratic risk programming (5, 7, 13, 16) ${ }^{1}$ Researchers have not paid enough attention, however, to the burdensome data requirements and mathematical complexity associated with the risk and uncertainty pertaining to input-output coefficients(9)

An activity analysis model usually optımizes some objective function subject to linear constraints Coefficlents for both the objective function and the constraints are assumed to be known with certainty Chance-constraint programming (CCP), origınally proposed by Charnes and Cooper (4), makes use of individual probabilistic constraints A probability is attached to the linear constraint in such models The probabilistic constraint is sübject to some predetermined critical level, and its coefficients are assumed to be randomly distributed Probabilistic constraints of this type often appear in decision analysis in the

[^0]form of a safety-first rule in portfolio selection problems ($6,11,12,14,15$), or in problems associated with feed-grain mixture (5)

Many researchers, therefore, have attempted to convert probabilistic constraints into deterministic equivalents under various assumptions Examples include the works of Charnes (3), Pyle and Turnovsky (11), Roy (12), Telser (15), Parıs and Easter (9), Sengupta (14), and Atwood (1) Paris and Easter, and Pyle and Turnovsky obtain their criterion based on the normahty assumption with respect to the random variable Roy and Telser, in contrast, obtain deterministic equivalents of a probabilistic constraint by using Chebyshev's inequality, which does not require any knowledge about the probabilistic density function of a random variable Sengupta claims that estimates obtained from the use of Chebyshev's inequality may "sometimes" be very inefficient, in the sense that they may provide very rough approximations for the actual probability when the distribution of the random variable is known However, Sengupta farled to indicate when the use of Chebyshev's inequality provides inefficient estimates of the actual probability

Recently. Atwood and others $(1,2)$ rejected the use of Chebyshev's inequality on the grounds that the estimates are too conservative They proposed the use of lower partial moments (LPM) to obtain a deterministic equivalent of a probabilistic condition The LPM approach uses the concept of a truncated distribution, which Sengupta suggested to improve reliability of estimates However, the LPM approach makes use of the parameters of a complete normal distribution Unknown is how much the reliability of estimates is improved by use of a truncated distribution using parameters of a complete normal distribution over the use of the Chebyshev inequality ${ }^{2}$ In this paper, we first demonstrate that the reliability of estimates obtained by making use of Chebyshev's inequality increases as the coefficient of variation decreases Second, we demonstrate that, under certain conditions, use of a truncated normal distribution does'not necessarily improve the reliability of estimates, and that estimates obtained from the use of Chebyshev's in-

[^1]equality are generally reliable if the analysis includes the use of the mean and variance of a truncated normal distribution Third, we show how one can convert the CCP problem into a deterministic equivalent quadratic programming (DEQP) problem using Chebyshev's inequality Finally, we discuss the properties of DEQP solutions

A Complete Normal Distribution and Chebyshev's Inequality

The normality assumption has been widely used in economic literature, and its use is justified for many cases due to the Central Limit Theorem However, without any knowledge about the probability density function of a random variable x, we can consider Chebyshev's inequality for any $h>0$, such that

$$
\begin{equation*}
\operatorname{Pr}[|\mathrm{x}-\mu| \leq \mathrm{h} \sigma] \geq 1 \cdot \frac{1}{\mathrm{~h}^{2}} \tag{1}
\end{equation*}
$$

where μ and σ are the mean and standard deviation of the complete normal distribution

For any symmetric distribution, the quantity $\mathrm{Q}^{*}(\mathrm{~h})$. which is the probability assigned to the interval where,the random variable x is defined as $\{\mathrm{x}(\mu-\mathrm{h} \sigma)$ $\left.<x^{\prime} \leq \infty\right\}$, may be represented as

$$
\begin{align*}
\mathrm{Q}^{*}(\mathrm{~h}) & \geq 05+05\left[1-\frac{1}{\mathrm{~h}^{2}}\right] \\
& \geq 1-1 /\left(2 \mathrm{~h}^{2}\right) \tag{2}
\end{align*}
$$

It is clear from equations 1 and 2 that the probability of an observed value for a random variable x in the interval ($\mathrm{x}(\mu-\mathrm{h} \sigma$) $<\mathrm{x} \leq \infty$) approaches one as h increases infinitely, and that the probability increases faster for symmetric distributions than for nonsymmetric distributions

Table 1 shows probabilities estimated with equation 2 for $h=1,2$, . 5 By makıng use of Chebyshev's inequality, we estimated that probabilities are relatively rehable estimates for a random variable with a small coefficient of variation (σ / μ), and that the reliability increases as h increases ${ }^{3}$ Table 1 indicates that for $h>4$, the probabilistic constraint of a chanceconstrained programming, problem can be converted into a deterministic equivalent by making use of Chebyshev's inequality

[^2]Table 1-Estimated probabilities $\operatorname{Pr}(x>\mu$-h σ) for a complete normal distribution añd the use of Chebyshev's inequalitv

		$1-\frac{1}{2 h^{2}}$	Reliability of estimates with Chebyshev inequality
h	$\phi(\mathrm{h})^{1}$		
1	08413	05000	Percent
2	9772	8750	8953
3	9987	9444	9454
4	10000	9688	9688
5	10000	9800	9800

${ }^{1} \phi$ is the $C D F$ of $N(01)$

A Truncated Normal Distribution and Chebyshev's Inequality

There exist cases in which economic variables are not defined over the entire range of a normal distribution For instance, water applied in the production of irrigated cotton or the final mix of feed grains in livestock production cannot be negative, indicating that the random variable, say x, would have a truncated normal distribution to the left at $x=0$

When we assume that x has a truncated normal distribution to the left at τ, the probability density function of x is then defined as follows ((8)

$$
\begin{align*}
f(x) & =0 \\
& =\frac{\mathrm{K}}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{\mathrm{x}-\mu}{\sigma}\right)^{2}\right] \quad \begin{array}{l}
\text { if } \mathrm{x}<\tau \\
\text { if } \mathrm{x} \geq \tau
\end{array}, \tag{3}
\end{align*}
$$

where

$$
K=\frac{1}{1-\phi\left(\frac{T-\mu}{\sigma}\right)}
$$

ϕ is the cumulative density function (CDF) of the normal distribution with mean zero and unity varlance, $\mathrm{N}(0,1)$, and μ and σ are the mean and standard deviation of a complete normal distribution of x 4

To compare estımates from a truncated normal distribution and estimates obtained by using Chebyshev's inequality, we define the quantity $Q(h)$, for any $h>0$.

[^3]as the probability assigned to the interval where the random variable x is $\{\mathrm{x}(\mu-\mathrm{h} \sigma)<\mathrm{x} \leq \infty\}$ For the truncated normal probability density function (with mean μ and standard deviation σ of the complete normal distribution), the quantity $Q(h)$ is given by
\[

$$
\begin{equation*}
Q(h)=\frac{\mathrm{K}}{\sigma \sqrt{2 \pi}} \int_{(\mu-h \sigma)}^{+\infty} \mathrm{e}^{-1 / 2\left(\frac{\mathrm{x} \mu}{\sigma}\right)^{2}} \mathrm{dx} \tag{4}
\end{equation*}
$$

\]

Equation 4 can be compactly rewritten as

$$
\begin{equation*}
Q(\mathrm{~h})=\frac{1-\phi(-\mathrm{h})}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)}=\frac{\phi(\mathrm{h})}{\phi\left(\frac{\mu-\tau}{\sigma}\right)} \tag{5}
\end{equation*}
$$

It is easy to see that $\mathrm{Q}(\mathrm{h})$ in equation 5 becomes 1 for $\tau=$ $(\mu-h \sigma)$ In cases,where $(\mu-\tau) / \sigma \geq 39$ so that $\phi[(\mu-\tau) / \sigma]=$ 1. equation 5 becomes $Q(\mathrm{~h})=\phi(\mathrm{h})$, which is the probability estımated from a complete normal distribution That is, use of a truncated normal distribution does not improve the reliability of estimates of $(\mu-\tau) / \sigma$ is greater than or equal to 39

We will show (equation 22 and footnote 5) that ($\mu-\tau$)/ $\sigma \geq(1-\beta)^{-1 / 2}$, where β is the required minimum probability of success For $\beta=095$, a traditional criterion in decision analysis, $(1-\beta)^{-1 / 2}$ equals 44721 which is greater than 39 Use of a truncated normal distribution, therefore, does not necessarily improve reliabillty of estimates

So far, the mean and standard deviation of a complete normal distribution are used for the measurement of the coefficient of variation in equation 5 However, the expected value $E(x)$ and variance $V(x)$ of a random variable x, which has a truncated normal distribution as given in equation 3, are expressed as follows (see appendix)

$$
\begin{equation*}
\mathrm{E}(\mathrm{x}) \stackrel{!}{=} \mu+\mathrm{D}, \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{V}(\mathrm{x})=\sigma^{2}+\mathrm{D}[(\tau-\mu)-\mathrm{D}], \tag{7}
\end{equation*}
$$

where $\mathrm{D}=\frac{\sigma}{\sqrt{2 \pi}\left[1-\phi\left(\frac{\tau-\mu}{\sigma}\right)\right]} \exp \left[-1 / 2\left(\frac{\tau-\mu}{\sigma}\right)^{2}\right]$
In equations 6 and 7, $\mathrm{D}>0$, and therefore, $\mathrm{E}(\mathrm{X})>\mu$, $\mathrm{V}(\mathrm{X})<\sigma^{2}$, and $\sigma / \mu>[\mathrm{V}(\mathrm{X})]^{1 / 2} / \mathrm{E}(\mathrm{X})$ That is, the coefficient of variation is reduced when the mean and standardızed deviation of a truncated normal distribution are substituted for those of a complete normal distribution, respectıvely However, we have shown
that the reliability of estımates obtained by making use of Chebyshev's inequality increases as the coefficient of variation is reduced Therefore, parameter estımates of a chance-constrained problem can be improved by making use of the mean and variance of the truncated normal distribution

Deterministic Equivalent Quadratic Programming

A probabilistic constraint can be converted into a deterministic equivalent using Chebyshev's inequality Consider a chance-constrained programming problem such as the one used by Chen

$$
\begin{array}{ll}
\text { Mınımıze } & C^{\prime} X, \\
\text { subject to } & \operatorname{Pr}\left(P^{\prime} X \geq d\right) \geq \beta \\
& A X \geq b \\
& X \geq 0, \tag{11}
\end{array}
$$

where C is an ($n \times 1$) vector of cost coefficients, X is an ($n \times 1$) vector of choice variables, P is an ($n \times 1$) vector of stochastic variables, which has a truncated distribution to the left at zero, with a truncated normal mean vector $\overline{\mathrm{P}}$ and variance-covariance matrix W, d is a prespecified constant, β is the required minimum probability of success, A is an ($m \times n$) technical coefficient matrix, and b is an (m x 1) vector of minımum resource requirements

To formulate a deterministic equivalent constraint, the probabilistic constraint 9 can be rewritten as

$$
\begin{align*}
\operatorname{Pr}\left(\mathrm{P}^{\prime} \mathrm{X} \geq \mathrm{d}\right) & =1 \cdot \operatorname{Pr}\left(\mathrm{P}^{\prime} \mathrm{X} \leq \mathrm{d}\right) \\
& =1 \cdot \operatorname{Pr}\left[\left(\overline{\mathrm{P}^{\prime} \mathrm{X}} \cdot \mathrm{P}^{\prime} \mathrm{X}\right) \geq\left(\overline{\mathrm{P}}^{\prime} \mathrm{X}-\mathrm{d}\right)\right] \\
& \geq 1-\operatorname{Pr}\left[\left(\mathrm{P}^{\prime} \mathrm{X}-\overline{\mathrm{P}}^{\prime} \mathrm{X} \mid\right) \geq\left(\overline{\mathrm{P}}^{\prime} \mathrm{X}-\mathrm{d}\right)\right] \\
& \geq 1-\frac{\mathrm{X}^{\prime} \mathrm{WX}}{\left(\overline{\mathrm{P}}^{\prime} \mathrm{X}-\mathrm{d}\right)^{2}} \text { Chebyshev's inequality, } \\
& \geq \beta \tag{12}
\end{align*}
$$

or equivalently,

$$
\begin{equation*}
\operatorname{Pr}\left(P^{\prime} X \geq d\right) \geq 1 \cdot \frac{X^{\prime} W X}{\left(\bar{P}^{\prime} X-d\right)^{2}} \geq \beta \tag{13}
\end{equation*}
$$

The coefficient of variation clearly must be smaller for a large required probability of success

Minimum costs that satisfy the probabilistic constraint 9 are attained at $\operatorname{Pr}\left(\mathrm{P}^{\prime} \mathrm{X} \geq \mathrm{d}\right)=\beta$, or more strıngently at

$$
1-\frac{X^{\prime} W X}{\left(\bar{P}^{\prime} X-d\right)^{2}}=\beta,
$$

in equation 13 Consequently, the problem of finding minımum costs, $\mathrm{C}^{\prime} \mathrm{X}=\mathrm{K}$, subject to the probabilistic constraint 9 , is equivalent to the problem of finding the minimum of

$$
\begin{equation*}
(1-\beta)-\frac{X^{\prime} W X}{\left(\bar{P}^{\prime} X-d\right)^{2}} \geq 0, \tag{14}
\end{equation*}
$$

at any given cost K This can be verified by comparing the Kuhn-Tucker conditions from each optimization problem The minimization of equation 14 is equivalent to the maximization of

$$
\begin{equation*}
\overline{\mathrm{P}}^{\prime} \mathrm{X}+\frac{1}{2 \mathrm{~d}}\left(\mathrm{X}^{\prime} \mathrm{MX}\right) \leq \frac{\mathrm{d}}{2} . \tag{15}
\end{equation*}
$$

where $\mathrm{M}=\left[\mathrm{W}(1-\beta)^{-1}-\overline{\mathrm{P}} \overline{\mathrm{P}}^{\prime}\right]_{1 s}$ a negative semidefinite matrix

When the equality holds in equation 15 for any level of required success, β, the probability constraint 9 is met at minimum cost, say K_{β} In cases where the inequality holds, the probability constraint 9 is satisfied, butat a higher cost than K_{β} Consequently, the following determınıstic equivalent QP (DEQP) problem can be formulated, which is equivalent to the CCP problem in equations 8 through 11

$$
\begin{array}{ll}
\text { Maxımıze } & \overline{\mathrm{P}}^{\prime} \mathrm{X}+\frac{1}{2}\left(\mathrm{X}^{\prime} \mathrm{MX}\right) \leq \frac{\mathrm{d}}{2} \\
\text { subject to } & \mathrm{C}^{\prime} \mathrm{X}=\mathrm{K} \quad 0<\mathrm{K} \leq \mathrm{K}_{\rho} \\
& \mathrm{AX} \geq \mathrm{b} \\
& \mathrm{X} \geq 0 \tag{19}
\end{array}
$$

The optımal choice variables X satısfying the CCP problem in equations 8 through 11 may be approximated by solving the DEQP problem in equations 16 through 19 by simply increasing cost (K) parametrically until the objective value approaches $\mathrm{d} / 2$

Properties of DEQP Solutions

To derive the properties of DEQP solutions, we rewrote the objective function in equation 16 as

$$
\begin{align*}
\mathrm{Z} & =\overline{\mathrm{P}}^{\prime} \mathrm{X}+(1 / 2 \mathrm{~d}) \mathrm{X}^{\prime}\left[(1-\beta)^{-1} \mathrm{~W}-\overline{\mathrm{P}} \overline{\mathrm{P}}^{\prime}\right] \mathrm{X} \\
& =\overline{\mathrm{P}}^{\prime} \mathrm{X}+\frac{(1-\beta)^{-1}}{2 \mathrm{~d}} \mathrm{X}^{\prime} \mathrm{WX}-(1 / 2 \mathrm{~d}) \mathrm{X}^{\prime} \overline{\mathrm{P}} \overline{\mathrm{P}}^{\prime} \mathrm{X} \\
& \leq \frac{\mathrm{d}}{2} \tag{20}
\end{align*}
$$

Multiplying both sides of the inequality in equation 20 by 2 d , we can obtain the following

$$
\begin{equation*}
\text { 2d } \overline{\mathrm{P}}^{\prime} \mathrm{X}+(1-\beta)^{-1} \mathrm{X}^{\prime} \mathrm{W} X-\mathrm{X}^{\prime} \overline{\mathrm{P}} \overline{\mathrm{P}}^{\prime} \mathrm{X} \leq \mathrm{d}^{2} \tag{21}
\end{equation*}
$$

From equation 21, we can obtain the following inequality

$$
\begin{equation*}
\frac{\overline{\mathrm{P}}^{\prime} \mathrm{X}-\mathrm{d}}{\left(\mathrm{X}^{\prime} \mathrm{WX}\right)^{1 / 2}} \geq(1-\beta)^{-1 / 2} \tag{22}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\overline{P^{\prime}} \mathrm{X}-(1-\beta)^{-1 / 2}\left(\mathrm{X}^{\prime} \mathrm{W} X\right)^{1 / 2} \geq \mathrm{d} \tag{22'}
\end{equation*}
$$

When the condition given in equation 22^{\prime} is met, it can be said that one is β-percent confident, and that $\mathrm{P}^{\prime} \mathrm{X}$ will be greater than or equal to a predetermined constant, d^{5}

To further investigate the properties of DEQP solutions, consider the Lagranglan equation associated with the DEQP problem in equations 16 through 19 such that

$$
\begin{align*}
\mathrm{F}\left(\mathrm{X}, \lambda_{1}, \lambda_{2}\right) & =\overline{\mathrm{P}}^{\prime} \mathrm{X}+(1 / 2 \mathrm{~d}) \mathrm{X}^{\prime}\left[(1-\beta)^{-1} \mathrm{~W}-\overline{\mathrm{P}} \overline{\mathrm{P}}^{\prime}\right] \mathrm{X} \\
& -\lambda_{1}\left(\mathrm{~K}-\mathrm{C}^{\prime} \mathrm{X}\right)-\lambda_{2}^{\prime}(\mathrm{b}-\mathrm{AX}), \tag{23}
\end{align*}
$$

where λ_{1} is a Lagrangian multiplier, such that $\lambda_{1} \geqslant 0$, and λ_{2} is an ($\mathrm{m} \times 1$) vector of positive Lagrangian multiphers

Part of the Kuhn-Tucker conditions are expressed as

$$
\begin{array}{r}
\frac{\partial F}{\partial \mathrm{X}}=\overline{\mathrm{P}}+\frac{(1-\beta)^{-1}}{\mathrm{~d}} \mathrm{WX}-(1 / \mathrm{d}) \overline{\mathrm{P}} \overline{\mathrm{P}}^{\prime} \mathrm{X}+ \\
\lambda_{1} \mathrm{C}+\lambda_{2}^{\prime} \mathrm{A} \leq 0 \tag{24}
\end{array}
$$

[^4]\[

$$
\begin{align*}
& \left(\frac{\partial \mathrm{F}}{\partial \mathrm{X}}\right) \mathrm{X}=\overline{\mathrm{P}}^{\prime} \mathrm{X}+\frac{(1-\beta)^{-1}}{\mathrm{~d}} \mathrm{X}^{\prime} \mathrm{WX}-(1 / \mathrm{d}) \mathrm{X}^{\prime} \overline{\mathrm{P}} \overline{\mathrm{P}}^{\prime} \mathrm{X} \\
& +\lambda_{1} \mathrm{C}^{\prime} \mathrm{X}+\lambda_{2}^{\prime} \mathrm{AX}=0 \tag{25}\\
& \mathrm{X} \geq 0 \tag{26}
\end{align*}
$$
\]

There exists a dual programming problem associated with the primal programming problem given in equations 16 through 19 The objective function to be minimized in a dual programming problem is obtained by simply subtracting equation 25 from the La= grangian equation 23 , represented by.

$$
\begin{align*}
& \mathrm{G}\left(\mathrm{X}, \lambda_{1}, \lambda_{2}\right)=-\lambda_{1} \mathrm{~K}-\lambda_{2}^{\prime} \mathrm{b} \\
& \quad+(1 / 2 \mathrm{~d}) \mathrm{X}^{\prime} \overline{\mathrm{P}}^{\mathrm{P}^{\prime}} \underline{X}-\frac{(1-\beta)^{-1}}{2 \mathrm{~d}} \mathrm{X}^{\prime} \mathrm{WX} \tag{27}
\end{align*}
$$

The objective value of the primal programming problem, equation 16 , equals the objective value of the dual proǧrammıng problem, equation 27, atoptımum Equating equations 16 and 27 results in the following

$$
\begin{gather*}
\bar{P}^{\prime} X+\frac{(1-\beta)^{-1}}{d} X^{\prime} W X-(1 / d) X^{\prime} \bar{P} \bar{P}^{\prime} X \\
=-\lambda_{1} K-\lambda_{2}^{\prime} \mathrm{b} \tag{28}
\end{gather*}
$$

By multiplying both sides of the equality in equation 28^{\prime} by d, and with minor manipulation, we obtain

$$
\begin{gather*}
\mathrm{d}\left[\overline{\mathrm{P}}^{\prime} \mathrm{X}-\lambda_{1} \mathrm{~K}-\lambda_{2}^{\prime} \mathrm{b}\right]=2 \mathrm{~d} \overline{\mathrm{P}}^{\prime} \mathrm{X}+(1-\beta)^{-1} \mathrm{X}^{\prime} \mathrm{WX} \\
-\mathrm{X}^{\prime} \overline{\mathrm{P}} \overline{\mathrm{P}}^{\prime} \mathrm{X} \tag{29}
\end{gather*}
$$

$\leq \mathrm{d}^{2 \prime}$ (from equation 21),
or equivalently,

$$
\begin{equation*}
\overline{\mathrm{P}}^{\prime} \mathrm{X} \leq \mathrm{d}+\lambda_{1} \mathrm{~K}+\lambda_{2}^{\prime} \mathrm{b} \tag{30}
\end{equation*}
$$

Equation 30 shows that the mean value of the random variable $\mathrm{P}^{\prime} \mathrm{X}$ must be less than or equal to the
predetermined valued plus the sum of the opportunity costs of expenditures and the opportunity costs of other resources

Combining conditions in equations 22^{\prime} and 30 reveals that

$$
\begin{equation*}
d+(1-\beta)^{-1 / 2}\left(X^{\prime} W X\right)^{1 / 2} \leq \bar{P}^{\prime} X \leq d+\lambda_{1} K+\lambda_{2}^{\prime} b \tag{31}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\overline{\mathrm{P}}^{\prime} \mathrm{X}-(1-\beta)^{-1 / 2}\left(\mathrm{X}^{\prime} \mathrm{WX}\right)^{1 / 2} \geq \mathrm{d} \geq \overline{\mathrm{P}}^{\prime} \mathrm{X}-\lambda_{1} \mathrm{~K}-\lambda_{2}^{\prime} \mathrm{b} \tag{32}
\end{equation*}
$$

Both sides of the first inequality sign in equation 32 are identical with the condition given in equation 22^{\prime} However, the condition imposed by equation 32 is more restrictive than the one given in equation 22^{\prime} by requiring an additional condition given in equation 30

Conclusions

Chebyshev's inequality often has been used to convert a probabilistic constraint in a chance-constrained programming problem into a deterministic constraint Researchers, however, have criticized the use of Chebyshev's inequality which sometimes provides very rough approxımations for the actual probability We have shown that the use of Chebyshev's inequality provides relatively very good approximations for the actual probability when the coefficient of variation is relatively very small We also have shown that the use of the mean and variance of a truncated normal distribution reduces the size of the coefficient of variation, compared with the case of using the mean and variation of a complete normal distribution We have also demonstrated how a chance-constrained' programming problem can be converted into a deterministic equivalent quadratic programming problem

Appendix 1-Mean and Variance of a Truncated Normal Distribution

$\mathrm{E}(\mathrm{x})=\int_{\tau}^{+\infty} \mathrm{xf}(\mathrm{x}) \mathrm{dx}=\int_{\tau}^{+\infty} \frac{\mathrm{X}\left[\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)}\right]}{\sigma \sqrt{2 \pi}} \mathrm{e}^{-1 / 2\left(\frac{\mathrm{x}-\mu}{\sigma}\right)^{2}} \mathrm{dx}$.
With $S=\left(\frac{\mathrm{x}-\mu}{\sigma}\right)$, and therefore $\sigma \mathrm{d} S=\mathrm{dx}$, then

$$
\begin{aligned}
& \mathrm{E}(\mathrm{x})=\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)} \int_{\frac{\tau-\mu}{\sigma}}^{+\infty} \frac{1}{\sigma \sqrt{2 \pi}}(\mu+\sigma \mathrm{S}) \mathrm{e}^{\mathrm{s}^{2 / 2}} \sigma \mathrm{dS} \\
& =\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)}\left[\mu \int_{\frac{\tau-\mu}{\sigma}}^{+\infty} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{\left.\mathrm{S}^{2 / 2} \mathrm{dS}+\sigma \int_{\frac{\tau-\mu}{\sigma}}^{+\infty} \frac{\mathrm{S}}{\sqrt{2 \pi}} \mathrm{e}^{\mathrm{s}^{2 / 2} \mathrm{dS}}\right]} \begin{array}{l}
=\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)}\left[\mu\left[1-\phi\left(\frac{\tau-\mu}{\sigma}\right)\right]+\frac{\sigma}{\sqrt{2 \pi}}\left(\left.\mathrm{e}^{\mathrm{S}^{2 / 2}}\right|_{\frac{\tau-\mu}{\sigma}} ^{+\infty}\right)\right] \\
=\mu+\left[\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)}\right] \frac{\sigma}{\sqrt{2 \pi}}\left(\mathrm{e}^{-1 / 2\left(\frac{\tau-\mu}{\sigma}\right)^{2}}\right)
\end{array}, \$ \mathrm{l}\right.
\end{aligned}
$$

$$
\mathrm{E}\left(\mathrm{x}^{2}\right)=\int_{T}^{+\infty} \mathrm{x}^{2 \mathrm{f}(\mathrm{x}) \mathrm{dx}=\int_{T}^{+\infty} \mathrm{X}^{2}\left[\frac{1}{1-\phi\left(\frac{T-\mu}{\sigma}\right)}\right.} \frac{\sqrt{2 \pi}}{1} \mathrm{e}^{-1 / 2\left(\frac{\mathrm{x}-\mu}{\sigma}\right)^{2} \mathrm{dx}}
$$

$$
=\frac{1}{\sqrt{2 \pi}}\left(\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)}\right) \int_{\frac{\tau-\mu}{\sigma}}^{+\infty}(\mu+\sigma \mathrm{S})^{2} \mathrm{e}^{\left(1 / 2 / \mathrm{S}^{2} \mathrm{dS}\right.}
$$

$$
=\frac{1}{1-\phi\left(\frac{T-\mu}{\sigma}\right)}\left[\int_{\frac{T-\mu}{\sigma}}^{+\infty} \frac{\mu^{2}}{\sqrt{2 \pi}} \mathrm{e}^{-(/ 2 / 2) \mathrm{S}^{2}} \mathrm{dS}+2 \mu \sigma \int_{\frac{T-\mu}{\sigma}}^{+\infty} \frac{\mathrm{S}}{\sqrt{2 \pi}} \mathrm{e}^{-(/ 2)) \mathrm{S}^{2}} \mathrm{dS}\right.
$$

$$
\left.+\sigma^{2} \int_{\frac{T-\mu}{\sigma}}^{+\infty} \frac{\mathrm{S}^{2}}{\sqrt{2 \pi}} \mathrm{e}^{-(\%) / 2 \mathrm{~S}^{2}} \mathrm{dS}\right]
$$

$$
=\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)}\left[\mu^{2}\left[1-\phi\left(\frac{\tau-\mu}{\sigma}\right)\right]\right]+\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)} \cdot \frac{2 \mu \sigma}{\sqrt{2 \pi}}\left(-\left.\mathrm{e}^{-\mathrm{S}^{2} / 2} \mathrm{dS}\right|_{\frac{\tau-\mu}{\sigma}} ^{+\infty}\right)
$$

$$
+\frac{1}{1-\phi\left(\frac{r-\mu}{\sigma}\right)}\left[\frac{\sigma^{2}}{\sqrt{2 \pi}} \int_{\frac{\tau-\mu}{\sigma}}^{+\infty} \mathrm{S}^{2} \mathrm{e}^{\left(y_{2}\right) \mathrm{S}^{2} \mathrm{dS}}\right]
$$

$$
=\mu^{2}+\frac{1}{1 \cdot \phi\left(\frac{\tau-\mu}{\sigma}\right)} \cdot \frac{2 \mu \sigma}{\sqrt{2 \pi}}\left(\mathrm{e}^{-1 / 2\left(\frac{\tau-\mu}{\sigma}\right)^{2}}\right)+\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)}\left[\frac{\sigma^{2}}{\sqrt{2 \pi}} \int_{\frac{\tau-\mu}{\sigma}}^{+\infty} \mathrm{S}^{2} \mathrm{e}^{-\left(\frac{1}{\sigma}\right) \mathrm{S}^{2} \mathrm{dS}}\right]
$$

$$
\begin{aligned}
\text { Lst } v & =-e^{-S^{2 / 2}} & & d v=S e^{-S^{2} / v} d S \\
u & =S & & d u=d S
\end{aligned}
$$

Then the last term of the above equation can be rewritten as follows

$$
\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)}\left[-\frac{\sigma^{2}}{2 \pi} \int_{\frac{\tau-\mu}{\sigma}}^{+\infty} \mathrm{S}^{2} \mathrm{e}^{-(1 / 2) \mathrm{S}^{2}} \mathrm{dS}\right]=\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)}\left[\frac{\sigma^{2}}{\sqrt{2 \pi}}\left(-\left.\mathrm{Se}^{-\mathrm{S}^{2 / 2}}\right|_{\frac{\tau-\mu}{\sigma}} ^{+\infty}\right) \frac{\sigma}{\sqrt{2 \pi}} \int_{\frac{\tau-\mu}{\sigma}}^{+\infty} \mathrm{e}^{-(1 / 2) \mathrm{S}^{2} \mathrm{dS}}\right]
$$

$$
\begin{aligned}
& =\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)} \cdot \frac{\sigma^{2}}{\sqrt{2 \pi}} \cdot\left(\frac{\tau-\mu}{\sigma}\right) \cdot\left(\mathrm{e}^{-1 / 2\left(\frac{\tau-\mu}{\sigma}\right)^{2}}\right) \\
& +\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)}\left[\sigma^{2} \int_{\frac{\tau-\mu}{\sigma}}^{+\infty} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\mathrm{s}^{2 / 2} \mathrm{ds}}\right] \\
& =\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)} \cdot \frac{\sigma^{2}}{\sqrt{2 \pi}} \cdot\left(\frac{\tau-\mu}{\sigma}\right) \cdot\left(\mathrm{e}^{-1 / 2\left(\frac{\tau-\mu}{\sigma}\right)^{2}}\right)+\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)} \cdot \sigma^{2}\left[1-\phi\left(\frac{\tau-\mu}{\sigma}\right)\right]
\end{aligned}
$$

Therefore

$$
\mathrm{E}\left(\mathrm{x}^{2}\right)=\mu^{2}+\sigma^{2}+\frac{1}{1 \cdot \phi\left(\frac{r-\mu}{\sigma}\right)} \cdot \frac{2 \mu \sigma}{\sqrt{2 \pi}}\left(\mathrm{e}^{-1 / 2\left(\frac{\tau-\mu}{\sigma}\right)^{2}}\right)+\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)} \cdot \frac{\sigma^{2}}{\sqrt{2 \pi}} \cdot\left(\frac{\tau-\mu}{\sigma}\right) \cdot\left(\mathrm{e}^{-1 /\left(\frac{\tau-\mu}{\sigma}\right)^{2}}\right)
$$

Consequently, we have the following

$$
V(x)=E\left(x^{2}\right)-[E(x)]^{2}
$$

$$
\begin{aligned}
& =\mu^{2}+\sigma^{2}+\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)} \cdot\left(\mathrm{e}^{-1 / 2\left(\frac{\tau-\mu}{\sigma}\right)^{2}}\right) \cdot\left[\frac{2 \mu \sigma}{\sqrt{2 \pi}}+\frac{\sigma^{2}}{\sqrt{2 \pi}}\left(\frac{\tau-\mu}{\sigma}\right)\right] \\
& \cdot\left[\mu+\left[\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)}\right] \frac{\sigma}{\sqrt{2 \pi}}\left(\mathrm{e}^{-1 / 2\left(\frac{\tau-\mu}{\sigma}\right)^{2}}\right)\right]^{2} \\
& =\mu^{2}+\sigma^{2}+\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)} \bullet\left(\mathrm{e}^{-1 / 2\left(\frac{\tau-\mu}{\sigma}\right)^{2}}\right) \cdot\left[\frac{(\mu+\tau) \sigma}{\sqrt{2 \pi}}\right] \\
& -\mu^{2}-\left[\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)}\right] \frac{2 \mu \sigma}{\sqrt{2 \pi}}\left(\mathrm{e}^{-1 / 2\left(\frac{\tau-\mu}{\sigma}\right)^{2}}\right) \cdot\left[\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)} \bullet \frac{\sigma}{\sqrt{2 \pi}}\left(\mathrm{e}^{-1 / 2\left(\frac{\tau-\mu}{\sigma}\right)^{2}}\right)\right]^{2}
\end{aligned}
$$

Therefore

$$
\mathrm{V}(\mathrm{x})=\sigma^{2}+\frac{(\tau-\mu)}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)} \cdot\left[\frac{\sigma}{\sqrt{2 \pi}}\right] \cdot\left(\mathrm{e}^{-1 / 2\left(\frac{\tau-\mu}{\sigma}\right)^{2}}\right)-\left[\frac{1}{1-\phi\left(\frac{\tau-\mu}{\sigma}\right)} \cdot \frac{\sigma}{\sqrt{2 \pi}} \cdot\left(\mathrm{e}^{-1 / 2\left(\frac{\tau-\mu}{\sigma}\right)^{2}}\right)\right]^{2} .
$$

References

1 Atwood, Joseph "Demonstration of the Use of Lower Partial Moments to Improve Safety-First Probability Limits." Amencan Jownal of Agricultural Economics Vol 67, 1985, pp 787-93

2 Atwood, Joseph, Myles J Watts, and Glenn A Helmers "Chance-Constrained Financing as a Response to Financial Risk." Americ an Jour nal of Agricultwal Economics Vol 70, 1988, pp 79-89

3 Charnes. A "Deterministic Equivalents for Optımızıng and Satısfying Under Chance-Constraints." Operations Reseaich Vol 11, 1963, pp 18-39

4 Charnes, A, and W W Cooper "Chance-Constrained Programming," Management Science Vol 6. 1959, pp 73-79

5 Chen, Joyce "Quadratic Programming for LeastCost Feed Formulations Under Probabilistic Protein Constraints " American Journal of Agicultural Economics Vol 55, 1973 pp 175-83

6 Day, R H, D J Aıgner, and K R Smith "Safety Margins and Profit Maximization in the Theory of the Firm." Journal of Political Economics Vol 79, 1971, pp 1,293-1,301

7 Freund, R J "The Introduction of Risk into a Programming Model," Econometrica Vol 24. 1956 pp 253-63

8 Meyer, Paul L Introductory Probability and Statistıcal Applicatıons Addison-Wesley Publishing Co , 1966

9 Paris, Q, and CD Easter "A Programming Model with Stochastic Technology and Prices The Case of Australian Agriculture," American Journal of Agicultual Economics Vol 67, 1985, pp 120-29

10 Parzen, Emanuel Modern Probability Theory and Its Apphcatıons New York John Wiley and Sons. Inc . 1960

11 Pyle, David H , and S J Turnovsky "Safety-First and Expected Utility Maxımization in MeanStandard Deviation Portfolio Analysis," Revnew of Economics and Statistics Vol 52, 1970, pp 75-81

12 Roy, A D "Safety-First and the Holding of Assets," Econometrica Vol 20 1952, pp 431-49

13 Scott, J T , and C B Baker "A Practical Way to Select an Optımum Farm Plan Under Rısk," American Jounal of Agricultural Economics Vol 54, 1972, pp 657-60

14 Sengupta, J K "Safety-First Rules Under ChanceConstrained Linear Programming," Operations Research Vol 17, 1969, pp 112-32

15 Telser, L "Safety-First and Hedgıng," Rerıew of Economuc Studies Vol 22, 1955 pp 1-16

16 Wiens, T B "Peasant Risk Aversion and Allocative Behavior A Quadratic Programming Experıment." American Journal of Agnicultual Economics Vol 58, 1976, pp 629-35

[^0]: Kim and Schaible are economists with the Resources andTechnology Division, ERS, Eduardo Segarra is an assistant professor with the Department of Agricultural Economics Texas Tech University, Lubbock The authors thank Kuo S Huang for his review of early drafts of this manuseript
 ${ }^{1}$ Italicized numbers in parentheses cite sources histed in the References section at the end of this article

[^1]: ${ }^{2}$ The reliabilite of an estimate is defined as the probability of the absolute value of the difference between the estimate and its true value as being less than a predetermined small number

[^2]: ${ }^{3}$ Parzen (10) showed for a two sided confıdence level, $\operatorname{Pr}(|X-h \mu|)$ $\geq \beta$, for a complete normal distribution, that estimates obtaned using Chebyshev's inequality converge to actual probability as h increases

[^3]: ${ }^{4}$ Meyer (8)erroneously defined K as the quantity $1-\phi\left(\frac{T-\mu}{\sigma}\right)$, rather than the quantity $K=1 /\left[1-\phi\left(\frac{\tau-\mu}{\sigma}\right)\right]$

[^4]: ${ }^{5}$ The condition in equation 22 ' is more stringent than the one imposed by_negative semidefiniteness Because $\mathrm{M}=$ $\left[(1 \cdot \beta)^{-1} \mathrm{~W}-\mathrm{P} \bar{P}^{\prime}\right]$ Is a negative semidefinite matrix $\mathrm{X}^{\prime} \mathrm{MX}=$ $(1-\beta)^{-1} \mathrm{X}^{\prime} \mathrm{WX}-\mathrm{X}^{\prime} \mathrm{P} \mathrm{P}^{\prime} \mathrm{X} \leq 0$ and therefore

 $$
 \frac{\mathrm{X}^{\prime} \overline{\mathrm{P}}^{\overline{\mathrm{P}}^{\prime} \mathrm{X}}}{\mathrm{X}^{\prime} \mathrm{WX}} \quad \geq(1-\beta)^{1}
 $$

 or equivalently $\bar{P}^{\prime} X-(1-\beta)^{1 / 2}\left(X^{\prime} W X\right)^{1 / 2} \geq 0$ which is less stringent than the condition expressed in the inequality 22^{\prime}

