

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Staff Paper Series

STAFF PAPER P74-10
JUNE 1974
Beef Waste Management Economics for Minnesota Farmer-Feeders

by
Carl L. Pherson

Department of Agricultural and Applied Economics

University of Minnesota
Institute of Agriculture
St. Paul, Minnesota 55101

Beef Waste Management Economics for Minnesota Farmer-Feeders

Carl L. Pherson

Staff Papers are published without formal review within the Department of Agricultural and Applied Economics.

Beef Waste Management Economics for Minnesota Farmer-Feeders* by Carl L. Pherson**

Southwestern Minnesota farmers who feed beef cattle are evaluating their waste management systems in terms of compliance with 1971 Minnesota Pollution Control Agency regulations. Feedlots do not comply with current regulations if located or constructed in a manner which allows rainfall or snowmelt runoff to carry animal excreta to public surface or ground water supplies. A runoff control device, which usually includes diversion terraces to stop unpolluted runoff from entering the lot and a detention pond to prevent effluent runoff from leaving the lot, may be built. This may allow the farmer to use his present beef facilities and maintain the same size of operation. The direct cost (defined as cash outlays) of pollution control compliance would then be the sum of annual fixed and variable costs of the runoff control device. Fixed costs include depreciation, interest, and any taxes, insurance, or repairs for runoff control structures or equipment. Variable costs include fuel, lubrication, repairs, and hired labor needed to pump or clean the runoff control device.

[^0]The profit maximizing farmer will want to consider alternative waste management systems and associated housing technologies. Alternative systems may constitute a better choice than runoff control devices in terms of providing: better pollution protection, the same protection for less cost, or increased farm-feedlot profits. Indirect costs of pollution control become important considerations when selecting a waste management system. For example, in Southwestern Minnesota, fall plowing and early spring planting are essential for optimum corn yields. A farmer incurs an indirect cost when he is forced to haul waste or pump a detention pond when those tasks compete for scarce plowing or planting time. Foregoing the opportunity to use scarce time in a more profitable manner reduces total business revenues.

Two situations are relevant to the Southwestern Minnesota corn-soybean farmer who feeds beef cattle. Situation I concerns currently operating feedlots where pollution control is necessary but no major change in fecding faciluties or cropping program is considered. Situation II concerns feedlot operators who are beginning, expanding, remodeling, or who cannot control runoff in their current location. The existence of both direct and indirect costs emphasizes the need to study the waste management-housing system in its relation to the entire farm-feedlot business. The main thrust of the study was to develop a method to determine optimal farmer response to Minnesota regulations. It is left for others to use this model to speculate on alternative regulations and guidelines.

Objectives of this study include determining: (1) direct costs and indirect (opportunity) costs of complyang with regulations, (2) net return maximizing alternative systems, (3) optimal time schedules for waste handling, (4) marginal value or cost of beef wastes, (5) effects of system choice on field crop
selection and crop operation timing, and (6) effects of Set-Aside acres or rotating disposal field.

COSTS OF RUNOFF CONTROL ON ESTABLISHED FEEDLOTS

To determine direct costs of meeting pollution control regulations on open lots and conventional drylots, investment in runoff control structures, investment in pumping equipment, and operating expenses must be estimated. It is assumed in Situation I that the farmer-feeder is satisfied with his feed1ot design and capacity and that the number of cattle fed and feed efficiency remain constant. Adequate labor and field time is available to haul whatever additional solid waste is collected and there is nearby cropland suitable for disposal of liquids.

One way to determine investment costs for runoff control structures would be to calculate a number of estimates for so-called "typical" lots located on "typical" topography with "typical" soil and subsoil. An engineer would systematically calculate volumes of excavation or earth fill needed for: a) a diversion terrace to keep unpolluted water off the lot; b) a settling channel or settling basin to slow runoff enough to allow solid particles to settle out of suspension; c) a detention pond with design capacity for six months runoff; and d) any lot grading needed to obtain uniform lot slopes. Engineering fees and charges for all earthwork could be added to costs for pipe or drain tile, a sump, a detention pond fence, seed, and miscellaneous items. However, actual cost is extremely farm specific, and no one type of control device with specified components will fit all lots in a given size category.

For this study, itemized runoff control structure investment costs were obtained for fourteen Southwestern Minnesota beef feedlots with one-time lot
size capacities ranging from 100 to 1500 head. All these installations were in operation by fall 1971, and had been designed according to Soil Conservation Service specifications, which meet MPCA regulations. Total investment (estimated by least squares linear regression) was approximately $\$ 1120 \mathrm{plus} \$ 3.20$ per head of capacity. The average size lot in this sample, 592 head, needed a $\$ 3018.57$ runoff control device. In this small sample only 39 percent of the variation in investment cost is associated with variation in feedlot capacity. This again emphasizes the fact that while average investment costs may be suitable for a general economic study of runoff control investment, individual farm planners must obtain specific estimates. The estimated investment costs in Table 1 can probably be considered a lower bound for future installations because construction costs are increasing and newer plans are incorporating additional features.

For most Southwestern Minnesota feedlot applications, disposal alternatives for liquid runoff are limited to pumping on cropland. Evaporation rates are normally too low in Southwestern Minnesota to expect ponds to be emptied by evaporation only and, of course, design should hold seepage to a minimum. A wide range of pumping and distribution equipment could be selected for feedlot runoff control, but the most common systems are adapted from sprinkler irrigation technology. Original investment costs for one possible disposal system are listed in Table 2.

Some of the high fixed costs of spray disposal equipment may be reduced in a number of ways: (1) Used equipment is often available from other areas of the state where irrigation technology is changing to center-pivot equipment. (2) Some companies perform custom pumping, charging $\$ 15$ to $\$ 20$ per pumping hour depending on equipment capacity. (3) A number of farmer-feeders may buy this equipment jointly, thus spreading these fixed costs over a large number of
cattle. (4) The farmer who has access to water for irrigation may use the pumping equipment mainly for that purpose and thus allocate only a portion of the fuxed cost to beef waste disposal.

Operating costs--Calculations of direct costs of pollution control for Southwestern Minnesota feedlots are shown in Table 1. Operating costs of the disposal system include fuel, lubrication, and repairs on the tractor power unit at $\$.03$ per horsepower hour and $\$.15$ per hour for repair and lubrication of the pump and gun. The 100 head producer will find custom hiring at $\$ 18$ per hour costs less than owning and operating the equipment.

Assuming that there must be disposal of one-half of the 26 inches of annual precipitation (9) from the entire drainage area, total annual runoff to be pumped for each lot size can be determined. Half of this quantity will be pumped in spring and half will be pumped in late fall, according to SCS design calculations. Some operators can be expected to vary this schedule according to their particular need for supplemental irrigation. The collection basin should be emptied in late fall in order to receive all snowmelt. One will note that runoff is primarıly a function of precıpitation over the entire drainage area. Varyıng the number of anımals within a given lot will not significantly alter the volume to be pumped.

The solids collected in the settling channel or settling basin wall be removed annually, usually in September, when corn silage harvest provides land for spreading, or during July, if land is available for spreading. Solids removed from the setting basin are assumed to be .25 ton (33 percent dry matter) per head capacity on open lots and conventional drylots (9). The variable cost of hauling this solid waste is $\$.38$ per wet ton. ${ }^{1}$

[^1]Table 1. Summary of Direct Costs of Runoff Control on Beef Feedlots in Southwestern Minnesota.*

	As Constructed in Survey				Limited to 250 Square Feet per Head			
	Head Capacity				Head Capacrty			
	100	500	1000	1500	100	500	1000	1500
PHYSTCAL DATA								
Lot size, acres	---	---	---	---	$.6^{12}$	2.9	5.7	8.6
Drainage area, acres	. 92^{1}	$4.46{ }^{2}$	8.08	11.69	$.75{ }^{13}$	3.5	6.8	10.3
Runoff, cubic feet ${ }^{3}$	45415	210461	381283	551634	35393	165165	320892	486057
Pumping time, hours ${ }^{4}$	11	53	95	138	9	42	80	122
INVESTMENT COSTS								
Runoff control device ${ }^{5}$	\$1439	\$2722	\$4325	\$5928	\$1439	\$2722	\$4325	\$5928
Pumping equipment ${ }^{6}$	---	3565	3565	3565	--	3565	3565	3565
Total investment cost	$\$ 1439$	$\$ 6287$	$\$ 7890$	$\$ 9493$	$\$ 1439$	\$6287	\$7890	\$9493
	$(14.39)^{*}$	(12.57)	(7.89)	(6.33)	(14.39)	(12.57)	(7.89)	(6.33)
ANNUAL COST CALCULATIONS								
Pump operation ${ }^{7,8}$	\$198	\$ 80	\$143	\$207	\$162	\$ 63	\$120	\$183
Fixed cost of pump (owned)	---	428	428	428	T162	428	428	428
Annual pumping \mathcal{E} equipment cost	\$198	\$508	\$571	\$635	\$162	\$491	\$548	\$611
Labor charge, \$2 per hour	---	106	190	276	---	84	160	244
Annual pumping cost incl. labor	\$198	\$614	\$761	$\$ 911$	$\$ 162$	\$575	\$708	\$855
Fixed cost, control device ${ }^{9}$	144	272	433	593	144	272	433	593
Annual cost of runoff handling	\$342	\$886	\$1194	\$1504	\$306	\$847	\$1141	\$1448
	(3.42)	(1.77)	(1.19)	(1.00)	(3.06)	(1.69)	(1.14)	(.96)
Solld removal variable cost ${ }^{10}$	9	47	95	142	9	47	95	142
Labor charge, \$2 per hour	13	63	125	188	13	63	125	188
Annual cost of runoff control	\$364	\$996	\$1414	\$1834	\$328	\$957	\$1361	\$1778
	(3.64)	(1.99)	(1.41)	(1.22)	(3.28)	(1.91)	(1.36)	(1.19)
UNDER CONDITIONS WHERE WASTE HAS VALUE IN CROP OPERATION								
Manure credit ${ }^{11}$	45	223	445	667	45	223	445	667
Annual cost of runoff control	\$319	\$773	\$969	\$1167	\$283	\$734	\$916	\$1111
	(3.19)	(1.55)	(.97)	(.78)	(2.83)	(1.47)	(.92)	(.74)

[^2]${ }^{1}$ Estimated at 400 square feet per head total area serviced by runoff control device.
${ }^{2}$ Least squares linear regression estimate: Area serviced, acres $=$ $.848+.00723 x$ number of head. One-time lot capacity is associated with 69 percent of the variation in area serviced by the runoff control device. Survey of systems in operation by spring 1972, Southwestern Minnesota.
${ }^{3}$ Assuming average of 26 inches of annual precipitation with 50 percent collected in basin. $13 / 12$ acre ft. x $43,560 \mathrm{ft} .{ }^{2} /$ acre $=47,190 \mathrm{ft} .{ }^{3} / \mathrm{acre}$.
${ }^{4}$ At 500 gallons per minute, 30,000 gallons are pumped per hour or 4000 cubic feet per hour.
${ }^{5}$ Least squares linear regression estimate: cost $=\$ 1118.52+3.21 \mathrm{x}$ number of head. No value added for land acres covered by control device.
${ }^{6}$ See Table 2, custom hired for 100 head capacity lots.
${ }^{7}$ Custom hired @ \$18/haur for 100 head capacity lots.
${ }^{8}$ Fuel, lubrication, repairs on tractor are 45 horsepower $\mathbf{x} \$.03 /$ horsepower hour $=\$ 1.35+\$.15$ pump repair $=\$ 1.50 /$ hour for $500,1000,1500$ head capacity lots.
${ }^{9}$ Twenty year payback, elght percent interest on remaining value plus taxes and maintenance.
${ }^{10}$ Runoff control device collects addxtional. 25 ton of solids per head (see Table 5). Directly associated costs of removal calculated in Table 8. Four tons per hour can be hauled with conventional spreader and tractor loader. Fixed costs lgnored because equipment is necessary with or without runoff control device.
${ }^{11} \mathrm{~N}=101 \mathrm{~b} . /$ ton @ $\$.06, \mathrm{P}_{2} \mathrm{O}_{5}=7 \mathrm{lb} . /$ ton @ $\$.09$ and $\mathrm{K}_{2} \mathrm{O}=11 \mathrm{lb} . /$ ton @ $\$.05$. Manure credit of $\$ 1.78$. Nutrients in pumped effluent account for leaching losses in the recovered solids. See Table 6 for fertilizer values.
${ }^{12}$ At $250 \mathrm{ft} .{ }^{2} /$ head $=175$ head/acre.
${ }^{13}$ Area enclosed by diversion terraces. Driveways, sorting pens, etc. assumed to take 25 percent more space on 100 head lot, 20 percent more space on larger lots. See Butchbaker (3) p. 128.

Table 2. Investment in Pumping and Big Gun Spray Disposal Equipment for Runoff Control Device.

[^3]No fixed costs for spreader and loader equipment are allocated because this equipment is normally already owned by the feedlot operation to haul wastes from the lot.

The lower portion of Table 1 shows the estimate of the fertilizer nutrient value in the recovered wastes. The calculation used N, P, and K estimates for fall spread solid beef wastes from steers fed grain rations. ${ }^{1}$ Leaching and volatillzation losses are offset by the nutrients pumped on fields in the liquid runoff. Using the nutrient value as a manure credit reduces the annual cost of runoff control to $\$ 3.19, \$ 1.55, \$.97$ and $\$.78$ per head for the $100,500,1000$, and 1500 head capacıty feedlots, respectively.

The second section of Table 1 reports calculations for less spacious lots. Investment costs are assumed to be the same as those estimated from the 1972 survey because more site preparation would be necessary when reducing the typical Southwestern Minnesota feedlot to a 250 square feet per animal size. The end result of this calculation $1 s$ a substantial reduction in pumping costs for the smaller size lots. This reduces annual cost of runoff control (solid and liquid) after manure credit to $\$ 2.83, \$ 1.47, \$.92$, and $\$.74$ per head for the $100,500,1000$, and 1500 head capacity feedlots, respectively.

ECONOMICS OF ALTERNATIVE WASTE MANAGEMENT-HOUSING SYSTEMS

To accomplish the remainang objectives, a profit maximizing linear programming model was developed for a 500 acre corn-soybean farm having onetame capacity of 500 head in alternative housing systems. Determining the most profitable farm organızation requires three major steps: (1) determining

[^4]the quantity of available resources; (2) budgeting resource requirements (land, labor, field days, storage space, cash costs) and expected income from each crop and cattle feeding enterprise or activity; and (3) solving for the combination of enterprises which maximize net revenue within the limits of avallable resources. This is accomplished by using a computer program designed to systematically solve the mathematical statements developed. [See (1, 6, 9) for theory and practical aspects of applying linear programming.]

Resources: Critical resources include cropland, feeding facilities, field time, and labor.

Feedlot facility components used in this study are summarized in Table 3. Open lots have 250 square feet of lot surface per animal including two earthen mounds with 25 square feet of mound surface per animal. Each mound is topped by a 200 foot long windbreak fence constructed of eight inch boards with one inch spacing. A ten foot wide concrete apron is constructed next to wooden fenceline feedbunks. Four row wire rope fencing surrounds the lot and divides the lot so that two groups of 250 head may be fed. The runoff control device and pumping equipment investment on the open lot corresponds to the investment reported in Table 1.

The partially-paved conventional drylot includes a pole frame barn, open to the south or east, with 17 square feet of bedded area (packed earth floor) per head. Cattle are fed from a fenceline bunk with a concrete apron similar to the open lot. Only 100 square feet of lot space per animal is subject to runoff, allowing construction of a smaller runoff control device. The conventional feedlots, for which runoff control investment costs were obtained, typically allowed as much or more lot space per head as the open lot described in the preceding paragraph. However, concrete aprons, a concrete walkway, and
Table 3. Specifications and Investment Costs for Feedlot Facılıty Components, ${ }^{1}$ 1973, 500 Head Capacity Lots

Item	Open lot	Conventional Drylot	Manure scrape unit	Slotted Floor unit
	Specifıcations			
Building space/head (sq.ft.)	--	17 bedded	17 bedded	17
Bunk space/head (ft.)	1	1	. 75	. 75
Building dimensions (ft. x ft.)	--	40×215	40×375	40×375
Lot space/head (sq.ft.)	250	100	12 (a11ey)	--
Lot dimension (ft. x ft.)	250×500	200×250	--	--
Concrete dimension (ft. x ft.)	10×500	10×700	16×375	24×375 (slats)
All weather driveway (ft. xft.)	16×550	16×550	16×400	14×400
	Investment Costs			
Land	\$ 1285	\$ 734	\$ 184	\$ 184
Pole frame building @ \$1.25/sq.ft.	--	10750	18750	18750
Concrete @ \$.40/sq.ft.	2000	2800	2400	--
Slats @ \$1.25/sq.ft.	--	--	--	11250
Pit	--	--	--	19600
Bunks, treated wood @ \$5.00/ft.	2500	2500	1875	1875
Driveway @ \$1.00/ft.	550	550	400	400
Mounds	1350	--	--	--
Windbreak fence @ \$3.00/ft.	1200	--	--	--
Fence @ \$1.30/ft. and \$1.70/ft.	1625	572	204	122
Gates @ \$50.00	150	150	250	150
Waterers and pipe	500	500	500	500
Electric service	100	100	200	200
Working corral	1500	1500	1500	500
Total investment	\$12760	\$20156	\$26263	\$53531
Average investment cost per head	\$26	\$40	\$53	\$107
Annual cost ${ }^{2}$	\$1393	\$2215	\$2888	\$5887

[^5] ${ }^{2}$ Twenty year life, with straight line depreciation to 10 percent salvage value, 8 percent interest, 1.3 percent tax and insurance, and 1.5 percent repairs. Land cost determined separately at 8 percent interest on purchase price of $\$ 367$ per acre plus $\$ 8.13$ tax per acre. Other costs adapted from (4) using Minnesota cost levels.
bedded shelter allow the cattle to avoid the muddy lot surface during wet weather. Therefore less lot space is provided in this study.

The manure scrape unit, which has no outdoor lot or runoff control device, has 17 square feet of bedded area (packed earth floor) per anmal. The concrete scrape alley is 16 feet wide and bunk space is nine inches per head, allowing another 12 square feet of area per head. The fenceline feedbunk is located along the open side of the building.

In each of the above facilities, solid waste is handled with tractor frontend loaders and conventional spreaders. The concrete aprons and the manure scrape alley are cleaned every ten days. Some operators may use a two-week cleaning schedule.

The slotted floor unit is also open to the south or east. The slotted floor area is 24 feet wide and the fenceline feedbunk and driveway take the remaining 16 feet. The concrete pit is eight feet deep although some operators prefer ten foot pit depth. The pit $1 s$ divided by crosswalls into 40 foot sections for effective agitation because no area of the pit should be further than 30 feet from the discharge of the manure pump during agitation. The crosswalls may also serve to brace outer walls. Sections of slats are removable to permit the pump to be lowered to a shallow sump in each smaller pit. After agitation, the liquid waste is pumped into tractor-drawn tank wagons for distribution on cropland.

Waterıng facilities include plumbing, waterers, and concrete bases for the waterers in each facılity. The working corral facilıties are similar for each unit, except in the slotted floor building where the driveway serves as a holding area and chutes are the only additional expense. Fenceline feeding,
rather than auger feeding, is used in each of the facilities simply because lot size may be expanded more readıly. Storage and feeding equipment is the same for all systems.

Field time is hours avallable for actual field operation after regular servicing and maintenance. It is the time avallable for productive work and ignores overhead, set-up and clean-up tıme. The study assumes a 12 hour field tıme day. Five spring time perıods, Aprıl 1-June 4, and sıx fall time periods, September 1-November 30, are considered cratical in this study. Bolsvert (2) asserts that field time is a heterogeneous resource because certain field operations can be performed only during certain times of the production period. The sequence of these operations is important, for example, land must be prepared before planting can begin. Untimely operations reduce yields as will be specified in the section defining the crop enterprises. The expected amount of field time available in each period is derived from the results of Boisvert's regression analysis of rainfall and temperature effects on field days at the Lamberton, Minnesota, Experıment Station. Boisvert combined this information with probability distributions generated from rainfall and temperature data obtained for 59 years from the Burd Island, Minnesota, weather station.

The critical labor time periods coincide with critical field time perıods. The operator and family labor avallable is assumed to be 12 hours per day during these time periods and does not include overhead labor. Hired labor 1 s customarily available for tractor operation during silage harvesting only.

Beef feeding enterprise: Costs and returns, anımal performance, and other requirements are detailed in Table 4. Caution should be used when interpreting these 1973 cost figures as both animal and feed prices have fluctuated recently.

When this study was initiated these prices seemed to be reasonable long-term planning prices. However, even if price magnitudes change, the long-run price relationships should hold for planning purposes.

Table 4. Costs, Returns, and Resources Used for Feeding Beef Cattle in Various Waste Handling-Housing Systems.

Item \quadWaste handling: Housing system:	Solid Open Lot	Solid Conventional Drylot	$\begin{gathered} \hline \text { Solid } \\ \text { Scrape } \\ \text { Barn } \\ \hline \end{gathered}$	$\begin{gathered} \text { Liquid } \\ \text { Slotted } \\ \text { Floor } \\ \hline \end{gathered}$
430 to 1030 Pound Calf on High Grain Rations, November Purchase, One Lot per Year				
Total gain, pounds	600	600	600	600
Average daily gain, pounds	2.1	2.2	2.3	2.3
Days in lot	290	275	260	260
Gross margin per head ${ }^{1}$	\$150.00	\$150.00	\$150.00	\$150.00
Total cash cost per head	\$ 28.59	\$ 27.33	\$ 26.22	\$ 26.22
Return over cash cost	\$121.41	\$122.67	\$123.78	\$123.78
Raised feed Corn, bushels	64	60	60	60
Corn, silage, tons	2	2	2	2
Bedding, tons ${ }^{2}$. 4	. 275	. 275	
Labor required, hours/head (350-700 head)	2.4	2.1	2.1	1.7
650 to 1100 Pound Yearling on High Grain Rations, Feedlot Kept Filled to Capacity				
Total gain, pounds	450	450	450	450
Average daily gain, pounds	2.25	2.5	2.5	2.5
Days in lot	200	180	180	180
Turnover--1ots per year	1.8	2.0	2.0	2.0
Gross margin per head	\$119.25	\$119.25	\$119.25	\$119.25
Total cash cost per head	\$ 22.15	\$ 20.22	\$ 20.22	\$ 20.22
Return over cash cost	\$ 97.10	\$ 99.03	\$ 99.03	\$ 99.03
Annual return over cash cost	\$174.78	\$198.06	\$198.06	\$198.06
Raised feed Corn, bushels	60	55	55	55
Corn, silage, tons	1.1	1	1	1
Bedding, tons per head	. 25	. 2	. 2	-
Labor required, hours/head (350-700 head)	1.8	1.6	1.6	1.3

[^6]When cattle reach $700-750$ pounds, the proportion of corn silage to high moisture shelled corn is decreased. The amounts of feed and rates of gain are obtained from farm record information, while the differences between waste

Table 4. Costs, Returns, and Resources Used for Feeding Beef Cattle in Varıous Waste Handling-Housing Systems. (Continued)

	Waste handling: Housing system:	Solid Open	Solid Conventional	Solid Scrape Item	
		Lot	Diquad		
Srylot	Barn	Floor			

430 to 1080 Pound Calf on High Silage Rations, November Purchase, One Lot per Year

Total gain, pounds	650	650	650	650
Average daily gain, pounds	1.9	2.0	2.1	2.1
Days in lot	340	320	310	310
Gross margin per head	$\$ 162.50$	$\$ 162.50$	$\$ 162.50$	$\$ 162.50$
Total cash cost per head	$\$ 33.70$	$\$ 31.95$	$\$ 31.08$	$\$ 31.08$
Return over cash cost	$\$ 128.80$	$\$ 130.55$	$\$ 131.42$	$\$ 131.42$

Raised feed Corn, bushels	44	40	40	40
Corn, silage, tons	4.8	4.4	4.4	4.4
Bedding, tons	.5	.35	.35	-
Labor required, hours/head (350-700 head)	2.8	2.5	2.5	2.0

650 to 1150 Pound Yearling on High Silage Rations, Feedlot Kept Filled to Capacity

Total gain, pounds	500	500	500	500
Average daily gain, pounds	2.1	2.3	2.3	2.3
Days in lot	240	220	220	220
Turnover--lots per year	1.5	1.6	1.6	1.6
Gross margin per head	$\$ 132.50$	$\$ 132.50$	$\$ 132.50$	$\$ 132.50$
Total cash cost per head	$\$ 26.56$	$\$ 24.48$	$\$ 24.48$	$\$ 24.48$
Return over cash cost	$\$ 105.94$	$\$ 108.02$	$\$ 108.02$	$\$ 108.02$
Annual return over cash cost	$\$ 158.91$	$\$ 172.83$	$\$ 172.83$	$\$ 172.83$

Raised feed Corn, bushels	44	40	40	40
Corn, silage, tons	3.9	3.5	3.5	3.5
Beddıng, tons	.3	.26	.26	-
Labor required, hours/head (350-700 head)	2.1	1.9	1.9	1.5

[^7]management-housing systems are estimated from experimental data. Approximately five percent reduction in average daily gain for calves and ten percent reduction for yearlings is estimated for open lots compared with lots having shelter. Daily gains were even higher for calves in covered confinement (scrape barn and slotted floor) than in the drylot during the first two years of housing trials at Morris, Minnesota. Shelter appears to be more beneficial to feeders in the finishing phase than to lighter animals. Mud and cold possibly stress the heavier anımals to the point that more energy is used for body mantenance and less for fattening. Direct exposure to the hot summer sun also seems to reduce the gains of finishing cattle significantly. These research results correspond with field observations. Farmers who own both open and confinement buildings claim they obtain best results by starting calves outside and finishing heavy cattle inside.

Farm planners who are considering alternative waste handling systems want to know quantities of waste which must be removed. Precise estimates of quantity and quality of recoverable waste (feces, urine, bedding, waste feed, and waste water) are difficult to determine from the wide range of values reported in waste management literature. Rule-of-thumb estimates in the literature indicate manure produced daily is approximately six percent of body weight or 60 pounds of manure per 1000 pounds of live-weight. Farmers feeding high silage rations will probably find this figure appropriate, but recent research on high grain rations at the West Central Minnesota Experiment Station at Morrıs report approximately half of the manure accumulation that would be expected from feeding high silage rations. This observation is supported by other studies $(5,12,13)$. Estimates of total and per day recoverable waste are reported in Table 5.

In the linear programming (LP) framework an accounting must be made of the amount of waste on inventory at times when land and labor are avallable for spreading. Assuming equal daily amounts of manure are produced throughout the feeding perıod simplifies the problem of manure production varying with body weight. However, the Hegg and Larson (5) research and Snapp and Neuman (12) estumates show no consistent pattern over the feeding period. Also, two-phase

Table 5. Estimated Recoverable Waste Production with Various Waste Handling-Housing Systems.

	Solid	Solid	Solid	Solid	Solid	Liquid
	Open lot	Open lot	Drylot	Drylot	Scrape	Slotted
Type of		No runoff ${ }^{1}$	Runoff	No runoff	Runoff	Barn
cattle	Ration	control	control	control	control	

		Total tons per feeding perıod					
Calves	grain 2	.75	1.00	1.75	2.00	2.50	3.40
Calves	Silage	1.35	1.80	3.15	3.60	4.40	6.00
Yearlings	grain 3	.60	.80	1.45	1.65	2.00	3.10
Yearlings	silage 3,4	1.05	1.40	2.55	2.90	3.50	5.50

Calves	grain 2	5.0	7.0	12.5	14.5	19.0
Calves	silage 3	8.0	10.5	19.5	22.5	28.5
Yearlings	grain 3	6.0	8.0	16.0	18.5	22.0
Yearlings	silage 3	8.5	11.5	23.0	26.5	32.0

[^8]feeding programs with higher proportions of roughage for light cattle and finishing on higher proportions of grain make the assumption of linearity plausible. Readers may wish to compare this with Nordstedt, et. al. (8) who used dynamic programming with waste production as a function of time.

Fertilizer elements per ton of waste vary according to time in storage, storage conditions, dry matter content, ration fed, and amount of bedding used. Avallability of these nutrients to field crops depends primarily on the tame of year waste is applied and how soon it is incorporated into the soll. Replacement of these nutrients by beef wastes reduces cash outlays for commercial fertilizer. Estimated analysis of wastes (as hauled) from the various waste handling systems is shown in Table 6. A ton of manure hauled in spring before

Table 6. Estimated Fertilizer Nutrients in Solid and Liquid Waste From Beef Cattle Fed Grain and Roughage Rations.

	Dry matter	Total Nitrogen as N	$\begin{aligned} & \text { Phosphorus } \\ & \text { as } \mathrm{P}_{2} \mathrm{O}_{5} \end{aligned}$	$\begin{aligned} & \text { Potassium } \\ & \text { as } K_{2} \mathrm{O} \end{aligned}$
	Percent Conmercial fertilizer equivalent pounds per ton			
Solid Wastes	33\%			
Grain rations				
Total		20.0	11.0	14.0
Spring spread		15.0	8.0	11.0
Fall spread		10.0	7.0	11.0
Silage rations				
Total		15.0	11.0	14.0
Spring spread		11.0	8.0	11.0
Fall spread		7.5	7.0	11.0
Liquid Wastes	10\%			
Grain rations				
Total		16.0	6.5	6.0
Spring spread		12.0	4.3	4.5
Fall spread		8.0	4.3	4.5
Silage rations $6.0{ }^{\text {a }}$				
Total		9.0	6.5	6.0
Spring spread		6.75	4.3	4.5
Fall spread		4.5	4.3	4.5

Source: Figures deraved from unpublished Minnesota and Mıchigan Experiment Station and Extension estimates. See (9) for documentation.
the crop 1 s planted is assumed to make 75 percent of total $\mathrm{N}, 66$ percent of $\mathrm{P}_{2} \mathrm{O}_{5}$, and 75 percent of $K_{2} O$ avallable to the crop expressed as equivalent to nutrients in commercial fertilizer (7,8). Fall application reduces N to 50 percent. This accounts for storage losses and the need for timely application of plant nutrients.

The model specifies that adequate unplanted or harvested land must be available to spread up to 20 tons of solid waste and up to 40 tons of liquid waste per acre. Although the application rates are above average, they are feasible for Minnesota soll conditions and the typically available farm machines. The practical farm manager would apply waste at rates indicated by soll tests or at lighter rates to cover a greater acreage and then balance nutrients with commercial fertılizer.

Table 7 shows investment and fixed costs for manure loading and hauling equipment. Butchbaker et. al. (3) indicate that for lots marketing less than 2000 head per year, the lowest average total cost system for hauling solid beef waste is the tractor mounted loader and pull-type spreader. Similarly, pulltype 1400-1500 gallon tank spreaders filled by an impeller pump constitute the lowest average total cost system for cold slotted floor barns with deep pits.

Table 7. Investment and Annual Cost for Waste Handling Equipment.

Item	1973 new cost*	Estimated ife, years	Annual fixed costs
Solid wastes			
Front end loader	$\$ 1200$	10	$\$ 180$
Pull-type spreader, 300 bu.	2500	10	$\frac{375}{}$
Liquid wastes			$\$ 555$
Impeller pump	$\$ 1950$	10	$\$ 293$
Pull-type tank, 1500 gal.	2000	10	300
			$\$ 593$

[^9]Directly associated costs of loading, hauling and spreading beef wastes are reported in Table 8. The per ton variable cost used in this study is $\$.38$ for solid wastes and $\$.12$ for liquid wastes.

Table 8. Directly Associated Cost of Loading, Hauling, and Spreading Beef Waste.

	$\begin{aligned} & \text { Hours } \\ & \text { per load } \\ & \hline \end{aligned}$	Fuel, lubrication repairs per hour ${ }^{1}$	Total per load
Solıd Beef Waste (33 Percent Dry Matter)			
Loader, front end	. 2	\$. 32	\$. 064
Loader tractor, 50 hp	. 2	1.04	. 208
Spreader, 2 ton	. 3	. 50	. 150
Spreader tractor, 70 hp	. 3	1.11	. 333
Cost per load			\$. 755
Cost per ton (33% dry matter)			\$. 380
Lıquid Beef Waste (10 Percent Dry Matter)			
Impeller pump	. 0333	\$. 25 (est.)	\$. 008
Pump tractor, 70 hp	. 0333	1.11	. 037
Spreader, 1500 gallon	. 3330	. 50 (est.)	. 167
Spreader tractor, 50 hp	. 3330	1.04	. 346
Cost per 5.8 ton load (10% dry matter)			\$. 558
Cost per ton			\$. 096
Agitation charge per ton 2			. 024
Total cost per ton			\$. 120

[^10]Crop Enterprises: Realistic planning models to study beef waste handing in Southwestern Minnesota must explicitly include cropping activities as an integral part of the farm business. Land for crops: (1) provides a disposal site for beef wastes, (2) utilizes fertilizer nutrients in beef waste,
(3) competes with beef feeding for labor during planting and harvesting,
(4) competes with beef waste spreading for field time availability, and
(5) provides feed inputs for beef feeding.

For those interested, detailed crop budgets for Southwestern Minnesota solls are reported in the author's dissertation (9). Ideally, corn grown on fall prepared land yields 120 bushels of grain or 20 tons of silage per acre and requires 170 pounds $N, 80$ pounds $\mathrm{P}_{2} \mathrm{O}_{5}$, and 60 pounds $K_{2} \mathrm{O}$. Soybeans yield 40 bushels per acre and require 40 pounds $\mathrm{P}_{2} \mathrm{O}_{5}$ and 40 pounds $\mathrm{K}_{2} 0$. Reductions in these 1 deal yields occur whenever field operations are delayed, as can be seen in Table 9. If waste handing interferes with crop operations, reductions in

Table 9. Percentage of Ideal Yield as Dependent on Preparation, Planting, and Harvesting Time Period, ${ }^{1}$

	Corn fall preparation	Corn spring preparation	Soybeans
	Percent of ideal yields		
Aprıl $25-$ May 5	100	85	
May $6-$ May 15	93	79	100
May $16-$ May 25	84	71	96
May $26-$ June 6			90

September 1 - September 15100
September 16 - September 30100
October 1 - October 1595
October 16-October 31 82 100 8298
November 1 - November 15
November 16 - November 30

[^11]yields reduce net income.
Model summary: Figure 1 helps conceptualize the timing anvolved in developing this model. The corn and soybean field operations are shown in the first two columns opposite approximate starting dates. For illustrative purposes, the calf feeding activities are shown. The income from calves purchased one year is realized in the next calendar year. A calendar income tax year and constant planning prices are used in the gross margin calculations to make the calendar year assumption plausible. If the yearling steer activity were illustrated, the feeding facility would be utilized throughout the entire year. Sımilarly, a farmer using an uncropped disposal field Set-Aside option would be able to haul wastes from early April to mid-November. Once land is planted, manure spreading cannot be resumed until harvest.

Although fixed costs are not considered wathin decision-making linear programming models, one must calculate basic fixed costs (summarized in Table 10) for the alternative systems in order to choose the most "profitable" system. Both the pump operating cost and the pump fixed costs are included as fixed costs on runoff controlled open lots and drylots. Once the control device is built, it must be pumped each year because runoff is a function of precipitation. The pumping cost calculations for large lots, as found in the survey, are used on the open lot. The pumping cost for the smaller design capacity is used on the drylot system. Labor costs for pumping are not included, as pumping takes place when it does not compete for time with other activities.

Table 10. Summary of Annual Fixed Costs, 500 Acre Farm With 500 Head Capacity Feedlot, Southwestern Minnesota.

Description	Annual costs	Comments
Items common to all systems		
Cropland	\$19496	See (9)
Silos, 3 20'x70'	3120	See (9)
Silo unloaders, 2	684	See (9)
Grain storage, $25,000 \mathrm{bu}$.	875	See (9)
Grinder-mixer	360	\$2400, 10-year life
Feed wagon with scale	525	\$3500, 10-year 11 fe
Crop machinery	9550	See (9)
Auto, truck (farm share)	595	\$3500, 8-year 11 fe , SW Minn. Farm Mgmt. Assoc.
Sub-total annual fixed cost	\$35205	
Solld waste handling systems		
Open lot, no runoff control	\$ 1262*	
Waste handling equipment	555	Table 7
Total annual cost	\$37022	
Open lot, runoff control	\$ 1262*	
Waste handling equipment	555	
Pumping runoff control device	508	Large draınage area
Runoff control device	272	Table 1
Total annual cost	\$37802	
Conventional drylot, no RC	\$ 2140*	
Waste handling equipment	555	
Total annual cost	\$37900	
Conventional drylot, RC	\$ 2140*	
Waste handling equipment	555	
Pumping runoff control device	491	Smaller drainage area
Runoff control device	272	Table 1
Total annual cost	\$38663	
Manure scrape barn	\$ 2869*	
Waste handling equipment	555	
Total annual cost	\$38629	
Liquid waste handling system		
Slotted floor barn Waste handling equipment	$\begin{array}{r} \$ 5868 \\ \quad 595 \\ \hline \end{array}$	Table 7
Total annual cost	\$41668	

*A11 handling systems are adjusted for land cost.

PROGRAMMING RESULTS

Table 11 compares "profit maximızing" open lots before and after the use of a runoff control device. In each case, the LP model selects silage-fed calves as the optimal feeding program. However, imposing runoff control results in a $\$ 377$ reduction in return over costs considered in the LP model. Thus, $\$ 377$ is the indirect cost. This reduction may be attributed to the slight reduction in cattle numbers, to the increased quantity of waste which must be hauled, and, more importantly, to the less optimal (later) planting schedule. When the cost of owning and operating a runoff control device is included, the total cost (reduced return to all labor) is $\$ 1157$.

A simılar analysis is made in Table 12 for a farm-feedlot using conventional drylot facilities. Grain-fed yearlings are selected by the LP model as the optimal drylot feeding program. Runoff control reduces (indirect cost) return over variable costs by $\$ 205$ in this example. This indirect cost is a result of a significant reduction in total cattle fed (910 compared to 824) and a slight increase in total waste handled, which forced a less optimal (later) harvesting schedule. When the direct costs of runoff control are subtracted, the total reduction in labor earnings is $\$ 968$.

The implications of these results are more important than the actual numbers for this hypothetical farm feedlot. Costs of pollution control are often greater than the engineer's estimated cash outlays and allocated expenses. Even the operator who adjusts cattle numbers and his time schedule in an optimal fashion will bear indirect costs due to pollution control if his waste handling competes with other farm enterprises. Discussions with farmers, agricultural scientists, and engineers lead the author to believe waste handlang competition with other enterprises is the rule rather than the

$$
-26-
$$

Table 11. Determination of Indirect and Total Cost of Controlling Runoff on Open lot, 500 Head Capacity, Southwestern Minnesota.

Item		$\begin{aligned} & \text { Prior to } \\ & \text { control } \\ & \hline \end{aligned}$		After control	
Value of the p	rogram	Return	Head^{1}	Return	Head^{1}
Grain fed ca	ves	\$60929	500	\$61139	500
Grain fed ye	arlings	60433	900	60137	900
Silage fed cal	alves	(61737	500 *	(61360	495) *
Silage fed y	earlings	47266	543	57106	517
Net return calculation					
Optimum prog	ram	\$61737		\$61360	
Fixed cost,	table 10	37022		37802	
Return to al	1 labor	\$24715		\$23558	
Runoff contr	1 indir			\$ 377	
Runoff contr	1 total			\$ 1157	
Scheduling of:					
Planting		Acres		Acres	
Fall corn	Apr 26	209		174	
	May 6				
	May 16				
Spring corn Apr 26		4		39	
Soybeans	May 6	212		213	
	May 16	75		66	
	May 26			7	
Harvesting		Tons		Tons	
Silage	Sep 1	1209		1214	
	Sep 16				
	Oct 1	1254		1223	
Corn	Oct 1	Bushels		Bushels	
	Oct 16				
	Nov 1	4688		4801	
	Nov 16	5966		5483	
Soybeans	Sep 16	6071		6097	
	Oct 1	1437		1605	
	Oct 31	3796		3556	
Waste handling		Tons		Tons	
	Early	240		240	
	Apr 1				
	Apr 26				
	May 6				
	May 16	145		126	
	May 26			138	
	Sep 1				
	Sep 16				
	Oct 1				
	Oct 16	290		386	
	Nov 1				

[^12]${ }^{1}$ Number fed during entire year.

Table 12. Determination of Indirect and Total Cost of Controlling Runoff on Conventional Drylot, 500 Head Capacıty, Southwestern Minnesota.

[^13]exception. One strength of this model, then, is that it facılitates detection of these indirect costs.

Farmer-feeders in Situation II (described on page 2) want to know which alternative waste handling-housing system is the most profitable. Given the assumptions used in this study, the farm-feedlot with liquid waste handling slotted floor housing earns the highest return to all labor, \$36153, among the alternatives considered in Table 13. Labor earnings for the solid waste handlıng systems rank as follows: conventional dry1ot--\$30277, manure scrape barn--\$27839, and open lot--\$23558.

Possible reasons for the superior return to all labor in the liquid waste handling system are: (1) A greater number of cattle can be fed due to the faster turnover rate (assuming the lot is full at all times). (2) No bedding is purchased for the slotted floor facility. (3) Due to rapid waste handling, earlier timing of crop planting and harvesting can be achieved. Similar statements may be made about the higher return achieved in the drylot over the other solid waste systems. Of course, the ability to feed a greater number of cattle given a particular set of resources is most important. The scrape barn might be expected to compete more favorably with the drylot; however, the larger amounts of wastes collected indicate the scrape barn operator should feed grain rations to calves, because they generate lower volumes of waste. In the open lot facility the LP model selects silage fed calves. Performance coefficients used in the model reflect lower rates of gain and less efficient feed conversion in open lots. One would expect the operator of an open lot to be concerned with low cost gains on roughage rations and to be less concerned with length of feeding period in this low fixed cost facility.

Table 13. Optimal Organization for Farm-Feedlots with Alternative Waste Management-Housing Systems, 500 Crop Acres, 500 Head Capacity, Southwestern Minnesota.
$\left.\begin{array}{lcrcccccc}\hline \text { Item } & \begin{array}{c}\text { Solid waste } \\ \text { Open lot }\end{array} & \begin{array}{c}\text { Solid waste } \\ \text { Drylot }\end{array} & \begin{array}{c}\text { Solid waste } \\ \text { Scrape }\end{array} \\ \hline \text { Value of program }\end{array} \quad \begin{array}{c}\text { Liquid waste } \\ \text { Slot floor }\end{array}\right]$

Scheduling of:

Scheduling of:		Acres	Acres	Acres	Acres
Fall corn	Apr 26	174	224	219	224
	May 6		67		113
	May 16				
Spring corn Apr 26		39			
Soybeans	May 6	213	166	219	118
	May 16	66	27	47	45
	May 26	7	16	15	
Harvesting		Tons	Tons	Tons	Tons
Silage	Sep 1	1214	823	923	1000
	Sep 16			77	
	Oct 1	1223			
		Bushels	Bushels	Bushels	Bushels
Corn	Oct 1		4421	12114	11209
	Oct 16		6632	8136	4380
	Nov 1	4801	7222		6979
	Nov 16	5483	11178		10938
Soybeans	Sep 16	6097	3404	8185	4500
	Oct 1	1605	4797	2869	1898
	Oct 16	3556			
Waste handling		Tons	Tons	Tons	Tons
Early		240	240	240	1000
Apr 1			126	73	
Apr 26					
May 6					
	May 16	126	212	169	650
May 26		138	314	310	
Sep 1			192		550
Sep 16Oct 1			26		
				53	
Oct 16		386	154	406	
Nov 1			115		900
Value of waste per ton		Dollars	Dollars	Dollars	Dollars
Spread in spring		+1.20	-8.53	+ . 31	+1.21
Spread in fall		-5.68	-8.53	+1.78	- . 63

[^14]Number fed during entire year.

The schedule of the loading-hauling-spreading operation is given at the bottom of Table 13. The early spring period, which is suitable for waste hauling but not suitable for tillage operations, is fully utilized in each system. Once spring field preparation begins, waste handing is delayed untıl all the corn and most of the soybeans are planted. In the case of all three solid waste systems, enough land is left to be planted in late May to permit spreading the remaining waste at maximum rates. It is apparently more profitable to let spring spreading interfere with soybean planting than let additional fall spreading interfere with harvesting and fall plowing. Reduced yields as a penalty for late harvesting seem to postpone fall waste handling in all except the drylot system.

Crop selection seems to be affected most by type of ration and type of cattle as shown in Table 13. Interrelated to this, crop scheduling is affected by waste scheduling. More corn is planted when the optimal feeding program is grain-fed yearlings. In the lower net return calf feeding systems more cash grain soybean acres are substituted for corn acreage. The opportunity to perform profitable preparation, planting and harvesting operations may be foregone in order to handle beef feedlot wastes. Greater quantities of waste cause greater delays.

At the margin, farm-feedlots with relatively small quantities of recoverable wastes and/or relatively large hauling capacity will tend to treat manure as a valuable by-product. Conversely, at the margin, farm-feedlots with relatively large quantities of recoverable wastes and/or relatively small hauling-spreading capacity will tend to treat manure handling as a costly disposal process. The shadow price is a powerful tool for purposes of this model, because it internally calculates the value (positive shadow price) or the cost (negative shadow price) of an additional ton of beef waste at various time periods rather than imposing
a manure credit. For example, the last 40 tons of waste spread from the grainfed yearlings in the drylot with runoff control costs $\$ 8.53$ per ton to spread. On the other hand, the spring-spread liquid manure was worth $\$ 1.21$ per ton while the last 80 tons of fall-spread liquid manure cost $\$.63$ per ton (negative shadow price). When waste handling operations do not interfere with timely field work, the fertilizer content of the beef waste at the time the waste 1 ; spread $1 s$ the prımary determinant of manure value. Negative shadow prices occur when the opportunity to do timely field work is sacrificed in order to haul beef waste. In some cases labor availability may be as critical as field time.

Post-optimal analysis (6) was performed to measure input cost and product price sensitivity of the solutions obtained. Significant to waste management. interests, the solutions remain optimal for a wide variation in loading-hauling-spreading cost and for large increases in fertilızer price. Waste handing practices would not be altered if the costs of handing varied from those developed in Table 8. Similarly, during the "energy crisis" fertilızer. prices could double from the prices used in the study without changing the farm plan.

Increasing resource availability (greater hauling capacity in solld wastehandling systems, additional labor, additional field time) narrowed the difference in labor returns between $11 q u i d$ and solid systems, but did not change the ranking of the systems. Individual operators with heavy debt loads and limated cash flow may select a drylot system because of lower investment requirements.

Set-Aside programs in recent years provided an opportunity to eliminate timing bottlenecks by allowing summer waste handling. Net returns may be
increased if historical payment levels for Set-Aside are mantanned; however, this is not the case during the current "food crisis." The opportunity cost of a rotating disposal field (without Set-Aside payment) would range from $\$ 20$ to $\$ 40$ per acre (9).

CONCLUSIONS

Direct costs of runoff control are farm specific. Per head investment and operating costs are greater for small feedlots. Indirect costs (reduction in farm business net returns) can be evaluated by using linear programming. The programming model can determine returns, optimal cattle feeding and crop enterprise combinations, and optimal waste handling and crop operations schedules for alternative systems. Pollution control consultants should consider alternative waste handling-housing systems in terms of farm-feedlot profit before recommending runoff control structures on current facilities.

REFERENCES

1. Beneke, R. R. and R. Winterboer. Linear Programming Applications to Agriculture, Ames: The Iowa State University Press, November 1973.
2. Bolsvert, R. N. "A Model for Farm Planning Under Uncertain Weather Conditions: An Application to Southern Minnesota Cash Grain Farms," unpublished Ph.D. dissertation, University of Minnesota, St. Paul, August 1971.
3. Butchbaker, A. F., J. E. Garton, G. W. A. Mahoncy, and M. D. Paine. Cvaluation of Beef Waste Management Alternatives, Report 13040 FXG for U. S. Environmental Protection Agency. Washington, D. C.: Government Printing Office, November 1971.
4. Gılbertson, C. B. "Beef Cattle Feedlots--Production Alternatives," American Society of Agricultural Engineers Paper 70-908. Lincoln University of Nebraska, 1970.
5. Hegg, R. O., and R. E. Larson. "The Waste Pattern of Beef Cattle on Slatted Floors." Livestock Waste Management and Pollution Abatement. St. Joseph, Michigan: American Society of Agricultural Engineers, Apri1 1971.
6. Hilliex, F. S., and G. J. Lieberman. Introduction to Operations Research. San Francisco Holden-Day, Inc., 1967.
7. Morris, W. H. M. "Economics of Liquid Manure Disposal." Management of Farm Animal Wastes, American Society of Agricultural Engineers Publication No. SP-0366, May 5-7, 1966, pp. 126-31.
8. Nordstedt, R. A., H. J. Barre and E. P. Talganıdes. "A Computer Model for Storage and Land Disposal of Animal Wastes." Livestock Waste Management and Pollution Abatement. St. Joseph, Michigan: American Society of Agricultural Engineers, April 1971.
9. Pherson, C. L. "Economics of Alternative Waste Management Systems Complying With Pollution Control Regulations on Beef Feedlots in Southwestern Minnesota," unpublished Ph.D. dissertation, Department of Agrıcultural and Applied Economics, University of Minnesota, 1973.
10. "Regulations for the Control of Wastes From Livestock Feedlots, Poultry Lots, and Other Animal Lots," Minneapolis: Minnesota Pollution Control Agency. March 8, 1971.
11. Smıth, R. E., H. E. Hanke, L. K. Lindor, R. D. Goodrıch, J. C. Meiske, M. Thonney, D. Crawford, P. R. Hasbargen, D. M. Ryan, and D. W. Bates. "A Comparison of Five Housing Systems for Feedlot Cattle," Research Report B-170, 1972 Minnesota Cattle Feeders' Report, St. Paul: Department of Animal Science, University of Minnesota, 1972.
-34-
12. Snapp, R. R., and A. L. Neuman. Beef Cattle. New York: John Wiley and Sons, Inc., 1960, pp. 39-50.
13. Wells, D. M., G. F. Meenaghan, R. C. Albin, E. A. Coleman, and W. Grub. "Characteristics of Wastes from Southwest Beef Cattle Feedlots." Waste Management Research, the Proceedings of the 1972 Cornell Agricultural Waste Management Conference. Washington, D. C. Graphics Management Corporation, 1972.

[^0]: *This paper summarizes parts of the author's Ph.D. dissertation (9) which was supported by the Department of Agricultural and Applied Economics and the Agricultural Experiment Station of the University of Minnesota. Specific results are a function of the assumptions used in the study and are not official recommendations of the University of Minnesota. An earlier draft of this paper was presented to the Sixth National Agricultural Waste Management Conference in Rochester, New York, on March 26, 1974. The proceedings of this conference "Processing and Management of Agricultural Wastes" will be published by Cornell University, Ithaca, New York.
 **Formerly Graduate Assistant, Department of Agricultural and Applied Economics, and currently Assistant Professor, Agricultural Economics, California State University, Fresno 93740. T. R. Nodland and B. B. Miller are acknowledged for their helpful suggestions. They are absolved from any errors which remain herein.

[^1]: ${ }^{1}$ Calculated in Table 8.

[^2]: *Values in parentheses are on a per head basis.
 ${ }^{1}$ Footnotes on following page.

[^3]: ${ }^{1}$ Cost information from dealer, extension engineer, Soil Conservation Service engineer, and farmer interviews. Used equipment is avallable as indicated for several items in following footnotes.
 ${ }^{2}$ Gas tractor safety control new cost is approximately $\$ 55.00$
 ${ }^{3}$ Wagon and pipe racks simplify moving gun rig. A completely equipped traveling gun system with flexible pipe for quarter mile travel costs $\$ 6500$. A new boom sprinkler capable of wetting up to four acres per setting costs approximately $\$ 2500$. However, a number of used booms priced from $\$ 300$ to $\$ 600$ may be avallable in Minnesota.
 ${ }^{4}$ Pipe length of 1000 feet considered adequate for most feedlot applications.
 ${ }^{5}$ Prıvate discussion with R. E. Machmeier, University of Minnesota Agricultural Extension Engineer.

[^4]: ${ }^{1}$ See Table 6.

[^5]: ${ }^{1}$ Does not include feed storage, feed delivery, or feed processing equipment. Runoff control device is not included. See (4, 9).

[^6]: ${ }^{1}$ Gross margin calculations average $\$ 25.00$ per hundredweight of gain for calves and $\$ 26.50$ per hundredweight of gain for yearlings net of selling and trucking costs. Private conversations with P. R. Hasbargen and inspection of feedlot records from Southwestern Minnesota indicate this is a reasonable expectation for the next five year period. Gross margin per head is (sell weight x price) minus (buy weight x price) minus (death loss x buy weight x price) all divided by total weight gain.

[^7]: ${ }^{1}$ (cont.) Death loss has averaged 1.66 percent for long fed calves and 1.01 percent for short fed yearlings for the past six years according to Southwestern Minnesota feedlot records.
 ${ }^{2}$ Bedding is cobs on open lot and straw in other units. Yearlings in open lots are assumed to need the most bedding during winter and early sprıng; the estimate given averages total used per animal.

[^8]: ${ }^{1}$ Approximately 25% of outside $10 t$ manure $1 s$ assumed to be transported by runoff from lots without runoff control.
 ${ }^{2}$ Original information is unpublished data from West Central Minnesota Experiment Station at Morris. Adjusted by animal weights, total gain, and length of feeding period reported in table.
 ${ }^{3}$ Original information is unpublished data obtained from Roy Black, Extension Agricultural Economist, Michigan State University. Adjusted by animal weight, total gain, and length of feeding period reported in table.
 ${ }^{4}$ Silage rations assumed to produce about 1.75 times as much manure as grann rations.

[^9]: *Machınery dealer suggested list price adjusted for inflation and discounts. There is a wide variation in price between companies. As with other machine investments, used machine purchases may reduce the cash outlay for individual farmers.

[^10]: ${ }^{1}$ Unpublıshed data by Harsh and Milligan, Department of Agrıcultural Economics, Mıchigan State University, January, 1971.
 ${ }^{2}$ Agitation charge per ton:
 $24^{\prime} \times 40^{\prime} \times 8^{\prime}=7680 \mathrm{ft} .{ }^{3} \times 60 \mathrm{lb} . / \mathrm{ft} .^{3}=460,800 \mathrm{lb} .=230$ tons
 Agitation for four hours to obtain proper mixing.
 Impeller pump 4 hours @ $\$.25=\$ 1.00$
 Pump tractor, $70 \mathrm{hp} \quad 4$ hours $@ \$ 1.11=4.44$ Total cost $\overline{\$ 5.44}$ $\frac{\$ 5.44}{230 \text { tons }}=\$.024$ per ton

[^11]: ${ }^{1}$ Adapted from Mannesota Beef Farm Planning Model developed by Unıversity of Minnesota Extension economists in farm management.

[^12]: *Optimal program

[^13]: *Optımal program
 ${ }^{1}$ Number fed during entire year.

[^14]: *Optimal program

