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Beyond Expected Utility: Risk Concepts for 
Agriculture from a Contemporary 
Mathematical Perspective 
Michael D. Weiss 

• 


Abstract. Expected utIlity theory, the most prom!
nent economIc model of how Indwlduals choose 
among alternatwe risks, exhIbIts serIOus defIcIen
CieS In describing emplncally observed behavIOr 
Consequently, economIsts are actwely searching for 
a new paradIgm to descnbe behavIOr under nsk 
TheIr mathematical tools, such as functIOnal anal
ys~s and measure theory, reflect a new, more 
sOphr-stlcated approach to nsk ThlS artzde de
scnbes the new approach, explalns several of the 
mathematlcal concepts used, and Indlcates some of 
theIr connectIOns to agricultural modeling 

Keywords. Indwldual chOICe under nsk, expected 
ulll!ty theory, nsk preference ordenng, utIlity 
functIOn on a lottery space, Fn!chet dlfferen
tlObliLty, random functIOn, random field 

In theIr attempts to model mdlvldual behaVIOr 
under rIsk, agrIcultural economIsts have relied 
heavIly on the expected utIhty hypotheSIS ThIS 
hypotheSIS stipulates that mdlvlduals presented 
WIth a chOIce among varIOUS rIsky optIOns wIll 
choose one that maXImIZes the mathematical 
expectatlOn of theIr personal "utIhty" An ac
cumulation of eVIdence reported m the hteratures 
of both economICS and psychology, however, has by 
now clearly demonstrated that expected utIhty 
theory exhIbIts serIOUS defiCIenCIes m descrIbmg 
empmcally observed behavlOr (For reVIews, see 
Schoemaker, 1982, Machma, 1983, 1987, FIshburn, 
1988)1 As a result, economIsts and psycholOgists 
have been formulatmg and testmg new theOrIes to 
deSCrIbe behaVlOr under rIsk These theOrIes do not 
so much deny claSSIcal expected utIhty theory as 
generahze It By Imposmg weaker restrIctIOns on 
the functIOnal forms used m rIsk models, they 
allow empmcal behaVlOr more scope m tellmg ItS 
own story 

~ 

To a SIgnIficant extent, thIS search for a new 
paradIgm of behaVIOr under rIsk IS bemg conceIved 
and conducted m the spmt and language of 
contemporary mathematics The concepts bemg 

We~ss IS an economist With the Commodity Economics 
Dl\'lSlon, ERS The author thanks the editors and reVIewers for 
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article 

employed, such as the derIvative of a functlOnal 
WIth respect to a probabIlity distrIbutlOn or vector 
spaces whose "pomts" are functlOns, cannot be 
reduced to the graphIcal analYSIS tradItIOnally 
favored by apphed economIsts Rather, they In
volve a genumely new approach, a way of thmkmg 
that IS at the same tlme more preClse and more 
abstract 

ThIS article IS mtended to prOVIde agrlcultural,and 
applied economIsts WIth an IntrOdUctIOn to these 
newer ways of thmkmg about behavlOr under rIsk 
DeSIgned to be largely self-contamed, the artIcle 
first sketches some prereqUISItes from set theory 
and measure theory, then defmes and dIscusses 
several key rIsk concepts from a modern 
perspectIve 

On the surface, the mathematIcal Ideas we de
SCrIbe may appear dIstant from dIrect pI actIcal 
applicatlOn Yet, they already play an ImpOltant 
role m varIOUS theOrIes on WhICh practIcal applica
tIOns have been or can be based Some examples 

o Commodity futures and optIOns. A revo' 
lutIOn m the theory of finance, begun m the 
1970's and contmUIng today, has been 
brought about by the adoptIon of advanced 
mathematIcal tools, such as contmuous 
stochastic processes, the Black-Scholes optIOn 
prIcmg formula, and stochastIC Integrals 
(used to represent the gaInS from trade) The 
mSIghts afforded by these methods have had 
a substantial practIcal Impact on SeCUrItIes 
tradIng Understandmg commodIty futures 
and options tradIng m thIS new enVIronment 
reqUIres greater famlliallty WIth the new 
mathematIcal machmery ThIS machmery, m 
turn, draws heaVIly on measure theory, whIch 
IS now a prereqUISIte for advanced finance 
theory (Dothan, 1990, Duffie, 1988) 

• Commodity price stabIlizatIOn. In recent 
years, economIsts mcreasmgly have dra wn on 
the technIques of stochastIc dynamICs to 
analyze the behaVlOr of economIC processes 
over time ApphcatlOns of stochastic dynamICs 
range from the optImal management of re
newable resources, such as timber, to optimal 
firm mvestment strategIes For agrIcultural 
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economIsts, a particularly Important apphca
tlon IS the constructIOn of pohcy models of 
commodIty pnce stablhzatlOn (Newbery and 
Stlghtz, 1981) Such models often portray a 
stochastIc sequence of chOIces by both pro
ducers and pohcymakers In every time 
penod, each SIde must confront not only 
uncertain future pnces and YIelds, but the 
uncertainties of the other's future actIOns An 
understanding of th,s subject reqUIres con
cepts of dynamICS, probabIhty, and functIOnal 
analYSIS 

Modern treatments of stochastic dynamICS 
(Stokey and Lucas, 1989) couch thelf explana
tions In the language of sets and functIOns 
We deSCrIbe and use th,s language In this 
article We also deSCrIbe FTI)ehet differen
tiabIlIty, a generahzatlOn of ordinary dIfferen
tiabIlIty that allows conSIderatIOn of the rate 
of change of one functIOn WIth respect to 
another Frechet dIfferentIabIlIty not only IS 
Important In nsk theory (Machin a, 1982) but 
has been Invoked In the field of dynamIC 
analYSIS (Lyon and Bosworth, 1991) to argue 
for a reassessment of some of the receIved 
dynamIC theory (Treadway, 1970) CIted by 
agncultural economIsts In InterpretIng em
pIrIcal results (Vasavada and Chambers, 
1986, Howard and Shumway, 1988) 

• The modeling of information_ The Infor
mation avaIlable to IndIVIduals plays a pIvotal 
role In theIr economIC behaVIOr Thus, In 

analYZIng such subjects as food safety, crop 
Insurance, and the purchase of commodItIes of 
uncertaIn quah ty, economIsts must somehow 
lllcorporate th,S IntangIble entIty, informa
tion, Into theIr models We WIll descnbe two 
approaches to deahng WIth thIS problem 
FIrst, we WIll Introduce the notIOn of a Borel 
field of sets Th,s seemIngly abstruse tool IS 
now fundamental to finance theory, where 
IncreasIng famIhes of Borel fields are used to 
represent the flow of informatIOn avaIlable to 
a trader over bme Second, we WIll dISCUSS 

how the chOIce set of an economIC agent's rIsk 
preference orderIng can be used to dIstIngUIsh 
between SItuatIOns of certalllty and 
uncertaInty 

• The measurement of individuals' risk 
attItudes_ A questIOn of both theoretICal and 
empmcal mterest m the rIsk hterature, one 
whose answer IS Important for the practIcal 
ehcItatlOn of rIsk preferences, IS whether 
indIVIduals' uhhty functIOns for rIsky chOIces 
are (a) determmed by, or (b) essentIally 
separate from, theIr utlhty functIOns for 

rIskless chOlces It has been Widely assumed 

that case (a) prevaIls wlthm expected utlhty 

theory We WIll show, however, that wIthm 

th,S theory, the utlhty functIOn for contmuous 

probablhty d,strIbutIOns can be constructed 

Independently of the utIhty functIOn for 

rIskless chOIces Thus, expected utIhty theory 

permIts more fleXIble functIOnal forms than 

perhaps generally reahzed If an indIVIdual 

uses d,stmct rules for chOOSing among cer

tamtIes and among contInUOUS probabIlIty 

dIstributIOns, the expected utlhty paradIgIll 

may stIli be applIcable 


Mathematical Preliminaries 

The starting pOint for a clear understandmg of nsk ..IS a clear understanding of the baSIC mathematical 
objects (random varIables, probabIhty spaces, and 
so forth) In terms of whIch nsk IS dIscussed and 
modeled Since much of contemporary rIsk theory 
IS descnbed III the language of set theory, we first 
reVlew some baSIC termInology from that subject 

The notatIOn "s E S" indIcates that s IS an element 
of the set S, whIle the brace notatIOn "12;5,31" 
defines 12,5,31 as a set whose elements are 2, 5, 
and 3 Two sets are equal If and only If they 
contam the same elements Thus, 15,2,3,31 IS equal 
to 12,5,31, the order of hstmg IS Immatenal as IS 
the appearance of an element more than once The 
set of all x such that x satisfies a property P IS 
denoted Ix I P(x)1 Thus, WIthIn the realm of real 
numbers, Ix I x2 = 11 IS the set 1-1,11 There IS a 
unIque set, called the empty set and denoted 0, 
that contaInS no elements 

For any sets A, and A2, thelf <ntersectwn, A,M 2, 
IS the set Ix I for each " x E A,I, thelf unIOn, 
A, uA2, IS Ix I for at least one 1, x E A,1. and theIr 
dIfference, A,1A2, IS Ix I x E A, and not x E A21 
The definItIOns of UnIon and mtersectlOn extend 
straIghtforwardly to any filllte or mfinIte collectIOn 
of sets A set A, IS a subset of a set A2 If each 
element of A, IS an element of A2 

A set of the form Ilal,la,bll IS called an ordered 
pair and denoted (a,b) The essential feature of 
ordered palfS, that (a,b) =(c,d) If and only If a =c.. 
and b = d, IS eaSIly demonstrated If A and Bare 
sets, thelf Cartestan product, A x B, IS the set of 
all ordered palfS (a,b) for whIch a E A and b E B 
The extenSIOn to ordered n-tuples (a" ,an) and 
n-fold CarteSIan products A, X X ~ IS 
straIghtforward 

A relatIOn IS a set of ordered palfS If R IS a 
relatIOn, the set Ix I for some y (x,y) E RI IS called 
the domain of R (denoted DR)' and the set Iy I for • 
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some x (X,y) E RI IS called the range of R (denoted 
RR) A {unctwn (or mappmg) IS a relatIOn for 
whIch no two d,stmct ordered paIrs have the same 
first,coordmate When f IS a functIOn and (x,y) E f, 
y IS denoted f(x) and called the value of f at x 
Symbohsm lIke f A ~ B (read "f maps A mto B") 
mdlcates that f IS a functIon whose domam IS A 
and whose range IS a subset of B 

Fmally, If c IS a number and f,g are real-valued 
functIOns havmg a common domam D, then cf and 
f + g are functIOns defined on D by [cf1(x) = cf(x) 
and [f+g](x) =f(x) + g(x) for each XED If f and g 
are any functIOns, then fog, the compost/wn of f 
and g (m that order), IS the functIOn defined by 
[fog](x) = f(g(x») for each x m the domam D fOg " 

.. Ixlx E Dg and g(x) E Drl 

Representations of Risk 

As Stokey and Lucas (1989) pomt out, measure 
theory, whIch has served as the mathematIcal 
foundatIOn of the theory of probablhty smce the 
1930's, IS rapIdly becommg the standard language 
of the economICS of uncertamty We sketch a few of 
the baSIC Ideas of th,s subject 

Borel Fields of Events 

In probabIlIty theory, the events to whIch proba
b,ht,es are assIgned are represented as subsets of 
a sample space of possIble outcomes Thus, m the 
toss of a standard, sIx-sIded dIe, the event "an 
even number comes up" would be represented as 
the subset 12,4,61 of the sample space 11,2,3,4,5,61 
However, It IS not lOgIcally pOSSIble, m general, to 
aSSIgn a probablhty to every subset of a sample 
space To see why, ImagIne an Ideal mathematIcal 
dart thrown randomly, accordmg to a umform 
probablhty d,strIbutIOn, mto the mterval [0,1] The 
probablhty of h,ttmg the submterval [3/5,4/5] 
would be 115 LIkeWIse, the probablhty of h,ttmg 
any other subset of [0,1] would seem to be ItS 
length But, there are subsets of [0,1], called 

. non measurable, that have no length To construct 
an example, define any two numbers m [0,1] as 
"eqUIvalent" If theu dIfference IS ratIOnal Th,s 

·'eqUIvalence relatIOn partItIOns [O,l]mto a umon of 
dlsJomt eqUIvalence sets analogous to the mdlf
ference sets of demand theory Choose one number 
from each eqUIvalence set Then, the set of these 
choIces IS nonmeasurable (see Natanson, 1955, pp 
76-78 ) 

Thus, some subsets cannot be assIgned a proba
blhty m the sItuatlOn we have deSCrIbed One 
cannot assume, therefore, that every subset of an

• arb,trary sample space can be assIgned a proba

blhty Rather, m every rIsk model, the questIOn of 
wh,ch subsets of the sample space are admISSIble 
must be addressed mdlvldually 

A set of admISSIble subsets of a sample space IS 
characterIzed aXIOmatIcally as follows Let n be a 
set (Interpreted as a sample space) and F a 
collectIOn (that IS, a set) of subsets of n such that 
(1) n E F, (2) n\A E F whenever A E F, and (3) 

u A, E F whenever IA,I:I IS a sequence of ele
\= 1 

ments of F Then, F IS called a Borel (leld F plays 
the role of a collectIOn of events to whIch 
probablhtIes can be aSSIgned By ,enSUrIng that F 
IS closed under varIOUS set-theoretIc operatIOns on 
the events m It, cond,tIOns 1-3 guarantee that 
certaIn natural lOgIcal comblnabons of events ]n 
F WIll also be III F For example, apphcatIOn of 
1-3 to the set-theoretIc IdentIty AnB = 
n\[(fl\A)u(fl\B)] Imphes that AnB, the event 
whose occurrence amounts to the Jomt occurrence 
of A and B, IS m F whenever A and Bare 

Borel fields have an mterpretatIOn as "mformatlOn 
structures" III the follOWIng sense For sImphclty, 
let the sample space n be the mterval [0,1], let F 
be the smallest Borel field over n that mcludes 
among ItS elements the mtervals [0,1/2) and [1/2,11 
(so that F = 10, [0,1/2), [1/2,1], [0,1]1), and let F' be 
the smallest Borel field over f1 that mcludes 
among ItS elements the Intervals [0,114), [114,1/2), 
and [112,1] (so that F' = 10, [0,114), [1I4,lIZ), 
[lIZ,lJ, [O,lIZ), [114,1], [0,1I4)u[1/Z,l], [0,1]}) Sup
pose an outcome Wo m f1 IS reahzed, -but all that IS 
to be revealed to us IS the IdentIty of an event m F 
that has thereby occurred (that IS, the IdentIty of 
an event E E F for whIch Wo E E) Then, the most 
that we could potentIally learn about the locatIOn 
of Wo m n would be eIther that Wo hes m [O,l/Z) or 
that Wo hes In [1/Z,1] However, If we were mstead 
to be told the IdentIty of an event m F' that has 
occurred, we would have the poss,b,hty of learmng 
certam addItIOnal facts about Wo not aVaIlable 
through F For example, we mIght learn that the 
event [0,114) m F' has occurred, so that Wo E [0,114) 

Observe that, m thIS example, F' contams every 
event m F and addItIonal events not m F That IS, 
F IS a stnct subset of F' Thus, F' offers a rIcher 
supply of events to help us home m on the reahzed 
state of the world, Wo In thIS sense, whenever any 
Borel field IS a subset of another, the second may 
be mterpreted to be at least as mformatlve as 
(and, m the case of stnct mclusIOn, more mforma
tlve than) the fust 

A particularly Important Borel f,eld over the real 
lme IR IS denoted B and defined as follows First, 

5 



note that the set of all subsets of IT;! IS a Borel fIeld 
that contaInS all Intervals as elements Second, 
observe that the IntersectIOn of any number of 
Borel fields over the same set IS Itself a Borel field 
over that set DefIne B as the IntersectIOn of all 
Borel fIelds over IT;! that contaIn all Intervals as 
elements Then, B IS Itself a Borel field over IT;! 

contaInIng all Intervals as elements Moreover It 
IS the "smallest" such Borel field, SInce It l~ a 
subset of each such Borel fIeld The elements of B 
are known as Borel sets 

ProbabIlity Measures and Probability Spaces 

Let P be a nonnegative real-valued functIOn whose 
domaIn IS a Borel field F over a set D Then, P IS 
called a plobabtllty measure on D and D (or, 
alternatIvely, the triple (D,F,P) IS called a prob

abilIty 'pace If (I') P(.Q) = 1 and (2') P(C! A,) = 
x 1=1 

I PIA,) whenevel IA,I::, IS a sequence of ele
I",l 

ments of F that are pairWIse dISJOInt (that IS, for 
whIch I "" J ImplIes A,nA, = 0) CondItIon 2' 
asserts that the probabIlIty of the occurrence of 
exactly one event out of a sequence of paIrwIse 
IncompatIble events IS the sum of the IndIVIdual 
probabIlItIes ProbabIlIty measures on IT;! haVIng 
domaIn B are called Borel probabIlIty measures 

Random VarIables 

FInally, suppose (D,F,P) IS a probabIlIty space and 
r a real-valued functIOn With domaIn D Then, r IS 
cdlled a random variable If, for every Borel set B 
In IT;! , Iw IwED and r(w) E BI E F (A functIon r 
satIsfYIng thIS condItIon IS SaId to be measurable 
WIth respect to F ) The effect of the measurabIlIty 
condItIon IS to ensure that a sItuatIon lIke "random 
crop YIeld wIll lIe In the Interval I" corresponds to 
an element of F and can thus be assIgned a 
probabIlIty by P 

A random varIable measurable WIth respect to a 
Borel field F can be Interpreted as dependIng only 
on the InformatIOn Inherent In F For example, In 
finance theory, the flow of InformatIon over a tIme 
Interval [O,T] IS repl esented by a famIly of Borel 
fields F t (0 '" t '" T) satIsfymg (among other 
condItIOn;) the reqUIrement that Fs be a subset of 
F t whenever s '" t (InformatIOn IS nondecreasIng 
over tIme) CorrespondIngly, the moment-to
moment pnce of a commodity IS represented by a 
famIly of random vanables Pt (0 '" t '" T) such 
that, for each t, Pt IS measurable WIth respect to 
F t In thiS manner, the prIce at tIme t IS portrayed 
as dependIng only on the InformatIOn avaIlable In 
the market at that tIme (For addItIonal detaIls, 
see Dothan, 1990) Similarly, m stochastIc dynamiC 

pohcy models, a declslOnmaker's contIngent deCI
SIOns over tIme are represented by a famIly of 
random vanables r t related to an IncreaSIng famIly 
of Borel fields F t by the reqUIrement that each r t 

be measurable WIth respect to F t 

NotWithstandIng ItS name, a random varIable IS 
not random, and It IS not a varIable It IS a 
functIOn, a set of ordered paIrs of a certaIn type 
Randomness or varIabIlIty are aspects not of 
random varIables themselves but, rather, of the 
Lnterpretatwns we ImagIne when we use random 
varIables to model real phenomena For example, 
when we model a farmer's crop Yield, we use a 
random varIable (hence, a functIOn), r, to represent 
ex ante YIeld, but we use a functIOn value, r(w), to 
represent ex post YIeld What determInes w? We 
mterpret nature as havmg "randomly" selected w 
from the probabIlIty space on whIch r IS defined 

AgrIcultural economIsts often represent stochastIc 
productIon through forms such as [(x) + e, where 
x E ~n IS Interpreted as a vector of Inputs and g IS 
Interpreted as a random dIsturbance DespIte 
superfiCial appearances, such a construct IS not a 
sum of a productIon functIOn and a random 
varIable Rather, It IS a random field (Ivanov and 
Leonenko, p 5) To charactenze It In precIse 
terms, suppose f IS a (productIOn) functIOn and E a 
random varIable Define a functIOn </J haVIng 
domaIn DpXD[ by "'«w,x)) = [(x) + sew) for each 
wEDe and each x E Dr Then, </J IS a formal 
representatIOn of stochastIc productIOn WIth addI
tIve errOT, and vanous functIOns defined In terms 
of '" represent speCIfic aspects of stochastIc 
productIOn For example, for each x E Dr, the 
random varIable "'( ,x) defmed on D, by 
["'( ,x)](w) = "'«w,x)) represents ex ante produc
tIon under the mput x SImIlarly, for each wEDp' 

the functIOn "'(w, ) ~efined on Dr by ["'(w, )](x) = 
"'( (w,x)) represents the effect of Input chOIce on ex 
post productIOn (that IS, on the partIcular ex post 
productIOn aSSOCIated WIth nature's random "selec
tIon" of w) 

Another example of a random field IS prOVided by 
the Idea of slgnahng In prInCIpal-agent theory 
(Spremann, 1987, P 26) Suppose the effort' 
expended by an economIC agent (for Instance, the 
effort expended by a producer to ensure the safety 
of food) IS unobservable by the prInCIpal (here, the 
consumer), but some "nOISY functIon of' the effort 
can be observed Such a SIgnal of hIdden effort 
may be defined formally as follows Let h be the 
(real-valued) observer functIOn (ItS domaIn IS the 
set of allowable effort levels) and let E be a random 
varIable Then, the functIOn z DhXD, -, IT;! defined 
for each e E D h , w E Dc by z(e,w) = heel + ,(w) IS a 
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random field that serves as a mOnItonng sIgnal of 
effort 

When a nsk sItuatIOn can be represented by a 
random vanable, It can equally well be repre
sented by mfinItely many dlstmct random van
abies (For example, there eXIst mfinItely many 
dIstInct normal random vanables havmg mean ° 
and varIance 1, each defined on a dIfferent 
probablhty space) For thIS reason, random van
abies cannot model sItuatIOns of rIsk unIquely 
However, to every random vanable r defined on a 
probablhty space (fl,F,P), there corresponds a 
UnIque Borel measure, P" on I'l satIsfymg P/B) = 
PC\w I WEn and r(w) E Bil for each Borel set B 
(P r IS called the probab,ltty dtstnbutwn of r) In 

. ~ 	 addItIOn, there corresponds a unIque function Fr 

!R. -~ [0,1], the cumulatwe dlstnbutwn (unctlOn 
(cdf) of r, such that Fr(t) = P(lwlw E nand r(w) 
,. til for each t E I'l Prand F r contam the same 
probablhstlc mformatIOn as r, but m a form more 
convenIent for certaIn computatIOnal purposes 

The cd f of a random vanable r IS always (1) 
nondecreasmg and (2) contmuous on the nght at 
each pomt of I'l In addItIOn, (3) hm F/t) = °and 

t-·-GO 

hm Fr(t) = 1 Conversely, any functIOn F I'l -. [0,1] 
t-·~ 

enJoymg propertIes 1-3 can be shown to be the 
cd f of some random vanable Thus, we are free to 
VIew the set of all c d f's as sImply the set of all 
functIOns F I'l -. [0,1] satIsfYIng 1-3 

Random Functions 

Random vanables, Borel measures, and c d f's are 
tools for representmg the chance occurrence of 
scalars They can be generahzed to n-dImenSIOnal 
random vectors, probablhty measures on I'ln, and 
n-dImenSIOnal cd f's to represent the chance 
occurrence of vectors In [RD However, even more 
general tools are sometImes needed for the concep
tuahzatIOn of rIsk m agnculture For example, the 
YIeld of a corn plant depends on, among other 
thmgs, the surroundmg temperature over the 
penod of growth It IS reasonable to express thIs 
temperature as a real-valued functIOn, 7, defined 
on some tIme Interval, [O,t] Yet 7, as a constItuent 
of weather, must be regarded as determIned by 
chance Thus, the probabulty dlstnbutIOn of the 
plant's YIeld depends on the probablhty dlstnbu
tIon by whIch nature "selects" the temperature 
functIOn Just as the probablhty dlstnbutIOn of a 
random varIable IS a probablhty measure defined 
on a set of numbers, thIS notIOn of the probablhty 
dIstrIbutIOn of a random functIOn finds ItS natural 
expreSSIOn m the form of a probablhty measure 
defined on a probablhty space of functIOns 

SImilarly, conSIder stochastIc crop productIOn, CPL> 
over a regIOn, L, In the plane 1'l2 Smce Yield, hke 
weather, can vary over a regIOn, It IS appropnate 
to define CPL not merely as the tradItIOnal 
"acreage tImes YIeld" but, rather, as the mtegral 
over L of a YIeld (or productIOn denSIty) functIOn 
defined at each pomt of L That IS, suppose n IS a 
probablhty space representmg weather outcomes, 
X a set of mput vectors, and Y nxXxL ~ I'l+ a 
stochastIc pomtwlse YIeld functIOn such that, for 
each chOIce x E X of Inputs and each locatIOn 
X E L, the functIOn Y( ,x,X) n ~ I'l+ (Interpreted 
as the ex ante YIeld at the locatIOn X given mput 
chOIce x) IS a random varIable 2 Then, for each 
weather outcome WEn, the correspondmg ex post 
crop productIon over L gIVen mput vector x can be 
expressed as CPL(w,x) = f Y(w,x,X)dl>. when-

L 

ever the mtegral eXIsts However, the mtegrand 
(the ex post pOIntw1se YIeld functIon Y(w,x,·) 

L -. I'l+) IS determmed by chance, smce It IS 
parametenzed by w Thus, the probabulty dlstnbu
bon (If It eXIsts) of CPL ( ,x), that IS, of ex ante 
productIon over L gIVen x, depends on the 
probablhty dlstnbutIOn by which nature selects the 
Integrand The latter nobon IS, agam, expressed 
naturally by a probablhty measure defined on a 
probablhty space of functIOns, m thIS case func
bons mappmg the regIOn L mto I'l 

Individual Choice Under Risk 

LIke the theory of consumer demand, the theory of 
chOIce under nsk begms With an ordenng that 
expresses an IndIVIdual's preferences among the 
elements of a deSIgnated set In demand theory, 
that set conSIsts of vectors representIng commodIty 
bundles In rIsk theory, It conSIsts of mathematIcal 
constructs (random vanables, cd f's, probablhty 
measures, or the lIke) capable of representIng 
SituatIOns of rIsk 

Preference Orderings 

Suppose ;;, IS a relatIOn such that D,. = R,. (m 
whIch case ;;, IS a subset of D,. x D,. and relates 
elements of D,. to elements of D",) WrIte a ;;, b to 
SIgnIfy that (a,b) E ;;, Then,;;, IS called a preference 
ordenng Ult IS complete (that IS, a ;;, b or b ;;, a for 
any elements a,b of D,") and tranSItIve (that IS, for 
any elements a,b,c of D~, a ~ c whenever a ;;;:. band 
b ;;, c) When ;;, IS a preference ordermg, the 
assertIOn a ;;, b IS read "a IS weakly preferred to b" 
and mterpreted to mean that the economIC agent 
eIther prefers a to b or IS mdlfferent between a and 
b 

2Y constitutes our thrrd example of a random field 
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Though mdlvlduals' preferences are often consId
ered empmcally unobservable, there IS nothmg 
mdefimte about the concept of a preference order
mg In contemporary economIc theory, preference 
ordenngs are mathematIcal objects, and they can be 
exammed, mampulated, and compared as such For 
example, ~J the ordInary numerIcal relatIOn 
"greater than or equal to," IS a preference ordermg 
of [)\l Formally, as a set of ordered paIrs, It IS sImply 
the closed half-space Iymg below the hne y = x m 
the plane [)\l X [)\l = [)\l2 Thus, It can be compared as 
a geometnc object to other subsets of [)\l2 that sIgnIfy 
preference ordenngs of [)\l ThIs geometrIc perspec
tIve can be mvoked In mvestIgatmg whether two 
preference ordenngs are the same, whether they 
are near one another, and so forth SImIlarly, 
preference ordermgs of other sets S, Includmg sets 
of c d f's or other representatIOns of nsk, can be 
studIed as geometrIc objects In S X S In thIs con
text IS to be found the formal meanIng (If not the 
econometnc resolutIon) of sifch empIflcal questlOlls 
as "have consumer preferences for red meat 
changed?" or "are poor farmers more rIsk averse 
than wealthy farmers?" 

Lotteries and Convexity 

What propertIes are approprIate to requIre of a set 
of nsk representatIOns before a preference ordenng 
of It can be defined? Expected utIhty theory Imposes 
only one restnctlOn the set of rIsk representatIOns 
must be closed under the formatIOn of compound 
lotterIes 

A "lottery" may be VIewed as a game of chance In 
whIch pnzes are awarded accordIng to a pre
aSSIgned probablhty law Suppose a lottery L offers 
prIzes L, and L2 haVIng respectIve probabIlItIes p 
and 1 - p of occurrIng If L, and L2 are themselves 
lotterIes, L IS called a compound lottery 

ConSIder a farmer whose crops face an Insect 
InfestatIOn haVIng probabIlIty p of occurnng As
sume weather to be random Then, the farmer 
would receIve one Income dIstrIbutIon WIth proba
bIlIty p, another WIth probabIlIty 1 - P ThIs sItua
tIon has the form of a compound lottery 

What expected utIlIty theory requIres of the domam 
of a preference orderIng IS that whenever two 
lotterIes WIth monetary prIzes lIe In the domaIn, 
any compound lottery formed from them must lIe In 
It as well Now, mathematIcally, lottenes L" L2 
WIth numerIcal pnzes can be represented by c d f's 
C" C2 If the Internal structure of a compound 
lottery IS Ignored and only the dIstrIbutIOn of the 
lottery's final numerIcal pnzys IS conSIdered, then 
the compound lottery L offerIng LI and L2 as pnzes 

WIth probabIlItIes p and 1 - P IS represented by the 
cd f pC I + (1-p)C2 Thus, the reqUIrement that the 
domaIn of a preference orderIng be closed under 
compoundIng IS expressed formally by the reqUIre
ment that, whenever cd f's C" C2 lIe m the 
domaIn, any convex combInatIon pCI + (l-p)C2 of 
them must lIe m It as well However, WIthIn the 
vector space over [)\l of all functIons mappIng [)\l Into 
[)\l (Hoffman and, Kunze, 1961, pp 28-30), pC, + 
(l-p)C2 IS nothIng but a pomt on the Ime segment 
JOInIng C, and C2 Thus, thIS entIre Ime segment IS 
requIred to he m the domam whenever ItS end
pomts do In short, the domam IS reqUIred to be 
convex (Kreyszlg, 1978, p 65) 

The ablhty of cd f's to represent compound lot
tenes as convex combmatlOns IS shared by Borel . 
probablhty measures but not by random varIables 
Thus, expected utIhty theory and the related nsk 
hterature usually deal WIth c d f's or probablhty 
measures rather than random varIables Formally, 
the term lottery 's commonly used to denote eIther a 
c d f or a probabIlIty measure, dependmg on 
context For thIs artIcle, we define a lottery to be a 
cd f A lottery space IS a convex set of lottenes By a 
nsk preference ordenng, we mean a preference 
orderIng whose domaIn IS a lottery space 

Keep In mmd that not all SItuatIOns of mdlVIdual 
chOIce m the presence of rIsk are approprIately 
modeled by the SImple optImIzatIOn of a rIsk 
preference ordenng RIsk preference ordermgs are 
mtended to compare nsks and rIsks only By 
contrast, a consumer's deCISIOn whether to obtaIn 
proteIn through consumptIOn of peanut butter (a 
potentIal source of aflatOXIn) or chIcken (a potentIal 
source of salmonella) Involves questIOns of taste as 
well as rIsk Unless these mfluences can be 
separated, standard rIsk theOrIes-expected utIlIty 
or otherWIse-will not apply 

Choice Sets and the Modehng of Information 

As a result of budget constramts or other restnc
tIons dIctated by partIcular CIrcumstances, an 
mdlVIdual's chOIces under nsk WIll generally be 
confined to a stnct subset of the lottery space D" 
termed the chOIce set It IS thIS set on whIch are' 
ultImately Imposed a model's assumptIOns concern
Ing what IS known versus unknown. certaIn versus 
uncertam to the economIc agent 

Several areas of concern to agrIcultural 
economIsts-food safety, nutntlOn labelIng, grades 
and standards, and product adveltIsmg-are mtI
mately tIed to the,economlcs of InformatIOn (and, by 
extenSIOn, to the economIcs of uncertamty) The 
mablhty of consumers to detect many food contaml
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nants unaIded, for example, ltmlts producers' 
economIc mcentIves to compete on the basIs of food 
safety Government policy alms both to reduce rIsks 
to consumers and to provIde InformatIOn about 
what. rIsks do eXIst How, though, can assumptIOns 
about, or changes In, a consumer's InformatlOn or 
uncertamty be mcorporated expllCltly mto a mathe
matIcal model? The agent's chOIce set would often 
appear to be the proper velucle for representmg 
these factors For example, when the agent IS 
assumed to be choosmg undel certamty, the chOIce 
set IS confined to constructs representIng certam
tIes, such as c d f', of constant random varIables 
When the agent IS assumed to be choosmg under 
nsk, representatIOns of certamty are excluded from 
the chOIce set, and only those lotterIes are allowed 
that conform to the economIc and probabIlistIc 
assumptIOns of the model The chOice set of lotterIes 
In a model of behavlOf under risk plays no less 
Important a role than the set of feaSible, budget
constramed commodIty bundles m a model of con
sumer demand In each case, the optImum achIeved 
by the economic agent IS cruCIally dependent on the 
set over whIch preferences are permitted to be 
optImIzed 

Utility Functions on Lottery Spaces 

Let ;;. be a rIsk preference orderIng A functIOn U 
D,., ~ j;! IS called a utlitty (unctIOn for;;. If, for any 
elements a,b of D,." U(a) ;;. U(b) If and only If a ;;. b 
A functIOn U D> -. j;! IS called lmear If U( tLI + 
(1-t)Lz) = tU(L, )-+ (1-t)U(Lz) whenever L"Lz E D,., 
andO.;;t.;;1 

LmearIty m the above sense must be dlstmgUlshed 
from the notIOn of ltneanty customarIly apphed to 
mappmgs defined on vector spaces (Hoffman and 
Kunze, 1961, p 62) Indeed, a lottery space cannot 
be a vector space smce, for example, the sum of two 
cd f's IS not a cd f Rather, the assumptIOn that a 
functlOfl U D"" -~ IR IS hnear In our sense IS 
analogous to the assumptIon that a functIOn g 
j;! -. j;! has a straIght-line graph, that IS, that g IS 
both concave (g(;"x + (1-;")y) .. ;"g(x) + (1-;")g(y) 
whenever x, y E Dg and 0 .;; ;.. .;; 1) and convex 
(g(;..x + (1-;")y) .;; ;"g(x) + (1-;")g(y) whenever 
x, y E Dg and 0 .;; ;.. .;; 1), or, eqUIvalently, that 
g(;..x + (1-;")y) = ;"g(x) + (1-;")g(y) whenever 
x, y E Dg and 0 .;; ;.. .;; 1 ' Restated for a functIOn 
U D" -, j;!, the latter conditIon expresses preCisely 
the concept of hnearIty mtroduced above 

An assumptIon of lInearIty reqUIres, m effect, that a 
compound lottery be aSSigned a utIhty equal to the 
expected value of the utIlitIes of ItS lottery prIzes 
Though stated for a convex combmatIOn of two 

1Such a functIOn g 1S lmear m, a vector space mappmg If and 
only If g(O) = 0 

lotterIes, the formula m the defimtIOn of lInearIty IS 
eaSily shown to extend to a convex combmatIOn of n 
lottenes For example, we can use the conveXIty of 
D,., to express PIL, + pzLz + P3L3' a convex 
combmatIOn of three elements of D,." as a convex 
combmatIOn of two elements of D,." obtammg 
(under the conventIOns pz + P3 '" 0, p~ a pz/(PZ+P3)' 
p; P3/(P,+PJ»)8 

= U(PIL, + (P2+p,)(p;L2 + p;L,») 

PI U(LI) + (P2+P3)U(p:'LZ + p',L3) 

= PIU(LI) + pzU(Lz) + P3UtL3) 

A SImIlar argument applIed recurSIvely to a convex 
combmatIOn of n elements of D", can be used to 
establIsh the general case 

Utlhty functIOns allow questIOns about rIsk prefer
ence ordermgs to be recast mto eqUIvalent ques
tIOns about real-valued functIOns defined on lottery 
spaces The benefit of thIS translatIOn IS most 
apparent when the utIlIty functIOn can Itself be 
expressed m terms of another "utIlIty functIOn" that 
maps not lotterIes to numbers but numbers to 
numbers, for then the techmques of calculus can be 
apphed It IS on utIlity functIOns of the latter type 
that the attentIOn of agrIcultural economists IS 
usually focused 
Although such wholly numerIcal utilIty functIOns 
are frequently descnbed as "von Neumann
Morgenstern" utIlIty functIOns, von Neumann and 
Morgenstern (1947) were concerned W1th asslgnmg 
utIhtIes to lotterIes, not numbers Usmg a very 
general concept of lottery, they demonstrated that 
any nsk preference ordenng satIsfymg certam 
plaUSIble behaVIOral assumptIons can be repre
sented by a lInear utilIty functIOn They dId not 
prove, nor does It follow from thelT assumptIOns, 
that a lInear utIhty functIOn, U, must gIVe nse to a 
numencal functIOn u such that the utIlIty of an 
arbItrary lottery L has an expected utility mtegral 

x 

representatIOn of the form U(L) = I u(tldL(tl 
-x 

CondItions guaranteemg that a lInear utIlIty func
tIon has an mtegral representatIOn of thIS type were 
gIVen by Grandmont (1972) However, one of these 
condItIOns faIls to hold for the lottery space of all 
c d f's havmg fimte mean, whIch IS a natural 
lottery space on whIch to conSIder nsk aversIon 

NumerIcal Utility Functions 

What IS the general relatIonshIp between numerIcal 
utIhty functIOns and the more fundamental utIhty 
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functIons defined on lottery spaces? To examme thIs 
questIon, we mtroduce the followmg defimtlons 

For each r E ~, the lottery 0, defined by 

0 If t ,. r 

o,(t) = 
[ 1 If t > r 

IS called degenerate 0, IS the c d f of a constant 
random vanable with value r Thus, It represents "r 
wIth certamty" 

Suppose U IS a utlhty functIOn for a nsk preference 
ordermg '" whose domam, D"" contams all degener
ate lottenes Define a functIOn u ~ - ~ by 

u(r) = U(o,), 

for each r E IR We call u the utlhty fu nctlOn 
lIlduced on IR by U U IS d numencal functIOn that 
Importantly, encapsulates the actIOn of U under 
certaInty 

A lottery L IS called Simple If It IS a convex 
combmatlOn of a fimte number of degenerate 
lotterIes, that IS, If there eXIst degenerate lottenes 
0q' ,orn and nonnegatIve numbers PI' , Pn 

n n 

such that L p, = 1 and L = L p,o, In thIs case, L 
1=1 1=1 1 

IS the c d f of a random vanable takmg the value r, 
Wlth probablhty p, (I = 1, ,n) 

Now, let U be a lmear utlhty functIOn whose 
domam contams all degenerate lottenes Then u, 
the utlhty functIOn mduced on ~ by U, IS defined 
Moreover, by the convexity property of a lottery 
space, the domam of U contams all SImple lottenes 

n 

ConSider any SImple lottery L " L p,or' and let X 
1=1 I 

be a random vanable whose c d f IS L Then, the 
composite functIOn uoX IS a random vanable takmg 
the value u(r,) WIth probablhty p, (I = 1, , n), and 
It follows that 

U(L) = L
n 

P,U(Or) 
1=1 I 

= E(uoX), 

that IS, U(L) IS the expected value of uoX 4 

However, unless additional restnctlOns (such as 

4In the applied literature, uoX IS often lncorrettiy 19.entlfied 
WIth u uoX IS a random varIable, whtle U IS not 

those of Grandmont (1972)) are Imposed, U(L) 
cannot, m general, be expressed a. the expectatIOn 
of the mduced utlhty functIon when L IS not SImple 
In fact, a SignIficant part of U IS ",dependent of ItS 
mduced utIlity functIOn and therefore mdependent 
of U's ubhty aSSIgnments under eel talnty We turn 
next to thIs subject-the structural dIstInctness 
WIthIn a linear utIlity functIOn of ItS "certaInty 
part" and a portIOn of ItS "uncertaInty part" (WeISS, 
1987, 1992) 

Decomposition of LInear Utility FunctIons 

A linear utIlity functIOn can be decomposed Into a 
"contmuous part" and a "dIscrete part" The latter •
encodes all aspects of U relatIng to behaVIOr under 
certaInty Unless addItIOnal restnctlOns are Im
posed, the former IS entIrely mdependent of be
haVIOr under certamty 

To descnbe thIS decompm,ltIOn satIsfactonly, we 
reqUIre the followmg defimbons A lottery IS called 
conttnuous If It IS contmuous as an ordlnary 
functIOn on IR A lottel y L IS called dIscrete If It IS a 
convex combInation of a sequence of degenerate 

lottenes, that IS, If there eXIst a sequence /0, l;CI of- , 

degenerate lottenes and a sequence !P,I:I of 

" 
nonnegative numbers such that L p, = 1 and 

1=1 

L = L p,o, Such a lottery L IS the c d f of a random 
1=1 I 

vanable takIng the value r, WIth probabl hty p, (1 = 
1, 2, 3, ) Every SImple lottery (and thus every 
degenerate lottery) IS dIscrete 

Now, every lottery L has a decomposItIon 

L = PLL, + (l-PL)Ld, 

such that 0 ,. PL ,. 1, L, IS a contInUOUS lottery, 
and Ld IS a discrete lottery (Chung, 1974, p 9) 
(Such decomposItIons occur naturally m the 
economICS of rIsk, as when an agrIcultural pnce 
support or other Insurance mechamsm truncates a 
random vanable whose c d f IS contInuous, leadmg 
to a "plhng up" of probablllty mass at one pomt 
See WeISS, 1987, pp 69-70, or WeISS, 1988) More
over, PL IS umque, L, IS umque If PL "" 0, and Ld IS 
UnIque If PL "" 1 It follows that If U IS a linear 
utIlIty functIOn whose domam contaInS L, L" and 
Ld, then U(L) = PLU(L,) + (l-PL)U(Ld) Thus, U IS 
entIrely determIned by Its actIOn on contInUOUS 
lottenes and ItS actIon on dIscrete lottenes If, 
moreover, the domam of U contaInS all degenerate 
lottenes and U IS countably linear over such lot

teTles m the sense that U(L) = L p,U(o,) for any 
I=} I 

discrete lottery L = L p,or, In ItS domaIn, then U 
I"'l 
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IS entIrely determIned by ItS actIOn on contInUOUS 
lottenes and ItS actIon at certaIntIes 

The foregomg remarks show how functIon values 
of V can be decomposed, but they do not Ind,cate 
how V Itself, as a functIOn, can be decomposed A 
full descnptIOn of th,S functIOnal decompOSItIOn 
cannot be gIVen here In brIef, however, one uses 
the rule V*(pL) '" pV(L) to extend V to a new 
functIon, V', defined on an enlarged domaIn 
conSIstIng of all product functIOns pL for whIch 
o .. p .. 1 and L E Du (such product functIons are 
called sublotterles) Then (assumIng L E Du Im
plIes (1) L, E Du If PL "" 0 and (2) Ld E Du If 
PL "" 1), V· has a decompOSItIOn 

u* = U~ + U~, 

Into unIque functIOns V~ and Va that are defined 
and lInear over sublottenes, map the zero sublot
tery to Itself, and depend only on the contInUOUS or 
dIscrete part, respectIvely, of a sublottery (see 
WeISS, 1987) 

We have deSCrIbed how a hnear UtilIty functIOn can 
be resolved Into ItS contmuous and d,screte parts 
Conversely, one can construct a hnear utIhty 
functIOn out of a hnear utlhty functIOn defined over 
contInUOUS lotterIes and a hnear utilIty functIOn 
defined over dIscrete lottefles In fact, If V"s a 
hnear functIOn defined over all contInuous lotterIes 
and V2 a bounded real-valued functIOn defined over 
all degenerate lotterIes, a functIOn V can be defined 
at any lottery 

by the rule 

VeL) '" PLV,(L,) + (l-PL) L 
~ 

P,V2(&r) 
1",1 I 

V wIll be a lInear utIhty functIOn for the preference 
orderIng;;, defined for all paIrs of lotterIes by L, ;;, 
L2 If and only If V(L, ) ;;, V(L2) In th,S manner, one 
can construct rIsk preference ordenngs for whICh 
the util,tIes aSSIgned to contInUOUS lotterIes are 

_. 	mdependent of those aSSigned to certaIntIeS-In 
short, nsk preference orderIngs for which, In 
approprIate chOIce sets, behaVIOr under rIsk IS 
Independent of, and cannot be predIcted from, 
behaVIOr under certaInty 

ThiS constructIOn prOVides a useful IllustratIOn of 
why the tradItIOnal, graphIcal approach to rIsk IS 
Inadequate the graph of the utlhty functIOn 
mduced on IR (by V) prOVIdes no mformatlOn 
concerrung, say, the IndIVIdual's rIsk preferences 

among normal c d f's One also sees from thIS 
constructIon that the utlhty functIon Induced on IR 
by a hnear utIhty functIOn need not Itself be hnear 
(m the sense of haVIng a stralght-hne graph) 

Risk Aversion 

fusk averSIOn IS a purely ordInal notIOn, a property 
of rIsk preference orderIngs Suppose ;;, IS a fisk 
preference ordenng such that each lottery, L, m 
D", has a firute mean, E(L), for whIch &E(L) E D~ 
Then, ;;, IS called risk averse If, for each LED"" 
5E (L) ;;, L That IS, an IndIVIdual IS nsk averse If a 
guaranteed payment equal to the expected value of 
a lottery IS always (weakly) preferred to the lottery 
Itself 

R,sk aversIOn IS often IdentIfied WIth the concaVIty 
of a numerIcal utIhty functlOn, and thIS characterIz
atIOn plays an Important role In apphed nsk 
studIes The techruques of the precedIng para
graphs, however, demonstrate that the eqUIvalence 
IS not uruversally vahd SInce a hnear utIlIty 
functIOn can be constructed USIng Independent 
selectIOns of ItS mduced utlhty functIon and ItS 
contmuous part, It IS easy to construct a fisk 
preference orderIng that IS not rIsk averse but IS 
represented by a hnear utIhty functIOn whose 
Induced utIlIty functIOn IS strIctly concave In 
addItIon, whIle rIsk averSIOn does mdeed Imply 
concaVIty of the Induced utIhty functIon, It IS 
nevertheless pOSSIble to construct a rIsk-averse 
preference orderIng ;;" a hnear utIhty functIOn V 
representIng ;;" and a numerIcal functIOn v strICtly 
convex On [0,1] such that, for any contInUOUS lottery 
L on [0,1] (that IS, for wIDch L(O) =0 and L(l) =1), 
one has 

1 
VeL) = f v(t)dL(t) 

o 

ThIS example seems contrary to "common knowl
edge" about rIsk averSIOn, but ItS real lesson IS that 
there IS more to rIsk aversIOn and to other fisk 
concepts than can be captured by the tradItIonal 
approaches 

A correct deSCrIptIon of the relatIOnshIp between 
rIsk aversIOn and the concaVIty of numerIcal utIlIty 
functIons can be gIVen USIng the concept of 
contInUOUS preferences (WeISS, 1987, 1990) Let us 
call a utIhty functIOn V for a rIsk preference 
ordermg ;;, continuous If, for any lottery L m D", 
and any sequence IL,I::, of lotterIes In D~ con
vergIng to L In d,strIbutIOn (that IS, for whIch lIm 

1->00 

L,(X) = L(x) for each POInt x at whIch L IS con
tmuous), one has hm V(L,) = VeL) We call a pre

1-'00 

ference orderIng contmuous If It can be repre

11 



sented by a contmuous utIhty functIon Now, 
suppose ", IS a rIsk preference ordermg repre
sented by a hnear utIhty functIon havmg an 
mduced utIlIty functIOn u Then, (1) If ", IS rIsk 
averse, U IS concave, whIle (2) If U IS concave and 
~ lS continuous, then;:::' IS rIsk averse For proofs, 
see WeIss (1987) 

Statement 2 shows that the assumptIon of contm
uous rIsk pI eferences IS sufficient to el1sure the 
eqUIvalence between concave numerIcal utlhty func
tIons and fIsk-averse preferences Note, however, 
that contmUlty of ;;. IS not guaranteed by contmUIty 
of u In fact, no assumptIOn concernmg u alone can 
guarantee the contmUlty of eIther U or ;;. (WeISS, 
1987) Rather, only through assumptIons at a-more 
abstract level, beyond the "VIsIble" or "graphable" 
part of ;;. OJ U embodIed m u, can the contmUlty of 
rIsk preferences be aosured Here, agam, we see the 
hmltatIOns of tradItIOnal approaches as a theoretI
cal foundatIOn for empIrIcal rIsk analYSIS 

Beyon~ Lmearity: Machma's "GeneralIzed 
Expected UtIlIty Theory" 

Machma (1982) plovlded an Important generahza
tlOn of expected utIlIty theory by showmg that 
many of the results of the classIcal theory extend, 
In an apprOXImate sense, to nonhnear utIlIty 
functIOns HIS findmgs, whlCh have attracted atten
tIOn among 'agrIcultural economIsts (note, for exam
ple, Machma, 1985), exemphfy the contrIbutIOn of 
modern mathematIcal concepts to fisk theory 

At an IntUItIve level, MachIna's work IS grounded In 
the Idea that a functIOn f ~ ~ ~ dIfferentIable at a 
pomt Xo IS locally lInear In the sense that the lIne 
tangent to the graph of f at (Xc, [(xo) approxImates 
the graph near thIs pomt That IS, If Txo ~ ~ ~ IS 
the functIOn whose graph IS thIs tangent Ime, then 
TXo apRrOXlmates f near Xo 

MachIna explOIted a SImple but powerful Idea a 
dIfferentIable utlhty functIOn should also be locally 
hneal Smce hneanty of the utlhty functIOn of a 
prefel ence ordenng IS the essence of expected utIhty 
theory, such local hneanty ought to Impart at least 
local (and pOSSIbly global) expected utIhty-type 
propertIes to any smooth nsk preference orderIng, 
that IS, to any nsk preference orderIng represent
able by a dIfferentIable utIhty functIOn 

What, though, IS to be meant by the "dlfferen
tIablhty" of a utIhty functIOn of a preference 
ordenng? After all, such functIOns are defined not 
on the real lIne or even on ~n, but on a 'space of 
lottenes, of cumulatIve dIstrIbutIOn functIons An 
answer IS prOVIded by the concept of "Fnkhet 
dlfferentIablhty" (Luenberger, 1969, p 172, Nashed, 
1966), the natural notIOn of dlfferentlablhty for a 

real-valued functIOn defined on a normed vector 
space (Kreyszlg, 1978, p 59) To motIvate a 
defimtlOn, conSIder that ordInary differentIabIlIty of 
a functIOn f IR -. IR at a POInt Xo can be charac
tenzed by the follOWIng condItIOn there eXIsts a 
continuous funchon g [R - IR, hnear In the vector 
space sense (so that gx (tx+y) = tgxo(x) + g(y) and, 
In partIcular, gxo(O) = 8), such that 

[(x) - [(xo) - gxo(x-xo) 0 
lIm = (1) 

Indeed, when the stated conditIon holds, the 
restrIctIons on g Imply that g must be of the form 
gxo(x) = axe X for some axe E IR, and equatIOn (1) 
th us reduces to 

ImplyIng the dIfferentIabilIty of fat Xo Conversely, 
If f IS dIfferentIable at Xc, the above conditIon IS 

sabsfied by the functIon gXD defined by gxo(x) = 
f'(xo)x 

The hmlt appeanng In equatIOn (1) makes use of 
dlVlslon by x - Xc, an operatIOn haVIng no coun
terpart for vectors m a general vector space 
However, equatIOn (1) can be expressed m the 
eqmvalent form 

f\x) - f\xo) - gxo(x-xo)
lIm = 0 (2) 
'-'''0 Ix - xol 

The dIVISIOn by an absolute value mtroduced m thIS 
refonnulatlOn (and, more partIcularly, the absolute 
value ItselD does have a vector space counterpart, 
whose descnptIOn follows 

A norm, II II, IS a real-value~ [unctIOn defined on a 
vector space and satIsfYIng the followmg condItIOns 
(stated for arbItrary vectors x, y and an arbItrary 
scalar r E IR) (1) Ilxll ;;. 0, (2) Ilxll '= 0 only If x IS the 
zero vector, (3) IIrxll = Irlllxll, (4) Iinyll ,;; IIxll + lIyll A 
nonn IS a kmd of generalIzed absolute value for a 
vector space IntmtIvely, IIxllls the distance between 
x and the zerO vector, whIle IIx-yll IS the dIstance 
between x and y 

Now, let V be a real-valued functIOn defined on a 
vector space V eqUIpped WIth a norm II II (Func
tIOns of thIs type are often called functlOnals ) Then, 
we say V IS Frechet dlfferentwble at Vo E V If there 
eXists a real-valued functIOn Avo, both contmuous 
(m the sense that IIv-v*11 -, 0 Imphes IAvo(vl
Avo(v*) I ~ 0) and lInear (m the vector space sense) 
on V, such that 

V(v) - V(vo) - Av (v-va)
lIm a = 0 (3) 
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We say V IS Frechet differentiable If It IS Frechet 
dIfferentiable at v for each v E V Observe that 
equatIOn (3) IS a drrect parallel to equatIOn (2) 

The precedmg defirut!On prOVIdes a strmghtforward 
approach to Frechet dlfferentlablhty However, Just 
as m the defimt!On of dlfferentlab,hty on the real 
hne, shght modlficatIOns to the underlymg assump
bons are needed when V IS defined only on a subset 
of V Th,s hmltatlOn on V IS typIcal Wltiun expected 
utlhty theory, because utlhty functlons for prefer
ence ordenngs are defined only on lottery spaces, 
and the latter, wlnle subsets of a vector space (for 
example, the vector space of all lmear combmatlOns 
of c d f's), are not themselves vector spaces We omIt 
the comphcatmg detalis The essenbal pomt IS that 
Frechet dlfferentJabIilty at Vo can be defined as long 
as (1) V IS defined at all vectors near m norm
d,stance to va' and (2) Ayo IS hnear and contmuous 
over small (that IS, small-norm) dIfference vectors of 
the fonn v-vo, v E Dv 

A statement of Machma's mam result can now be 
glVen Assummg M > 0, let L be the lottery space 
conslstmg of all cd f's on the closed mterval [O,M] 
(that IS, all c d f's L for wiuch L(O) =°and L(M) = 
1) Let II II be the "V norm" V[O,M] (KreyszIg, 
1978, p 62), for WhICh 

M 

IIL-L*II = f IL(tl--L'(t) Idt, 
o 

whenever L,L* E L (Note the symbol "L'" IS 
standard and mdependent of our use of "L" to 
denote a lottery) Let V be a Frechet rufferentlable 
functIOn defined on L (Observe that V IS automat
Ically a utlhty functIOn for the nsk preference 
ordenng '" defined on L by L '" L' If and only If 
VeL) '" VeL') ) Then, for any Lo E L, there eXIsts a 
functIOn U( ,Lo) [O,M] -, o;! such that 

V(L) - V(Lo)
hm = 1

IIL-LoII-'O M M
f U(t,Lo)dL(t) - f U(t,Lo)dLo(t) 
o 0 

Thus, when an mdlVIdual moves from Lo to a 
nearby lottery L, the dIfference m the V-ubhty 

- values IS nearly equal to the dIfference m the 
expected values of U( ,Lo) Wlth respect to Land 
La In thIS sense, the mdlVIdual behaves essen bally 
hke an expected utlitty maxImIzer WIth "local utlitty 
functIOn" U( ,Lo) 

Machma also showed how varIOUS local propertIes 
(that IS, properties of the local utlilty functIOns) can 
be used to denve global propertIes (that IS, 
properties of the ubhty functIOn V ItselO In so 
domg, he demonstrated that many of the standard 

results of expected utlilty analYSIS remam vahd 
under weaker assumptIOns than preVIously reahzed 

The apphcabllIty of Fr<ichet d,fferent,atIOn m 
economIcs IS not hmlted to rIsk theory For 
example, Lyon and Bosworth (1991) use Frechet 
dIfferentIatIon to mvestIgate the generalIzed cost of 
adjustment model of the firm m an mfmlte 
dImensIOnal settmg They call mto quesbon the 
acceptance wlthm receIved theory of a dIsparIty m 
the slopes of stabc and dynamIc factor demand 
functIOns TheIr results, If correct, would have 
ImplIcatIOns for agrIcultural econOffilCS studIes that 
have relIed on the recelVed theory to mterpret theIr 
empmcal findmgs (Vasavada and Chambers, 1986, 
Howard and Shumway, 1988) 

Conclusions 

The theory of IndIVIdual chOIce under nsk IS a 
subject m ferment Spurred on by the contnbutIOns 
of Macluna and others, researchers are actIvely 
seekmg an empmcally more realIstIc pararugm to 
descnbe behaVIor under rIsk TheIr search deserves 
the attentIon and partIcIpatIOn of agrIcultural 
econom1sts 

Today, the frontIer of research on behaVIor under 
nsk employs such mathematIcal tools as measure 
theory and functlonal analYSIS Other techmques, 
mcludmg those of dIfferential geometry (Russell, 
1991), are on the honzon What IS certam IS that 
the econonuc analYSIS of uncertamty IS now draWlng 
on techmcal methods of mcreased generahty and 
soplustIcatlon 

Readers Wlshmg to explore tlus subject further 
should benefit from the references already CIted In 
addItIon, a more extensIve mtroduct!On to the 
contemporary, set-theoretIc style of mathematIcal 
reasomng used m tlus artIcle may be found m 
(SmIth, Eggen, and St Andre, 1986) 
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