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Capital Markets and the Stability of the Growth l)rocess

by

Mathew Shane*

I. Introduction

lrrcreasing attention has been paid to provitiing a

dynamic macro-monetary framework since the publication of

Tobin’s i;conometrica article ‘tMoney and Jiconomic Growth”——

in 1965. lIowever, tl~ese discussions have in general been

limited to an investigation of the impact of introducing

money into tile neoclassical aggregate growtkl model. These

attentpts at modifying alld placing tl~e Tobin model on a more

rigorous basis contain in general one severe shortcorning--

1/
t}~ey lack stability.– Furthermore, the very limited nature

or tl~e portfolio behavior involved, the choice betweerl money

and re~il cal,ital, does not, provide a rnecllanism for se~jarating

*
;~ssistarlt ~)rofessor at tl~e LJniversity of $linnesota.

All earlier draft of this paper was presented at tl)e
l;cunometrica Society }Ieetings in Detroit, December 28, 1970.
‘1’Jleauthor wishes to tklank l’rofessor George Horwicll of
l)urdue University, l)rofessor Vernon 1/uttan arid l’rofessor
Terry I{oe of the University of Minnesota, I)rofessor .Jarrres
(~uirl< of -the University of l<ansas and Dr. Wayne I’erg of the

Federal I/eServe l~oard for providing comments and suggestions.
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hee Keizo Nagatani [11] , anti for an eX~J~llded proof

Klatl)ew Sllarle, Cal)ital, Markets afld The l)rocess of Lconomic— —.
Growth, unpllblislled dissertation, Purdue University, Ju~ If)(’)(),
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the investment an(i saving process which is such a t’urldalllcrlt,al

part of’ tl)e neo-l~ey~lesian and neoclassical f’ralneworks . (.ln(?

f[lrth~r sl)OrtColrJiKl~unlf Or[llly apJ.)ears in thes(? ~tt(211)~JtSLJt

creating a dynamic macro econonric a~lalysis . Altllougl) the

monetary problem has been considered in a growtl) context, rlo

cffo.rt has been made to describe tl~e adjustment process of

the economy, except on the growth, i.e. , e(lui.librium, path.

Recently, in tl~is journal [16] Sidrauski aJld Foley co 11-

sidered a growtl-j model wit]) all alternative firlallci~d asset

to mol~ey. llowever, th(> debt asset ~JliiyS no ifn~.ortar]t role

in t!leir arlal.ysis arid they in no way consider the f’il~allcial

u~lderpillnings of’ invest merit and saving behavior and klow tl~i.s

relates to tl)e dyrldlnic adjustment process. l,nthovf;n [3] and

Stein [18] also include a debt asset, but the role of the

asset j.s not of fundamental i.ln~)ortance to the r(3SUl~S .

in this paper, 1 expa~ld the stock-flow f’ral]lework

developed kJy Clower and IIorwich [1,2,5,6,7] into a dynamic

macro-monetary theory. The crucial role of tile capital mar-

kc tS )Ilust ~)e
2/

stress ed, — f’or tll(:ca~jital marltets t)ecome th(?

crit ical lilll~ k)etwccn r(?a~ and monetary be}~av ior. It .i.s

tl)rough tl](>ca~.ital markets that savin,g -invest n~ent decisi,orl.s

a r c s(;l,aratedt a Ild tl)at tile process by wllicl~ rnonctary policy

—— ——

~/— Tl~is cr~]cial role has been largely overlooked ir~ tile
liLer’ature. TIIe major exception is the work of George
llorwi cl) cited above, which prov,i.cles the security oriented

fram(’work of this paper-.



Challgt!s induce real t.)ell(~vioralchantges occurs . ‘1’l\.i>is tllc

very basis of tllc nlacro -monetary adjust mt?nt J}rocess .

Tile paper will start with a presentation of tile n]odel

wl~icll includes a stock arid flow su})ply and ctenland e(luat. iorl

for real ca~)ital, money, and securities. Th[) ar]a]ysis will

t}lellcontinllc on to a J)resentat ion 01’ tll(,eqllilibrillrlland

stability properties of the model.

11. The Capital Market Growth Model.

‘1’heInodel has three markets, (1) a neoclassical ~]ro-

duct ion ~tld factor market, (2) an exist itlg ~S Set market for

real cai,ital, securities arid real balances, arid (3) a flow

supply and demand for the three assets derived from savirlg -

invest lne’lltbel]av ior . Associated witl~ tl~e three rnark(?t sec-

tors arf? tl}ree behavioral units: (1) klollseholds who hold

all of tl~e securities wl~ich firms and government issue , arid

whose savill& is the flow demand for new securities and real

balances, (2) firms who hold the entire capital stock atld

issue securities to finance the accumulation of cal)ital

stock and real balances and (3) tile government which I’inances

its budget deficit by issuiny, securities and increases tl~e

stock of’ money through open market operations . AS a rnearls

of simplifying tile analysis, it will he assumed that househ-

olds do not clistirlguisl~ between the securities issued by

tll(’government and ttlose by firms . Furthermore , al 1
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3/government expenditures will be treated as co.nsumpt.ion.-

Given this basic framework, an explicit statement of the

model will now be presented.

It will be assumed that a single good (Y) is produced

in the economy by a neoclassical production function of the

two factors labor (L) and capital (K).

(11.1) Y
4/

= F(L,K) -

This production function satisfies the following well-known

properties:

(11.1. a) FL, FK > 0 - Positive Factor l)roducts

(11.1. b) ‘LL’FKK < 0
- Active Diminishing Returns

(11.1. c) @Y = F($L, @K) - Linear liomogeneity

The labor force is assumed to be growing at some constant

exogenous rate n.

Further, it is assumed that at some initial point (to) both

the ca~lital stock and labor force are given:

-—

3/- This clearly does not have to be tile case. Government

could obviously utilize its expenditures for capital accumu-
lation in the production of Nublic goods.

1*/
- It is assumed that each of tl~e production function

variables has a time dimension. They are omitted here for
notational convenience.



(11.1.d) K(to) = K.

(11.1. e) L( to) = Lo

An exposition of the flow relationships will now be pre-

sented.

Household saving, which in this economy is the only

saving, is assumed to be a constant proportion (s) of dis-

posable income (Yd) .

(11.3) S.SY
d

Disposable income is equal to total income (Y) minus taxes

(gY) plus transfer payments which are assumed to be equal to

the entire government deficit (;s) which is simply the new

5/
issues of gove.rnrnent securities.- Thus :

(11.4) Yd = Y(l-g) + &
s“

At the same time, this saving flow is equal to the new house-

hold demand for real balances (Sm) and the new demand for

securities (Ss) . The flow demand for real balances is a

positive f(lnction of income, a negative function of the

interest rate (r) , and a positive function of the return to
.

balances (- ;) :

-——

5/-.– lf the government runs a surplus, tl~ose funds will be
used to buy back some of the outstanding securities. Tl~is

can be thought of as in fact a negative trarlsfer payment.
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+ ●

(11.5) s sm(Y* ;,
m= .;)

The new demand for securities can L}e derived from (11.3)

and (11.5):

(11.6) Ss =s - sm

The rate of issuance of government securities is exogenously

fixed to be:
●

It will be ~mpl~citly assumed that all household and

governtnellt consumption is satisfied. Thus the actual amount
.

of capital accumulation (K) is equal to real saving. This

is determined to be total saving from production sources

[sY(l-g)] minus that amount of additional consumption gener-

ated by transfer payments [(l-s)&s]. Thus we get:

(11.8) i = sY(l-g) - (1-s);~ .

At the saine time, the business sector)s demand for

capital accumulation (1) is a positive function of output,

a negative function of the cost of investment (tile interest

rate) , a positive function of’ the marginal product of capital

[p=FK= fl(k)], and a negative function of the return to
.

holding balances (- ;) ● Thus ,
+

+-+”
(11.9) I = I(Y, r, p, ~).
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It should be clear that the investment demand is not

necessarily equal to the supply of new cap:ital except at

the long run equilibrium. In addition to .investrnent demand,

the firm has a demand to add to its cash balances. The firm

holds balances to meet its transaction demand, to pay its

labor and to maintain reserves for investment. Thus the

firmls flow demand for balances (Im) is a JJoSltlV@ func-

tion of output, a negative function of its cost (the interest

rate), a negative function of its opportunity cost (the mar-

ginal product of capital), and a positive function of the

return to holding balances (the negative of the rate of in-

flation) . Thus ,

.

(11.10) Im = - -IIn(~, r, P, $) .

Assuming tile business sector pays out all its earnings in

the form of dividend payments, then it must findnce the

funds for both accumulation of balances allcicapital invest-

ment by issuing new securities (1S) . Thus we get:

(11.11) I = I + I
s m“

The quantity of issues can be determined by divid~ng

Is by the price of securities, ps, or

(11.12) IS = Iq. pS .

The present value of past issues does not necessarily equal

the value raised by the business sector. ‘I’hevalue of’ the
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existing stock of securities is always evaluated at current

price although issued at past prices. Thus , it is not true

that the value of the capital stock plus the value of real

balances held by the sector is equal to the value of secur-

6/
ities outstanding.-

/i presentation of the flow supply of money will com-

plete a specification of the flow f{lnctions. lt will be
●

assumed that tile flow supply of money (M) is issued through

open market operations and that the government maintains some

constant rate of money issuance u. Thu S :

(11.13) ~ = u.

l~owever, since this is achieved through open market pur-

chases, this implies that the government has a flow demand
●

for securities (Gd) as well as a flow supply. This gives us

from (11.13) :

;

(11.13. a) # = u.

\ie may now summarize the flow relationships. There are
.

two flow supplies of securities Is from firms and Gs from the

government; there are also two flow demands, Ss from house-

holds atld &~ from government. There is a supply and demand

-—

6/
- This would only be true if one of the two following

cases occur: (1) there has been no previous fluctuation in

security prices, i.e., the ~~resent price is tile same as it

always has been, (2) the present price is somehow a price
which averages the value of all previous issues.
<
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.
for capital accumulation by firms, K and I. Further, there

●

is an exogenous supply of new money, M, and two new demands

for real balances, I and Sm, from firms and households re-
m

spectively. We will now derive the existing asset market

relationship from the flow functions.

‘*
The business sector~s total asset value at time T,

[Wf(T)], is equal to the value of real balances (Mf/l)) }~eld

by this sector plus the capital stock. Since the currerlt

price of securitit?s is not necessarily equal to the issue

7/ “,price, Wf(T) is not equal to the current value of securities.-

Thus ,

(11.14) Wf(T)
‘f

= #T) + K(T).

Tile stock of capital at time T is equal to its initial value

(Ko) plus the integral from to to T of capital accumulation,

;. This is:

T
(11015) K(T) = K. + / J&it.

to

The current value of the firm’s real balances, (Nf/l))(T),

is equal to the value at some initial time to plus the

~1 There is a further reason for it beirlg “unrealistic”
to ass(mc that the asset value of firms is equal to the value
of the liability against tk)etn. If we asserted this equality,

wc would then be overlooking the very special property of
the business sector, that its assets are used in production.
Since tile performance of firms depends on how the assets
are org;inizecl and managed, it would certainly be an over-
simplification to assume that the organization of the fac-
tors did not adcl value to the sector.
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charl, <t?in value i’rolllthat initial time to the presetit (’l’).

Tl~i.s l]as two components , that which accrues to the sector

through the issue of securities but not spent for invest-

merlt, and that. which is due to the change in the value of

real balances held by the firm. Analytically, this is:

M ~
‘f

; Mf

(11.16) #T) = ~(to) + ~ (Is - ~- ~ #dt
to

The determination of the rate of inflation will be considered

after the firm’s stock demand functions.

At to, the initial point in time, the firm has a given

demand for real balances which, like the flow demand, is

positively related to income, negatively related to the

interest rate, negatively related to the marginal product

of capital, and negatively related to the rate of inflation.

Thus ,

‘if d
(11.17) (~) (to) = mfo(~, ~, ~, $.

At some time T after to, the firm’s stock demand for real

balances call be determined by adding to the initial demand

function, info, the integral from to to T of the firmts flow

demand for real balances, Im. This gives:

‘If d
(11.18) (~) (T) = mfo + ? Imdt.

to

At every point in time tile above statement (11.18) defines

the firm’s stock demand function for real balances. This

is independent of Im since the value of the integral is
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zero for every instant of time . On the other hand , 1,1,com-

pletely de fi~les t}le shift in the dema!ld for real balailces,

s ince the initial function m ~. does not clmnge over time.

‘rllus, in c(Jntrast to previous integral representations [such

as (11.1 ~)] which define only a particular value at eac}~

poirlt in time , (11.18) defines a movement of a function ov~?r

time . To define the path of the value of the firtnls denml~d

for real balances one must not only take into account the

move) ]ient of tl~e function defined by the integral of I but
m’

also tile change in the value of m
fo

itself as the depend el~t

variables change. This itnplies that although the value of

the stock functions can be clefinecl equal. at all points in

time, the flow f~~nctions do not necessarily have to be equal.

The significance of t}lis, lies in its ramifications for de.

f’inillg a nonequilibrium adjustment process .

The demand for the capital stock at the initial poil~t

is a positive function of income, a negative function of

the interest rate, a positive function of the marginal ~Jro-

duct of ca~~ital, and a positive function of the rate of in-

flation.

(11.19) Kd(to) = Kd(Y, r, o, :) ●

Tl~e demand for capital f~lnction at a time T greater than to

is equal to tile initial function plus the evaluated integral

of.’investment between t and T.
o
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T

(11.20) Kd(T) = Kdo + / Idt.
to

At all points in time there :is an actual portfolio ratio
NI~

‘lf c1
=(T) and a desired ratio (~) (T). It is assumed that the

.
P

rate of inflation -p is such that the actual and desired

ratios are always equal.

Pif

(11.21) R(T)
‘f d

= (~) (T)

Lquation (11.21) implicitly assumes that the inverse function
●

‘lf d
exists with respect to ~ . Since (~) (T) is a function of

P and $,

.

Y, r, this means that expressed as an inverse, ;

becomes a function of Y, r, p and the equality (11.21).

Thus ,

●

✎✍

(11.22) #
‘f ‘if d

s ~[~, r, p, ~(’r) = (~) (’r)l

The total household ~~ortfolio (LJ~l)consists of real

balances and the stock of securities outstanding (SE):

pl

(11.23) \{h(T) = +(T) + slj(’r).

‘rl~eva.luc of securities at time T is equal to tl]e quantity

of securities outstanding at time to (Sqo) times the current

price of securities plus the integral. of’ the flow quantity

of securiti{-,s issued between t and T times the current
o

price of securities [~js(T)].

(11.24) SE(T) = Sqo . PS(T) + PS(T) ; Iq ~t.
to



‘J’IIct~uarli,i.t,yof’ rlew secllrit.i.t!s is.sllcd {lt ally tilnf! [:.l,l(t.)1

is equa 1 to thf! number 01’ securiti(>s issued by fiJ’ms [lUf (t)l
.

plus tile number issued by government [;s = I: . ps (t)], less

the amount purchased in open market operations [&d . Ir .
q IJ&)].

Thus ,

(11.25) Iq = I: + I: - I;

Tile household s demald for real balances at time t~ is

equal to a positive function of income! a negative function

of the interest rate, and a negative function of the rate of

inflation.

‘ih d
(11.26) (~) (to) = m: (~’, ~, j)

d
At time T after to, it is equal to its initial function m

h

plus tl~e integral of Sm from to to T. Analytically this is:

(11.27)
‘h d

(~) (T) = m: + ~ Smdt.
to

The demand for securities in value units (DE) at any time t

between to and T is equal to total household wealth minus

the demand for balances.

‘h d
(11.28) DE(t) = Wh(t) - (~) (t).

The interest rate is equal to the earnings price ratio,

since it is assumed that all profits are paid out in the

form of dividends, Thus at an arbitrary time t between to

and T:
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‘(IIe29) r(t)
= P*

The price of securities is always such that the relative

supply and demand for household portfolios is equal.

(11.30)
‘h
~(t)

‘h
= (~)d(t) for all t.

E E

From (11.30) and (11.29), we can explicitly derive the partial

inverse fundtion for the interest rate.

This completes a presentation of the model. In the next

section, equilibrium and stability properties of the model

will be investigated.

111. The B;quilibriurn i~l the Short and LorIg-Rurl

13efore proceeding into a demonstration’ of: existence, the

concept of short-run and long-run equilibrium will be ex-

plained. Equilibrium, in the traditional ~Jartial sense, is

determined by the price which equates the supply and demand

for a particular good. General equilibrium is the existence

of a price vector where consumers are maximizing their satis-

faction given their preferences, while producers are max-

imizing their profits. With the introduction of stock-

flow dynamics, we must further distinguish between short-run

and long-run equilibrium.
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It has already been assumed that existing asset market

is always in equilibrium. It was in this way that we de-

fined both the rate of inflation and the rate of interest.

However, because the system is always in existing-asset

equilibrium in no way guarantees that the system is in long-

run equilibrium. If the excess flow demands are not zero,

the existing-asset functions are shifting by different

amounts implying a cumulative change in the rate of’ irlter-

est and inflation. Thus primary to tl~e concept of long-run

equilibrium is the ‘stationary” nature of the existing-asset

and production Inarkets .

‘l’heproof of existence which follows is restricted to

demonstrating that an interest rate, rate of inflation and

marginal product of capital exist such that the flow supplies

of securities, money and capital are just equal to their flow

demand. .8/ Ilecause these functions are assumed to be cor~-

9/
tinuous Drouwerls Fixed Point Theorem will be used.- The

proof will involve defining a function which satisfies

I]rouwerts conditions.

8/
- The marginal product of capital is not inclepencierlt

of: output. Thus with the rates determined, Y is also
determiJled and therefore it is not necessary to explicitly
include it.

9/- Brouwerls Fixed Point Theoretn states that if f is
a continuous function from a closed bounded convex set of
Euclidean space C into itself, then there exists X* element
of c, SUCII that f(x*) = X*O



16

.

Theorem 1. There exists a triple (r, p, ~)—— such that for

every t between to

(Th 1.1)

(Th 1.2)

(Th 1.3)

Proof:

and T

Is+& -id=Ss

.
K= I

(M/~) = Sm + Im.

For notational convenience, let

.

P =(r, p,~)

s=

l-s + & - &d
i

I M;P

[1
Ss

D = I

Sm + Im

We will first show that D can be represented by:

●

(Th.1.4) D = f(r, p, ~)

and that the inverse of S exists with respect to P, i.e.:

(Th.1.5) P = g-h S).

lly construction, it will tl~en be shown that a bound

can be determined such that over the bounded set defined

the domain of (Th.1.4) is equal to the range of (Tho105)
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and that the range of (Th .1.4) is equal to the domain of

(Th.1.5). If it can be shown that such a bound is possible,

then a mapping is easily defined which satisfies 13rouwerts

conditions and existence of long-run equilibrium is demon-

strated.

(A) It will now be shown that the system of flow equations

can be reprr?serlted in the form of (Th.1.4) and (Th.1.5) .

The system of flow demand equations can be represented

as follows:

●

(Th.2.1) Ss = s(l-g)Lg2(~) + S& -
10/

fl(;, ;) —

+
+“

(’rh.2.2) I = f2(r, p, ~)

●--

(Th.2 .3) Im + Sm = f3(r, P, ~)

10/— This result can be derived as follows:
(7.1) Ss = S - Sm .

s= s(l-g)Y + SGS ●

S = s(l-g)Lf(k) + sGs

P = ft(k)

k=f$ -l(P)
By substitution, we get:

-1
S = s(l-g)Lf[f’ (p)] + S&s

Letting .

f[f’-l(p)l = Q;) and Sm = fl(r, f)

gives tile noted result.



[lquations (Th. 2.1) - (Th.2.3) can be represented as (Th.1.4).

The supply equations can be represented as follows:

●

(Th.3.1) Is + & -&d= % + &gl(r$ P, ~ - id

(Th.3 .2) i = s(l-g)Lg2(~) - (l-s)&s
+
●

M
(Th.3.3) (M;P) = U ~ - ;; ~=u -- !33(;)

To derive the inverse system, we do the following:

(1) Solve for ~’/P in (Th.3 .3)

(Th.3.3*) ~ = -
(M;I’)
m+u

(2) solve for from (Th.3.2)

(Th.3 .2*) p = g;l [;; (l-s) &s]

(3) substituting (Th.3.3*) and (Th.3.2*) into (Th.3.1) and

solving for r gives the last inverse equation,

(Th.3.1*) r = g~l [Is, ~, (M;P); (1-s)6s]

Thus equ~t.ions (Th.3.1*) - (Th.3.3*) satis:fy the equation

(Th.l .5).

(D) We will now define bounds on the functions (Th.1.4) and

(Th.1.5) as derived above such that they are continuous over

11/
a ptiralle~epiped .—

11/
— A parallelepipeds is a general rectangle in n-space

which satisfies the needed convexity condition.
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Assuming non-negativity of both the supply and demand

f’unct.ions and considering just those portions of the returns
.

that are positive, i.e. (r, P , - P/P) > 0$ then an obvious

lower bound is the zero vector.

Given this lower bound, it is possibl~: to cOnstruct an

upper bound such that the average partial slopes of the

functions are equal. This bounded set enclosed in the u~~~Jer

and lower bounds satisfies the convexity condition needed.

(C) We must only define the proper functional mapping, ~ ,

to complete the proof. It is readily seen that the follow-

ing is a continuous function from a closed bounded convex

set into itself:

(Th.5 .1) (D, P) =~f(l’), g-%)].

Thus existence is demonstrated.

Q.E.D.

Iv . The Stability of the System

In the introduction it was asserted that the important

result of this paper! i.e. of introducing a capital market

into the money and growth framework, was the stability which

results. In this section, the stability of the system will

be demonstrated. As in the previous section~ the critical

factors determining stability involve the flow functions.
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The question of stability is one of determining that

given any initial point (vector of returns) , that the system

will achieve an equilibrium (a point in time where the

vector of returns does not change) . Although the interest

rate , the rate of inflation and the marginal product of

capital are determined by the stock functions, it is the

excess flow demands which determine the relative movement

of the stock functions and thus the long-run adjustment of

the system. It is only because of the separation of the

equilibrium of the ‘lstockll markets and that of the flow mar-

kets that it ,is possible to describe the adjust process in

12/
terms of excess demand functions.—

First, the system of excess demand function will be

derived. Then the matrix of partial derivatives of excess

demand functions with respect to tl}e rates of return.

A ● The Flow Excess Demand Functions

There are three flow excess demand functions: (1)

securities, (2) capital accumulation, and (3) real balances.

Analytically, these can be represented by

(IV.1.1) Xdl = Ss - Is - & + ;d

(IV.1.2) Xd2 = I - ~

——
,

“The error of previous research in the tnoney and

growth area has been not separating the concept of long allc.i
snort run equilibrium, i.e. stock and flow equilibrium and

thus not obtaining a “traditional” adjustment process.
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(IV.1.3) Xd5 = Sm + Im - (Mb)

Substituting the functional forms derived in section 111

gives us:

(IV.2.1)

(IV.2.2)

(IV.2.3)

Thus the

+
● ●

Xdl = Kg2(6) - fl(r, ~) - f2(r, P, ~)

--

Im(r, p, ;) - (1-S)6S + &d

xd2 = i -f2(r~p ~ ~, Kg2(P ) +- (l-skis

system (IV.2.1) - (IV.2.3) can be represented

by the general system Xd:

●

(IV.3) Xd = f(r,p , ~)

3where Xd, f s R . Since Walras Law can be shown to hold in

the flow markets, we only have to concern ourselves with

two of the equations and two of the returns. For conven-

ience we will choose Xdl and Xd .
3

By taking the partial derivatives of Xdl and Xd3 with
.

respect to r and ~, we can determine the stability conditions

of the system. l’or consistency, the negative of the partial

derivatives will be taken with respect to ~/P. (IV.4) below

is the matrix of these partials (3Xd/~P) :

axd
-F-=

aXdl a Xdl

r~ a(P/P

aXd3 axd
3

F-
a(P/P
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As can be seen, the partials with respect to r are deter mi -

1:
nate, while those with respect to ~ are not.

Several additional conditions on (IV.4) will guarantee

local stability:

(IV.4.1)
aXd— is (~uasipositive definite

‘f aP

(Iv.4.2)
a Xd 13/

‘f w is quasidominant diagonal.—

Since for the ~Jurposes of tl~is papert conditions (IV.~~.1) and

(IV.4.2) are equivalent, only the implications of (IV.4.1)

will be discussed.

Condition (IV.~~.1) will be satisfied if for [ill yl and

Y2 different from zero, the following quadratic equation

is greater than zero:

axdl axdl
(IV.5) y; (~) + yly2 [> + ~ 1

a(P/P)

aXd3
2 (~+ Y2 )>0

a(P/P)

This will hold if the characteristic roots of (IV.5) are

positive which is guaranteed if

axdl aXd3
(IV.5 .1) ~ + –~

a(P/’P)

a nd

>0

.—

lJThe ~ua~i

in these conditions means that the matrix
plus its transpose satisfy the given condition.
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aXdl axd
(IV.5.2) 4- . ,3

axd 3Xdl

[~+——~r 12
a(P/P) a(P/p)

Several conditions on the partials of Xd with respect to

~/P would satisfy (IV.5.1) and (IV.5.2). One possible stable

solution would be obtained if

axdl axd
(IV.6 .1) ~ 3<-—

a(P/1’) ar

a nd

axd
3(N.6.2) ~ >0

a(P/P)

subject to (IV.5.2). Stability of the system could be ob-

tained under other similar conditions. The important con-

clusion is that under a wide range of situations th~: system

will prove to be stable.

v* Conclusions

In this paper, the equilibrium and stability pro~~erties

of a capital market growth model have been investigated. It

was i’ound that under the conditions assumed that the system

contained an equilibrium point and under a wide range of

~/If we let 2 axdl
axd3 axdl

— = a, —— +~
ar ar

= b and
~ (1-’/1’)

axd3
2 “r = c, then the characteristic roots of

a(l’/P)
determined by: + n r,

a+c- d(a+c) - 4(ac-b~
An =

2

(IV.5) are



situations equilibrium would be locally stable. This result

must be compared to that obtained in a simple To bin money

arid grow~h model where tile equilibrium except for a finite

number of patl~s was unstable [11] .

We can interpret this difference in result to mean that,

in a simple money and economic growth model without securities ,

the goods market, through a rapid change in prices, is forced

to take the full impact of any disturbance. However, the

introduction of a security market? by ~Jrovidi.ng a buffer be-

tween monetary disturbances and real changes, reduces the

adjustment role of the rate of inflation and thus provides

a stabilizing influence on the model.
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