

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

What Does Performing Linear Regression on Sample Survey Data Mean?

Phillip S. Kott

Abstract

Most economists understand linear regression as the estimation of the parameters of a linear model There are two other ways of interpreting the results of linear regression, however, and most software packages designed specifically to handle data from complex sample surveys (for example, SUR$R E G R$ and $P C$ CARP) assume one of these interpretations This article contrasts the conventional model-based theory of linear regression to the designbased theornes underlynng survey-sampling software The artucle demonstrates how procedures from designbased regression theory can be justified and exploited in a lineal model tramework Proposed is a test for comparing the results of ordinary least squares and weighted regression

Keywords. Design-based, model-based, random sample, mean-squared error

An economist usually thinks of linear regression as a means of estimating the parameters of a preconceived linear model or of testing the valldity of a particular model within a contınuum of slightly more general linear models

Many survey statisticians, though, have a different view of Inear regression They are interested in describing characternstics of a finite population To this end, or dinary least squares segression performed on multivariate data from the entire population can produce some useful summary statistics In practice, however, it is too difficult to obtain information from the entire population, and so, data is obtained fiom a sample of observations (The term "observation" will be used to 1 efer to any member of the population under study even though relevant values for nonsampled members are not actually observed)

The economist's view of lineal regression as given above is called "model-based," the survey statistician's view "desıgn-based" (4) ${ }^{1}$

According to model-based theory, part of the multtvariate data-the dependent variable-is itself a random variable generated by a stochastic mode Orthodox design-based theory, in contrast, holds that all the data are fixed, the only thing probabilistic is the selection process that randomly chooses some observa-

[^0]thons for the sample and not others There is no model generating the data, only a useful way to summanize the covariation of multivariate values in the fimite population

There is an alter native school of thought in designbased theory that we will call the "Fuller School" (1 , 2) This theory says that although there is indeed an underlying model generating the data, the analyst knows little about this model In fact, the relationship among the variables may not even be linear Limear regression is simply a means of summarizing in linear fashion a relationship among the multivariate values generated by the model

Several software packages perform linear regressions and estimate variances in accordance with the Fuller School, which is more palatable to economists than the orthodox design-based approach Two popular packages are SURREGR (5) and PC CARP (3)

The Standard Linear Model and the Sample

Suppose the multivariate values of a population of M observations can be fit by the linedr model

$$
\begin{equation*}
y=X \beta+\epsilon, \tag{1}
\end{equation*}
$$

where
$y=\left(y_{1}, \quad, y_{M}\right)^{\prime}$, is an $M \times 1$ vector of population values for a dependent van able,
X is an $\mathrm{M} \times \mathrm{K}$ matrix of population values for K independent variables or regressors
β is a $K \times 1$ vector of regiession coefficients. and
ϵ is an $M \times 1$ vector of disturbances or eriors satisfyıng $E(\epsilon)=0$, and $\operatorname{Var}(\epsilon)=E\left(\epsilon \epsilon^{\prime}\right)=\sigma^{2} I_{M}$

If one knew y and X , then the best limed unbiased estimator of β would be the ordmary least squares (OLS) estımator

$$
\begin{equation*}
B=\left(X^{\prime} X\right)^{-1}\left(X^{\prime} y\right) \tag{2}
\end{equation*}
$$

But, y and X values are known only for a sample of m observations which has been selected at random in a manner assumed to be independent of $\boldsymbol{\epsilon}$
The best (minımum variance) linedı unblased estimator of β, given the sample, is

$$
\begin{equation*}
b_{0 L S}=\left(X^{\prime} S X\right)^{-1}\left(X^{\prime} S y\right), \tag{3}
\end{equation*}
$$

where S is an $\mathrm{M} \times \mathrm{M}$ diagonal matin of zeioes and 1's The ith dagonal of S is 1 if and only if the ith unit of the population is in the sample Observe that S in
equation 3 allows only those rows of X and elements of y contaimeng information fiom sampled observations to be captured in $\mathrm{b}_{\text {OI }}$ s

The variance of $b_{\text {OIS }}$ (a variance-covariance matrix) is $\sigma^{2}\left(\mathrm{X}^{\prime} \mathrm{SX}\right)^{-1}$ An unblased estimator for this variance can be determined by estimating σ^{2} in the above expresson by $\mathrm{s}^{2}=\left(\mathrm{y}-\mathrm{Xb}_{\mathrm{OLS}}\right)^{\prime} \mathrm{S}\left(\mathrm{y}-\mathrm{Xb}_{\mathrm{OIS},}\right) /(\mathrm{m}-\mathrm{K})$

The Design-Based Approaches

In the orthodox design-based approach to regiession, theie is no under lying linear model The goal of lmear regression is not to estimate β in equation 1 Rather, it is to estimate B in equation 2 based on a randomly selected sample of m observations

Let P be an $\mathrm{M} \times \mathrm{M}$ diagonal matrix, the ith dagonal of which is the probability that unit I was selected for the sample We can call $W=(\mathrm{m} / \mathrm{M}) \mathrm{SP}^{-1}$ the matrix of sampling weights Note that $\mathrm{W}=\mathrm{S}$ when every unt has a probability of selection equal to m / M

For many samphng designs, the weighted regression estimator,

$$
\begin{equation*}
b_{W}=\left(X^{\prime} W X\right)^{-1}\left(X^{\prime} W y\right), \tag{4}
\end{equation*}
$$

is a design-consistent estimator of B in equation 2 That is, as m (and M) grows arbitrarly large, $b_{w}-B$ has a probability limit of zero with respect to the probability space generated by the sampling mechanism

Fuller (1) points out that b_{w} is generally a consistent estimator of $B^{*}=Q^{-1} R$, where $Q=\lim _{M \rightarrow x}\left(X^{\prime} X\right) / M$ and $R=\lim _{M \rightarrow x}\left(X^{\prime} y\right) / M$ when Q^{-1} and R exist and b_{W} is a consistent estimator of B Often B is referred to as the finite population regi ession parameter, while B^{*} is the infinte population regression parameter

What we have called the Fuller School of Inear rege ession assumes the existence of a model generating the finite population data, but not assuming very much about the nature of that model, only that Q^{-1} and R exist This theor y employs the laws of probability in the same way as the orthodox design-based school does exclusively through the sample selection process

The model-based estimator, $\mathrm{b}_{01,5}$, equals the designbased estimator, b_{w}, when $W=S$ (that is, when all the sampled obser vations have equal probabilities of selection) If the model in equation 1 holds, then the infinite population regression parameter, B^{*}, will equal the model regression parameter, β

Design Mean-Squared Error Estimation

To estimate the mean-squared eiror of b_{w} as an estimator of either B or B^{*} under the sampling design. we need to know mole about the design

Suppose the population of M observations is divided into L stiata (L may equal 1) And, suppose that there are $n_{h} \geq 2$ distinct primary sampling units (which may involve clusters of the actual observations) selected from stratum h Ultımately, $m_{h j}$ (which may also equal 1) observations are selected for the sample fiom the primary sampling unit (PSU) hJ This broad framework allows for multistage random sampling with (perhaps) unequal selection probabilities at each stage For simplicty, however, we exclude from consideration samples where some PSU has been selected more than once in the first sampling stage

Without loss of generality, b_{w} can be rewritten as $b_{w}=C y^{*}$, where y^{*} is an m vector containing only those members of y that correspond to sampled observations and C is the m corresponding columns of ($\left.\mathrm{X}^{\prime} \mathrm{WX}\right)^{-1} \mathrm{X}^{\prime} \mathrm{W}$ Let r^{*} be the vector of residuals analogous to y^{*} (note $r=y-X b_{w}$)

For every sampled PSU hJ, define $D_{h j}$ as an $m \times m$ diagonal matirx of 1's and zeroes such that the ith diagonal of $D_{h j}$ is 1 only if the th member of y^{*} corresponds to an observation in PSU hJ Finally, let $\mathrm{g}_{\mathrm{h}}=$ $\mathrm{CD}_{\mathrm{hj}} \mathrm{r}^{\mathrm{x}}$

The linearization (or Taylor Series linearization or delta method) mean-squared error estimator for b_{w} as an estimator of B^{*} is the matrix

$$
\begin{align*}
\text { mse }= & \sum_{h=1}^{L} \frac{n_{h}}{n_{h}-1}\left[\sum_{j=1}^{n_{h}} g_{h j} g_{h j}^{\prime}\right. \\
& \left.-\frac{1}{n_{h}} \quad \underset{j=1}{\left(\sum_{h} g_{h j}\right)} \underset{\substack{n_{j} \\
\left(\sum_{h} \\
n_{h j}\right.}}{ }{ }^{\prime}\right] \tag{5}
\end{align*}
$$

This estimator is computed by the SURREGR software packages PC CARP scales mse by \{(m-1)/(mK)\} Either way, the result is a consistent estimator of design mean-squared error (in the Fuller School sense) as $n=\sum n_{h}$ grows arbitrarily large under mild condıtions (8) (Orthodox design-based theory can require finite population correction terms which are unavalable in SURREGR and suppressible in PC CARP)

The Law of Large Numbers and the Central Limit Theorem can often be invoked to test hypotheses of the form HB* $=h_{0}$, where H is an $r \times K$ matrix and $\mathrm{r} \leq \mathrm{K}$ Under the null hypothesss,

$$
\begin{equation*}
\mathrm{T}^{2}=\left(\mathrm{Hb}_{\mathrm{w}}-\mathrm{h}_{0}\right)^{\prime}\left(\mathrm{H}\{\mathrm{mse}\} \mathrm{H}^{\prime}\right)^{-1}\left(\mathrm{Hb}_{\mathrm{w}}-\mathrm{h}_{0}\right) \tag{6}
\end{equation*}
$$

has an asymptotic chı-squared distıibution with r degrees of freedom When $n-L-K$ is not large, a common ad hoc alternative to T^{2} is $\mathrm{F}=\mathrm{T}^{2} / \mathrm{r}$, which is assumed to have an F distibution with r and either n - $\mathrm{L}-\mathrm{K}$ (SURREGR) or $\mathrm{n}-\mathrm{L}$ (PC CARP) degrees of freedom

The Extended Linear Model

The use of b_{w} from equation 4 and mse from equation 5 can be justified in a purely model-based context This is done by extending the linear model in equation 1 to allow for the possible existence of missing regressors and the likelihood that $\operatorname{Var}(\epsilon)$ is much more compllcated than $\sigma^{2} I_{M}$ The proofs for the assertion made in this section and other technical detals are in (6)
Suppose the multivarnate values of the population of M observations can be fit by the linear model

$$
\begin{equation*}
y=X \beta+z+\epsilon \tag{7}
\end{equation*}
$$

where y, X, β, and ϵ are unchanged except that $\operatorname{Var}(\epsilon)$ need not equal $\sigma^{2} I_{M}$ The new vector z satisfies $\lim _{M \rightarrow x} X^{\prime} z / M=0$, and is a composite of all the regressors in a fully specfied model for y that are othel wise missing from equation 7 and the joint effect of which on y cannot be captured within $X \beta$

Under mild conditions, b_{w} is nearly (that is, asymptotically) unbiased under the model in equation 7 (as n grows large) The same cannot be sard for $\mathrm{b}_{\text {OLS }}$ unless $\lim _{M \rightarrow X} \bar{X}^{\prime} \mathrm{Pz} / \mathrm{m}=0$, which in practical terms means that the probabilities of selection are unrelated to the missing regressors
The expression in equation 5 is a nearly unbiased estimator of the model mean-squared error of b_{w} under many sampling designs and variance matrices for ϵ The only iestriction on the latter is that $E\left(\epsilon_{1} \epsilon_{1}\right)$ be zero when 1 and I^{\prime} are sampled observations from different PSU's and bounded otherwise This restriction is vely mild since any covariation among observations acioss PSU's should, in principle, be captured by X or 2

The problem with b_{w} and mse from a model-based point of view is that they are not very efficient For example, when z in equation 7 is identically zero and $\operatorname{Val}(\epsilon)=\sigma^{2} I_{Y}$, the variance of $b_{0 L S}$ will be less than that of b_{w}

Even of $\operatorname{Var}(\epsilon) \neq \sigma^{2} I_{M}, b_{\text {OLS }}$ is unblased when $z \equiv 0$ Moreover, $b_{\text {oLTS }}$ may still be more efficient than b_{w} With the $g_{b j}$ in equation 5 approprately redefined, mse could serve as an estimator of the variance of $b_{\text {OLS }}$ under a farrly general specification for $\operatorname{Var}(\epsilon)$ More efficient and also nearly unbiased is the matrix,

$$
\begin{equation*}
\mathrm{mse}^{\prime}=\frac{n}{n-1} \sum_{h=1}^{\mathrm{L}} \sum_{j=1}^{n_{n}} g_{\mathrm{h} j} g_{\mathrm{b}^{\prime}}, \tag{8}
\end{equation*}
$$

which equals mse when $L=1$ It is a simple matter to get SURREGR and PC CARP to produce $\mathrm{b}_{\mathrm{OLS}}$ and elther mse' (SURREGR) or $\{(\mathrm{m}-1) /(\mathrm{m}-\mathrm{K})\} \mathrm{mse}^{\prime}$ (PC CARP)

Although mse (and mse for that matter) is an estimator for the variance of the estimated regression coeffi-
cient when $z \equiv 0$, we retain the "mse" notation for convenence

Whether b_{w} or $b_{\text {OLS }}$ is calculated, the test statistic in equation 6 can be employed (with $b_{\text {OIS }}$ replacing b_{w} and perhaps mse' replacing mse as appiopriate) to test hypotheses of the form $H \beta=h_{0}$

An Example

Consider the following example synthesized from USDA data from the National Agricultural Statistics Service's June 1989 Agnicultural Survey In a particular State, 17 primary sampling units were selected from among 4 strata These PSU's were then subsampled yelding a total sample of 252 farms Although the sample was random, not all farms had the same probability of selection

We are interested in estımating the parameters, β_{1} and β_{2}, of the following equation

$$
\begin{equation*}
y_{1}=x_{1,}, \beta_{1}+x_{2,}, \beta_{2}+z_{1}+\epsilon_{11} \tag{9}
\end{equation*}
$$

where 1 denotes a farm,
y_{1} is farm i's planted corn-to-cropland ratio when i's cropland is positive, zero otherwise,
x_{11} is 1 if farm 1 has positive cropland, zero otherwise, and
x_{21} is farm i's cropland divided by 10,000
Dropping all sampled farms with zero cropland from the regression equation will have no effect on the calculated values $b_{1 w}$ and $b_{2 w}$ (or $b_{10 L S}$ and $b_{20 L S}$) It would, however, affect mse (and mse') If none of the subsampled farms from a particulai PSU had cropland Although this phenomenon does not occur here, it does raise an issue worthy of a brief digression

Sometimes an economist needs to perform a regiession on a subset of a sample In those crrcumstances, one may need to worry about the impact on mse when no member of the subset comes from a particular PSU This problem can be avoided by treating all the originally sampled observations as if they were in the regression data set Those observations not in the subset under study could be assigned y and x values equal to 0

The results of performing both OLS and weighted regression on the data in our example are displayed in table 1 The table contains estimated root meansquared errors computed from the appropriate dagonal elements of mse and mse' Also displayed is $\sqrt{\mathrm{mse}_{0}}$ the estimated coefficient root mean-squared error assuming that $z \equiv 0$ and that there is no correlation across observations whthin PSU's The varrance matrix mse_{0} is simply mse' calculated as of there were 252 PSU's The ACOV option of PROC REG in the popular programming language SAS (7) used along with a weight statement will approximately yield this number
(the value from ACOV needs to be multiphed by $\mathrm{m} /(\mathrm{m}-1)$ for strict equality)
The ratio of $\mathrm{mse}^{\prime} / \mathrm{mse}_{0}$ is a measure of the effect of corselated errors within PSU's on the mean-squared error of an estimated regression coefficient This idtio will be greater than 1 when there is such a cluster effect Similally, the ratio $\mathrm{mse} / \mathrm{mse}^{\prime}$ is a measure of the effect of stratification on the mean-squared enror of an estimated regression coefficient This ratio should be less than 1 when there is such a stratification effect

There can be cluster effects even when $z \equiv 0$, while there are stratification effects only when z_{1} values vary across stratd We can see from table 1 that there are generally much more pronounced cluster effects than stratıfication effects (if any)

A Test

Table 1 reveals that the OLS regression coefficients are more efficient (that is, have smaller mse and mse' values) than the weighted regression coefficients It remams to test whethel these two sets of coefficients ate really estimating the same thing If that is the case, then the OLS estimates are clearly superior
One general way to test whether $b_{\text {oLS }}$ and b_{w} are estimating the same parameter vector, β, is to replace y in equation 4 by $y^{t}=\left(y^{\prime}, y^{\prime}\right)^{\prime}, X$ by

$$
\mathrm{X}^{\mathrm{c}}=\left[\begin{array}{ll}
\mathrm{X} & \mathrm{X} \\
\mathrm{X} & 0
\end{array}\right] .
$$

and W by

$$
\mathrm{We}=\left[\begin{array}{cc}
\mathrm{W} & 0 \\
0 & \mathrm{~W}
\end{array}\right]
$$

The resulting estrmator is $b^{e}{ }_{w}=\left(b_{\text {OLs }}{ }^{\prime}, d^{\prime}\right)^{\prime}$ where $d=$ $\mathrm{b}_{\mathrm{w}}-\mathrm{b}_{\text {oLs }}$ Calculating mse ${ }^{e}$ is done in a manner analogous to mse in equation 5 In calculating msee, the elements of $y^{e *}$ correspond to observations coming from the same number of PSU's (and strata) ds do the elements of its analogue, y^{*}

The test statistic in equation 6 can be invoked to test whether d is significantly different from zero (with be ${ }_{\mathrm{w}}$

Table 1- Estımated regression coefficients and root mean-squared error estımates

Estimated regression coefficient	Estimate	$\sqrt{\mathrm{mse}}$	$\sqrt{\mathrm{mse}^{\prime}}$	$\sqrt{\mathrm{mse}_{0}}$
$\mathrm{~b}_{1 \mathrm{w}}$	03363	00822	00781	00301
$\mathrm{~b}_{2 \mathrm{~W}}$	8636	12389	13008	4764
$\mathrm{~b}_{1 \text { oLS }}$	4460	0396	0440	0192
$\mathrm{~b}_{2 \mathrm{OL}}$	-8791	4637	4651	1688

replacing b_{w} and mse e_{e} replacing mse) This was done for the data set examined in the previous section The resultant value for T^{2} was 507 If T^{2} is assumed to have a chı-squared distıbution with two degrees of freedom, the null hypothesis was not rejected (that $\mathrm{b}_{0 L S}$ and b_{w} are estimating the same thing) at the 005 significance level but would be rejected at the 01 level Assuming T $2 / 2$ has an F distribution with 2 and 13 (17 PSU's mmus 4 strata) degrees of fieedom, the null hypothesis would not be rejected even at the 01 level

If one's primary concern is robustness to the possible existence of a z vector related to the sampling weights rather than the efficiency of the estimated iegression coefficients, then the fact that the test statistic exceeds its expected value under the null hypothesis (2 if T^{2} is ch1-squaned) would be reason enough to prefer b_{w} over $\mathrm{b}_{\mathrm{OLS}}$

Fuller (2, p 106, equation 17) proposed a different test for determinng whether the difference between b_{w} and $b_{\text {ols }}$ is significant His test assumed that the errors were independent and identically distıbuted acioss obser vations which is clearly not the case in our example

References

1 Fulleı, W A "Regression Analysis foı Sample Survey," Sankhya Ser C, 37, 1975, pp 117-32

2 \qquad "Least Squares and Related Analyses for Complex Survey Designs," Survey Methodology Vol 10, 1984, pp 97-118

3 Fulleı, W A, W Kennedy, D Schnell, G Sullivan, and H J Park PC CARP Ames Iowa State Unıversity, Statistical Labotatory, 1986

4 Hansen, M H, W G Madow, and B J Tepping "An Evaluation of Model-Dependent and Probability-Sampling Inferences in Sample Surveys," Journal of the American Statistıcal Associatoon Vol 78, 1983, pp 776-93

5 Holt, M M SURREGR Standard Errors of Regression Coefficients from Sample Survey Data Research Triangle Park, NC Research Triangle Instıtute, 1977

6 Kott, P S "A Model-Based Look at Linear Regiession with Survey Data," American Statistician, forthcoming

7 SAS Institute SAS User's Gurde Statistics, Version 5 Edition Cary, NC SAS Institute, 1985

8 Shah, B V , M M Holt, and R E Folsom "Influence About Regiession Models fiom Sample Sur vey Data," Bulletin of the International Statistical Institute Vol 47, 1977, pp 43-57

[^0]: Kott is special assistant for economic survey methods in the Office of the Duector, Bureau of the Census, and was semor mathematical statistician with the Survey Research Bianch, National Agricultural Statistics Service

 Italicized numbers in parentheses cite sources histed in the References at the end of this article

