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Can a simple model predict complex bidding behaviour? 
Repeated multi-unit conservation auctions.  

 

 

ABSTRACT 

 

Buying environmental services from private landholders using auction mechanisms 

often involves repeated multi-unit procurement-type auctions. These can either be 

target-constrained or budget-constrained. Most of the theoretical literature has 

focused on the former, whereas government agencies have, for conservation 

purposes, mainly implemented the latter. This paper examines the predictive power of 

a simple model previously developed for budget-constrained auctions, in comparison 

to that of the more standard and more complex target-constrained auction model. 

Experiments carried out in Germany and Australia lend credibility to the non-

standard and simpler budget-constrained model. 

 

Key words: Auctions, procurement, conservation, learning, economic experiments   

JEL Classification: C91, C92, D44, Q24, Q28  

 

 
I. INTRODUCTION 

  

With the increasing importance of environmental values and policy, the lack 

of markets for pricing and allocating environmental goods and services has become a 

serious concern. At the same time, traditional command-and-control regulation has 

shown its limits, particularly when government policy creates constraints on 

economic agents and these then use their energies to resist such policies. 

Governments increasingly need to be able to obtain such goods and services from 

private economic agents. Hence the recent interest in market-based instruments. These 

rely on economic incentives to modify the private agents’ cost-benefit balance.  

One particularly important instance of such policies is where public 

environmental agencies wish to purchase from landowners services such as land and 

water conservation, biodiversity and wildlife enhancement, or reduction in pollution 

emissions from agricultural activities. There has been growing interest by 

governments in contracting with landowners to that effect. Such contracts typically 
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specify the conservation-oriented tasks to be done, but not the price to be paid the 

landowner. This is because it is not easy for the procurement agency to identify what 

the appropriate price is. Fixed price schemes run the risk of setting it either too high 

or too low. A solution to this problem is the use of auctions as a way to ask 

landowners to fix their prices, and the agency can then use this information to allocate 

contracts to those offering best value for money. In this way, auctions can help 

allocate public funds in the most efficient way.  

In the procurement case, where the auctioneer (the government in this case) 

buys rather than sells the goods, there is the choice of carrying out the auction with a 

fixed target or, alternatively, with a fixed budget. In the first case, the number of 

contracts or hectares of land to come under contract is decided upon and known; the 

risk is with what it might end up costing. In the second case, it is the reverse: the 

budget us decided upon and is known; the risk is with the number of contracts or 

hectares that might not come under contract, that is, with the degree of effectiveness 

of the policy. It seems that target constrained auctions are used where government 

cannot fall short of its objectives, as is typically the case with military procurement 

programs. In the field of environmental policy, governments’ use of the budget 

constrained auction probably reflects their general political priorities. As a result, 

budgets are usually given for environmental procurement programs.  

This poses a problem to the extent that economic theory has been well 

developed, since Vickrey’s 1962 paper, for target constrained (TC) auctions, but 

much less so for budget constrained (BC) auctions (Müller and Weikard, 2002). In the 

field of environmental policy, there is a gap between theory and practice. A better 

theory would allow agencies to improve auction design and also, when necessary, 

decide which of the two auction formats is more appropriate.  

This study sets out to investigate this issue. It considers a new model 

developed for BC multiunit procurement auctions by Latacz-Lohmann and van der 

Hamsvoort in 1997. As shown by Müller and Weikard (2002), applying the same 

assumptions to the BC auction model as for the TC model leads to a complex 

situation with multiple Nash equilibria. Latacz-Lohmann and van der Hamsvoort 

solve this problem by introducing an exogenous parameter, the bidders’ expectation 

of what the highest acceptable bid might be. Bidders then use this best guess of theirs 

to form their bid. The result is a very simple model, much simpler than the more 

standard TC model. In this model, as described below, the highest expected 
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participation cost plays an analogous, though different role to that of the highest 

acceptable bid. The fact that it is endogenous to the model makes the model more 

complicated, as will appear below.  

The purpose of this study is to investigate the validity and credibility of this 

new BC auction model. This appears as a prerequisite before asking questions about 

its allocative efficiency compared to the TC model. As a result, the problem 

investigated here relates to the comparative performance of two models, not to the 

comparative performance of two auction institutions. The latter question cannot be 

investigated before the first one. Given the lack of theoretical backdrop, the 

comparison was made with the use of controlled economic experiments. In addition, 

since agri-environmental contracts are often renewed, we extended the problem to 

repeated auctions under both formats. With repetition, bidders learn to bid more 

efficiently, and, as shown in Hailu and Schilizzi (2004), extract increasing 

information rents at the expense of contract allocation efficiency.  

The remainder of the paper is organized a follows. Section two presents the 

two auction models. Section three describes the economic experiments, and section 

four provides and discusses the results. Section five concludes. It is shown that the 

Latacz-Lohmann – van der Hamsvoort (1997) model for multiunit procurement 

auctions is a credible tool for auction design and environmental policy analysis.  

 

II. THE TWO AUCTION MODELS 

 

The budget constrained (BC) model  

We follow the rationale set out in Latacz-Lohmann and van der Hamsvoort 

(1997) and summarize the essentials of their model for the reader’s convenience. Let 

us consider that landowners or farmers hold private information about their own farm 

income, and let π0 be the associated profits. Let π1 be the profit remaining after a 

landowner has given up a proportion of his land, exclusive of any compensation 

payments by government. More precisely:  

π0 = profits from business-as-usual land management or farming  

π1 = profits with a new, conservation-oriented land management  
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Note that π1 may include income from employment outside farming. π1 = 0 if the 

farmer gives up all of his land and has no alternative employment prospects.  

In order for the landowner or farmer to participate in the scheme, the payment 

he receives must be at least equal to (π0 - π1), his or her opportunity cost of 

participation. If he or she submits a bid b that is accepted, utility will be U(π1 + b), 

where U(·) is a monotonically increasing, twice differentiable von Neumann-

Morgenstern utility function. If the bid is rejected, the bidder’s utility is U(π0), the 

reservation utility.  

Now let us consider that landowners’ bidding strategies are predicated on the 

belief that the government agency will decide on a maximum acceptable bid, or 

payment level, β ,  a common practice when the agency is subject to a constrained 

budget. This maximum bid is determined ex post, after all bids have been received, as 

the last (highest) bid accepted within the available budget. In other words, no 

individual bids above β will be accepted. β represents a reserve price per unit of 

decommissioning service, unknown to potential bidders. A landowner will tender a 

bid b if the expected utility in case of participation exceeds his or her reservation 

utility, as shown in equation (12), where p stands for probability:  

U(π1 + b)·p(b≤β) + U(π0)·[1 - p(b≤β)] > U(π0)   (1) 

 
Bidders do not know the value of the bid cap β, but they will form 

expectations about it, which can be characterized by the density function f(b) and by 

the distribution function F(b). The probability that a bid is accepted can then be 

expressed as  

∫ −==≤
β

β
b

bFdbbfbp )(1)()(      (2) 
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where β represents the upper limit of the bidder’s expectations about the bid 

cap, or the maximum expected bid cap. Substituting (2) in (1) yields 

 
 U(π1 + b)·[1 – F(b)] + U(π0)·F(b) > U(π0)    (3) 

 
The essence of the bidding problem is to balance out net payoffs and 

probability of acceptance. This means determining the optimal bid which maximizes 

the expected utility (on the left hand side of (3)) over and above the reservation utility 

(on the right hand side of (3)). Let us assume that there are no costs in bid preparation 

and implementation, and that payment is only a function of the bid. We also assume 

that bidders are risk neutrali.   

A risk-neutral bidder simply maximizes expected payoff, so that (3) can be 

rewritten as  

 (π1 + b − π0)·[1 − F(b)] > 0      (4) 

 
The optimal bid b* is then obtained by maximizing (4) through the choice of b:  

 

  b* = π0 − π1 + 
)(

)(1
bf

bF−      (5) 

 
To gain further insights, one must specify the distribution function F(b). The 

simplest case is where bidders’ expectations about the bid cap β are uniformly 

distributedii in the range [β, β ] , where the lower and upper bounds represent the 

bidder’s minimum and maximum expected bid cap. For example, if a landowner 

believes that the cut-off point will lie somewhere between $X and $Y per hectare, 

then β = X and β = Y. Note that these bidder’s expectations are exogenous to the 

model.  
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 The density and distribution functions of a uniform (rectangular) 

distribution are:  
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Of course, there is no sense in the bidder bidding below β (this would not increase the 

acceptance probability) or above β  (his chances of winning would be nil).  

With this specification of f(b) and F(b), one obtains an explicit optimal bid 

formula for a risk-neutral bidder:  

 

 b* = max [
2
1 (π0 − π1 + β ), β ]  s.t.  b* > π0 − π1   (7)  

 
Expression (7) shows that the optimal bidding strategy of a risk-neutral bidder 

increases linearly with both the bidder’s opportunity costs (π0 − π1) and his or her 

expectations about the bid cap, β and β . Thus, a bidder’s bid conveys information 

about his or her opportunity costs, which are private information unknown to 

government. The information asymmetry is thus reduced, but not completely: indeed, 

the auction’s cost revelation property is blurred by the fact that the bid also reflects 

the bidder’s beliefs about the bid cap chosen by the agency. This creates room for 
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bidders to bid above their true opportunity costs and thereby to secure themselves an 

information rent – area CBDG in Figure 1.  

 
Figure 1 about here 

 

The target constrained (TC) model  

Vickrey (1962) formulated a Nash equilibrium bidding model in the case of single-

unit sealed-bid discriminative price auctions (when agents bid only for one unit) and 

demonstrated that the Revenue Equivalence Theorem holds for risk-neutral bidders 

with individual values for the auctioned objects drawn from a uniform distribution. 

Harris and Raviv (1981) generalized the Vickrey model for bidders’ valuations drawn 

from general distribution functions and when all bidders have identical concave utility 

functions.  All subsequent extensions (Milgrom and Weber, 1982; Cox et al, 1984) 

have focused on “selling” auctions. In the literature, optimal bid formulas have been 

explicitly given for direct or selling auctions (e.g. Cox et al. 1984) but not for 

procurement or reverse auctions. We use the Vickrey-Harris-Raviv approach, as 

customised in Hailu, Schilizzi and Thoyer (2004), to model the Nash equilibrium risk 

neutral bid functions in a procurement multiple unit auction, relevant for government 

conservation schemes. We first do the calculation for a single unit auction then extend 

it to a multiple unit action.  

 

Nash equilibrium bidding strategy for a single-unit procurement auction in a 

discriminative sealed bid setting 

 

Let n risk-neutral bidders compete to sell one unit of a good to the auctioneer: let vi be 

the monetary value of this good to bidder i. Assume that each vi is drawn (with 
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replacement) from a distribution with density f(.) and probability distribution function 

F(.) whose support is the interval [0,vsup]. Suppose bidder 1 with value v bids b, and 

all (n-1) rival bidders k bid according to the strictly monotonous increasing 

equilibrium strategy B(vk).   

The expected gain of bidder 1 is: 

1])([Pr)(),( ≠∀>−= kbvBvbbvE k  ,  or       

11 )]((1[)(),( −−−−= nbBFvbbvE         (8) 

Maximizing (8) with respect to b yields the following first-order conditions: 

0)'(
))((

)]((1[)1()()]((1[
1

2111 =−−−−−
−

−−−−
vB
bBf

bBFnvbbBF nn    (9) 

At equilibrium, )(vBb=    

0)'(
))(1(

)()1)()(()](1[
2

1 =
−

−−−−
−

−

vB
vF

vfnvvBvF
n

n  

)(1))(()1()'( vF
fvvBnvB −−−=        (10) 

For a uniform distribution between 0 and 1, F(v) =v, f(v)=1 and (3) simplifies to: 

v
vvBnvB −

−−= 1
)()1()'(              (11) 

Therefore, the optimal bidding strategy is given by: 

nvn
nvB 11)( +−=         (12) 

 

The optimal bidding strategy is one of overbidding (b>v). This overbidding declines 

when the number of bidders (n) increases. 

As a comparison, the optimal bidding strategy for a “selling” (or direct) sealed bid 

auction is: 
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vn
nvB 1)( −=  (Wolfstetter, 1996) 

Contrary to what one might have expected, the optimal bid formulae for direct and 

procurement auctions are not symmetrical.  

 

Generalization to multiple unit procurement auctions  

Consider a multiple unit reverse auction with n bidders and m units demanded by the 

auctioneer, each bidder wanting to sell at most one unit. Each bidder submits a bid for 

a single unit with the understanding that each of the mth lowest bidders will sell a unit 

of the good at a price equal to his own bid (discriminative sealed bid auction). 

 

The probability that a bid b by bidder 1 will win is the probability G(B-1(b)) that at 

least (n-m) of the values drawn by the rivals are greater than B-1(b). This probability is 

given by 1- H(F) where H(F) is the distribution function of the mth order statistics for 

a (n-1) sample from distribution F: 

 

dvvfvFvFmnm
nbBG mnmv

bB
)())(1()()!1()!1(

)!1())(( 11sup

)(
1

1

−−−− −−−−
−= ∫ −

  (13) 

 

The expected gain of bidder 1 of value v and bid b is: 

))((.)(),( 1 bBGvbbvE −−=        (14) 

The first-order conditions for the maximization problem in (14) are: 

0)'(
)('(

)())((
1

1 =−+
−

−
vB

bBG
vbbBG  

At equilibrium, )(vBb=   
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Therefore, the optimal bid is: 

∫
∫= sup

sup
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v

v

v
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For a uniform distribution between 0 and 1, we have: 
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An important feature of the optimal bid as determined in (18) is that the level of 

overbidding is high for low value bidders. Overbidding decreases as the value 

increases, with the bids from high value bidders asymptotically approaching their 

respective values. For example, in an auction involving 100 bidders with values 

uniformly distributed between 0 and 1 competing for the sale of 30 units, the level of 

overbidding is 300% for a value of 0.075 and only 11.70% for a value of 0.305. 

  

 

III. THE EXPERIMENTAL SETUP 

 

The question now is, how well does the BC model perform? This is not such a trivial 

question, since we lack standard benchmarks to measure its performance. One 

solution is to benchmark it relative to a fixed price mechanism, as was done in 

Schilizzi & Latacz-Lohmann (forthcoming).  Perhaps a better solution is to 
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benchmark it relative to the other auction format, the TC auction, for which a well 

established theory exists. The purpose of the experiments described below was to 

compare the performance of the two auction models.  

 

Setup common to both auction formats 

Both auction formats were submitted to a common experimental setup. They were 

first carried out at the Christian Albrechts University in Kiel, Germany, in January of 

2004, then, in October, at the University of Western Australia in Perth. The Perth 

experiment was meant to replicate the Kiel experiment, in order to check for the 

stability of results. One slight change was introduced, however, as described below.  

The Kiel experiment was carried out with first year students in agricultural 

economics. The total number of students was about 88 (the number varied slightly 

across sessions). They were divided into two groups, one for each of the two auction 

formats. A pre-session had controlled for key environmental and risk aversion 

attitudes, in terms of certainty equivalents. Table 1 shows that the two groups were 

nearly identical in terms of risk aversion; they were also tested to be very similar in 

environmental attitudes, with the TC group being slightly “greener” than the BC 

groupiii.  

 

Table 1: Risk attitudes – Kiel  

                                        AUCTION TYPE 
  BC TC 
Risk loving  39% 30% 
Risk neutral 49% 46% 
Risk averse 12% 24% 
CE ratio 108 107 

CE = Certainty Equivalent ratio (100 = risk neutral) 

 

 The auction setup referred to reductions in nitrogen fertiliser on a wheat crop, 

in order to meet EU regulations regarding limits to nitrate concentration in 

groundwater (50 mg/litre). This is a serious concern in the agricultural areas of 

northern Germany, and one which students in Kiel would be aware of and sensitive to. 

Participants were offered would-be contracts for committing themselves to reduce 

applications of nitrogen fertiliser from their optimal level down to a predefined 

constrained level, equal to 80 kg per hectare. Each participant had a different 

opportunity cost resulting from the adoption of the nitrogen reduction program. Thus 
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participation cost a different amount for everyone. Participation costs were spread 

uniformly between €4 (the lowest-cost farmer) and €264 (the highest-cost farmer). 

Students were told that not all of them would be able to win contracts and that they 

were therefore competing against each other. To keep things very simple, each 

participant could put up just one land unit of wheat, the same area for all participants. 

They were told that if they won a contract, they would be compensated for the 

environmental service they were providing to society – reduced groundwater pollution 

– by getting paid the difference between their bid and their opportunity cost. They 

were therefore not to bid an amount lower than their opportunity cost. On the other 

hand, they were to think carefully about how much they could bid above their 

opportunity cost, as the higher they bid the lower their chances of winning a contract. 

It was up to each bidder to strike the balance and decide on the trade-off.  

 For both groups, three rounds were held, with a few days interval between 

each. The purpose of this was to investigate the performance of the models with 

potential bidder learning. That is, which of the two auction models was better able to 

maintain the quality of outcome predictions as bidders learn to bid closer to the 

marginal cost bidder? This would provide some insight as to the dynamic 

performance of the two models. In rounds two and three, exactly the same setup was 

used, except that bidders knew of their own result in the previous round(s), and 

successful bidders had been paid their net gains at the end of each session.  

 

Auction specific setup  

The two auction formats differed mainly with respect to the information given 

to, and asked of, the bidders. Since auctions are very sensitive to information 

structure, it was important to perfectly control for this aspect.  

 

- BC auction specifics 

 For the first round, the group playing the BC auction was given the following 

information: the available budget for the current session (€3900) and a rough estimate 

of where the bidder stood compared to his or her competitors in terms of participation 

cost. It was assumed that bidders could look around and estimate the number of 

competitors in his or her group: between 40 and 44 depending on sessions.  

 The budget constraint announced was clearly distinguished from the actual 

payments made at the end of the session. These reflected the further budget constraint 
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weighing on the experiment, which amounted to €300. Bidder payments would be 

proportional to their gains calculated as bid minus participation cost. The cost 

positioning information was given by indicating to which quartile the bidder belonged 

to: lower quarter, lower half, upper half, or upper quarter. The cost range (€4 to €264) 

was not given, but bidders were told that costs were uniformly distributed.  

 Bidders were asked two pieces of numerical information, their upper beta 

value (β ), and their bid (b). They were asked their β  value as follows: “Please write 

down the highest bid you believe will be accepted. This must be your best guess”.  

 In the following rounds (2 and 3), bidders also knew whether they had 

previously been successful or not, and if so, what their net gains were. No information 

regarding other bidders was given, as e.g. the number of winners. However, it was 

assumed that students could and would communicate between rounds and gain a 

better idea of what the values involved were, just as in real auction settings.  

 

- TC auction specifics  

 To the TC auction group, instead of a budget constraint, the number of 

contracts to be allocated was announced. This number had to be worked out 

immediately after the BC auction had been held, for the target was set equal to the 

number of contracts allocated with the €3900 budget constraint. In the first round, this 

was 30 contracts. Thus the number 30 was announced to the TC auction group. 

Similarly to BC group participants, a bidder was shown to which cost quartile he or 

she belonged. Importantly, during the first session, the two groups were not allowed 

to communicate. The TC group entered the experimental venue as the BC group 

exited by an opposite door. Tutors were present to make sure no communication 

happened.  

 Two pieces of quantitative information were also asked of the TC group. 

Besides the amount bid for a contract, a bidder was also asked the value vsup, that is, 

his best guess of what the highest participation cost in his or her group was. The value 

vsup appears as the upper bound of the integral in equation (16), normalised to 1 in 

equation (18). Bidders were asked their vsup value as follows: “Please write in your 

best guess of the highest participation cost in your bidding group. That is, how high 

do you believe is the participation cost of your “most expensive” competitor in your 

group? Please write in your best guess here below”.  
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The Perth replicate  

 The Perth experiment was in all points identical to the Kiel experiment, save 

for the following practical details and for the implementation of the TC auction. 

Participants were mostly second year students, with a few third and fourth years as 

well as a handful of post-graduates – all in the area of agriculture or natural resource 

management. They totaled about 50 in number, with a variation of one or two 

between sessions, split about evenly between the BC and TC groups. Whereas in Kiel 

participants were paid at the end of every session, in Perth they were not. Instead, for 

logistical reasons, participants were privately informed of their gains (if any), in 

individual envelopes, at the start of the following session (i.e. of sessions 2 and 3). 

They were also informed from the very beginning that actual payments would be 

made after the final session, provided they had attended all three sessions. This was to 

avoid inconsistencies across sessions with variable bidders and numbers. (The method 

proved quite effective!)  

 The first round of the TC auction was an exact replicate of the Kiel one, but a 

slight change was introduced in the two following sessions. Instead of informing 

bidders of their relative opportunity costs by showing them in which cost quartile they 

belonged, no such information was given them. Instead, the lower and upper bound of 

the range within which costs had been uniformly drawn was shown. The range given 

was $0 to $300. The question regarding their guess of the highest cost bidder was then 

framed as follows: “What is your best guess of the highest cost bidder knowing it has 

been randomly drawn from the interval $0-$300?” Participants could estimate the 

number of draws (about 25) by looking around for the numbers in their group.  

 The reason for making this change reflects the interpretation of the TC model, 

and more precisely, the bounds of the integrals in equation (16). In the model, bidders 

are assumed to be rational and play a Nash equilibrium strategy. The value v-sup is 

drawn for each bidder from a uniformly random distribution, and it is assumed that, 

on average, the values drawn using this procedure would be the same as those chosen 

by the bidders themselves, provided they played the Nash equilibrium strategy. 

Furthermore, bidders are told that participation costs are uniformly distributed 

between 0 and 300, but not that the highest cost is 264.   

The experiment had to make a compromise between reproducing, for 

comparative purposes, the information structure of the BC model, and the exact 
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implementation of the TC model. The information structure of the two models differs 

because of the parallel but different role played, in the BC model, by the highest 

acceptable bid β , and, in the TC model, by v-sup. At the same time, combining the 

Kiel and Perth experiments would allow us to assess whether such a change produced 

any substantial consequences or not. Though the statistical strength of the results 

would suffer, the expected gain in qualitative information was deemed to yield better 

value for the limited money available, at least as a first go. The resulting setup can be 

represented as follows:  

 

Table 2 – Information structure for TC auction 

TC auction KIEL PERTH 

Session 1 A A 

Session 2 A B 

Session 3 A B 

  

 In Kiel, session repetitions would provide information on how the auction 

performed under repetition in one format. The first sessions in Kiel and Perth would 

provide information on any structural differences between the two replicates. 

Comparing sessions 2 and 3 would provide information on whether the change in 

auction format produced any noticeable effects under repetition.  

 Another slight difference in the Perth experiment was the twist given to the 

story. Rather than nitrogen leaching into the groundwater, the government agency was 

buying back from horticulturalists in the Swan catchment area a composite good made 

of nitrogen and phosphorus, and the problem was eutrophication in the Swan river 

following excess runoff of these two nutrients – a socially and politically sensitive 

issue in Perth.   

 

IV. RESULTS AND DISCUSSION 

 

How well does the BC model predict the one-shot auction?  

 We focus here on the comparative performance of the two models, not on the 

performance of the two auction institutions. Figure 2 plots optimal predicted bids 

against experimental bids. The 45 degree line represents perfect prediction, if all data 
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points were situated on it. Two things can be observed. Firstly, prediction is less than 

perfect. The R2 is 0.83 in Kiel and 0.78 in Perth (top graphs). Secondly, the model 

underestimates the experimental bids in Kiel slightly but systematically, the linear fit 

being everywhere above the 45 degree line.  There are two features of the model that 

may explain this less than perfect prediction: the distribution of expected bid caps is 

assumed to be uniform, which may or may not be an accurate assumption; and bidders 

are assumed to be risk neutral.  

 It is not possible to check for the first assumption, but bidders’ risk aversion in 

Kiel was roughly measured previous to holding the auction, and was found to be 

slightly negative. That is, experimental subjects were found to be slightly risk-prone, 

with an average certainty equivalent ratio of 107% (where 100% indicates risk 

neutrality). This may partly explain the underestimation of the model, since risk-prone 

bidders can be shown to optimally over-bid relative to risk neutral bidders.  

 The Perth data confirm this. Perth participants were slightly risk-averse, with 

an average certainty equivalent ratio of 88%, and the model no longer underestimates 

the bids. However, in both Kiel and Perth experiments, the linear fit has a smaller 

slope than the 45 degree line, with the difference more marked in Perth. The model 

slightly predicts low bids higher than it does high bids.  Alternatively, low-cost 

bidders tend to bid higher than their optimal bid than high cost bidders. This effect is 

consistent throughout most of the rounds.    

These imperfections notwithstanding, the model seems to be predicting the 

data rather well. This is a first response to the title of this paper: can a simple model 

predict bidding behaviour in multi-unit procurement auctions? However, we need a 

better measure of how good is ‘rather well’. To gain some insight into this question, 

we compare these model results with those of the more standard TC model.  
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Does the BC model predict better than the TC model?  

Figure 2 allows for a first comparison of the two models. Let us first consider 

the Kiel data (the two graphs on the left). It seems that on all accounts, the BC model 

does at least as well as the TC model, and indeed does better. In terms of statistical fit, 

the BC model’s R2 is 0.83 whereas the TC model’s R2 is only 0.37, for a similar 

number of observations (respectively 44 and 43). The difference is even more 

dramatic when considering the Perth data (the two graphs on the right).  

However, one must ask whether this is due to model performance or to 

different behaviour of experimental subjects in the two groups. In Kiel, the coefficient 

of variation in actual bid dispersion is remarkably similar for the BC and TC groups 

(resp. 40% and 41%), indicating no behavioural difference in bid dispersion (Table 3). 

The difference in data fit must therefore come from the model: the CV of optimal 

(predicted) BC bids is 43% compared to 40% for observed bids, and for the TC model 

it is 32% compared to 41%, clearly not as good a predictor. If one considers the 

average difference between predicted and observed bids (in absolute terms), the BC 

model yields €14 compared to TC €17 (where in both cases, as noted earlier, 

predicted values are lower than observed ones). This is reflected by the slope of the 

two linear fits, where the BC model reads 0.93 and the TC model 0.84. The 

corresponding differences in standard deviations are €29 and €60. Both the average 

and the dispersion of the difference between predicted and observed bids are lower for 

the BC than for the TC model.  

With the Perth data, one might expect such differences to reflect marked 

differences in behaviour, in contrast with the Kiel participants. However, such does 

not appear to be the case. The coefficient of variation in bid dispersion is 43% for the 

BC group and 41% for the TC group – remarkably similar to the ones in Kiel. The 

CVs of optimal and actual bids are 45% and 43% in the BC group and 22% and 41% 

in the TC group, reproducing the pattern observed in Kiel, even more marked. The 

average differences between predicted and observed bids are BC: $27 and TC: $63, 

and the differences in the standard deviations are BC: $25 and TC: $68, again quite 

similar to the results obtained in Kiel. Such similarity between the Kiel and Perth 

experiments is quite remarkable.  

 

Table 3 – Comparison of model performance for first round 
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Round 1 only KIEL PERTH 

 BC TC BC TC 

CV (actual bids) 40% 41% 43% 41% 

CV (optimal bids)  43% 32% 45% 22% 

mean (opt – act) € 14 € 17 $ 27 $63 

SD (opt – act) € 29 € 60 $ 25 $68 

Legend: CV = coefficient of variation  SD   = standard deviation   
 Opt = optimal bids  act = actual bids  

 
 On the basis of this preliminary analysis, the BC model seems to predict 

observed data better than the more standard TC model. The fact that this holds across 

the Kiel and Perth experiments lends some credence to this conclusion. Does this 

performance hold up when the auction is repeated and bidders have the opportunity to 

learn about other bidders’ values as well as about the marginal bid price?  

 

How robust is the BC model to repetition and bidder learning?  

 Recall that we are not evaluating the auction’s performance as an institution, 

but that of the model describing the auction. In particular, we are comparing the 

predictive power of the two models, not the allocative efficiency of the two auctions. 

We first analyse the Kiel experiment, which has a homogenous implementation of the 

TC auction, then the Perth experiment, where the implementation was slightly 

changed for rounds 2 and 3, as explained earlier.  

The graphs in Figure 3 show the series of three repetitions for both auction 

formats in Kiel. At first sight, it is not clear by looking at these graphs how the two 

models compare. In addition, both models appear not to have a monotonic trend, 

whether towards improvement or deterioration of predictive power. The issue here is 

complicated by the fact that bidders learn differently in the two settings. In the TC 

setting, bids end up clustering around the maximum accepted bid, corresponding to 

the marginal bid price, which is $200 in the third round. In the BC auction, no such 

clustering is visible. This suggests that, as an institution, the BC auction is in these 

experiments more robust to bidder learning than the TC. However, our focus here is 

on the model, not the institution.  

Considering the sequence of the three rounds in Kieliv, the comparison of the 

average differences between the optimal and actual bids shows a smaller difference 
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for the TC model than for the BC (Table 4a). In round 3, the average difference in the 

BC auction was € 31 but only € 14 in the TC auction. Analysis of the standard 

deviations of the differences between optimal and actual bids showed smaller 

variation in round 1 for the BC model, but this difference disappears after two 

repetitions. The Kiel data do not allow us to draw any definite conclusions. Whence 

the value of the Perth replication.  

The Perth experiment is more “well behaved”, in that we do not observe an 

anomaly in round 2 (Figure 4). The trends are monotonic, which is what one would 

expect as bidders learn with repetitions. Let us observe the progression of the mean 

and standard deviation of the difference between optimal and actual bids (Table 4b). 

Initially, in round 1, the BC model clearly predicts better than the TC model in 

relative terms, but with repetition and differential bidder learning, the TC predictions 

clearly converge towards actual bids. No such convergence is manifest in the BC 

auction, where predictions, though initially better than those of the TC model, hardly 

improve. As a result, in round 3, the TC model performs better, in both relative and 

absolute terms, than the BC model. The average deviation is only $15 compared to an 

average bid (both optimal and actual) of around $200 – an 8% discrepancy. This 

result warrants an explanation.  

As noted earlier, the TC auction institution allows bidders to infer more 

quickly the marginal bid price, and their bids quickly converge and cluster around it, 

as auction theory predicts. Accordingly, the model improves its predictions. In the 

limit, as the number of repetitions increase, all else being equal, one would expect that 

optimal bids and actual bids would coincide very closely, as they would all be very 

close to the marginal bid price. In the TC setting, bidders quickly learn to bid their 

Nash equilibria by aligning themselves on the marginal bidder. This has also been 

shown in simulations using an agent-based model (Hailu and Schilizzi, 2004; Hailu et 

al., 2004), and was observed in the early years of the US Conservation Reserve 

Program.  In the BC model, by contrast, bidders are prevented from inferring the 

implicit cut-off price, and they continue bidding mostly as a function of their 

individual opportunity costs, as shown in Figure 4. However, the BC model maintains 

fairly good predictive performance throughout, with a discrepancy of 12 to 15%.  

A closer examination of the discrepancy between the relative dispersion of 

actual and optimal bids, as measured by their coefficients of variation, confirms these 

conclusions. The BC model also tends, however slightly, to overestimate the 
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dispersion of the bids, whereas the TC model tends, however slightly, to 

underestimate the dispersion (Tables 5a and 5b). This holds across all rounds and 

across both Kiel and Perth experiments. Finer analysis is needed to decide whether 

this effect is statistically significant. Better still, further repetitions will be able to tell 

if there is something here worth pursuing. At this stage, the reasons why this should 

happen are not clear.  

 

Table 4a  - Kiel experiment 

 
Average of difference between actual minus optimal bids (€) 
All bidders Round 1 Round 2 Round 3 
BC 14 36 31 
TC 17 16 14 
 
SD of difference between actual minus optimal bids (€) 
All bidders Round 1 Round 2 Round 3 
BC 29 35 25 
TC 60 20 26 

  SD = standard deviation  

 

 

Table 4b - Perth experiment 

 
Average of difference between actual minus optimal bids ($) 
All bidders Round 1 Round 2 Round 3 
BC 28 21 25 
TC 63 35 15 
 
SD of difference between actual minus optimal bids ($) 
All bidders Round 1 Round 2 Round 3 
BC 25 22 21 
TC 68 38 14 

  SD = standard deviation  
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Table 5a – Kiel experiment  

KIEL CV of BC bids 
 Round 1 Round 2 Round 3 
Actual 0.40 0.29 0.26 
Optimal 0.43 0.35 0.36 
Difference 0.03 0.06 0.10 
    
 CV of TC bids 
 Round 1 Round 2 Round 3 
Actual 0.41 0.19 0.15 
Optimal 0.32 0.17 0.15 
Difference -0.09 -0.02 0.00 

 

Table 5b – Perth experiment 

PERTH CV of BC bids 
 Round 1 Round 2 Round 3 
Actual 0.43 0.32 0.36 
Optimal 0.44 0.35 0.38 
Difference 0.01 0.03 0.02 
    
 CV of TC bids 
 Round 1 Round 2 Round 3 
Actual 0.41 0.34 0.17 
Optimal 0.22 0.12 0.12 
Difference -0.19 -0.22 -0.05 

 

 

Implementing the information structure of the TC auction  

 As discussed earlier, implementing the TC auction required a compromise 

between exact comparability with the BC auction, and exact implementation of the 

TC model. The BC model provided bidders with information about the distribution of 

participation costs by showing them in which quartile they belonged. Implementing 

the TC theoretical model required bidders to be given a lower and upper bound 

between which costs were drawn with a uniform distribution. The highest cost bidder 

was somewhat close to the upper bound, though how close was not known to other 

bidders, nor did the highest cost bidder know he was the highest. As shown in Table 

2, in Kiel perfect comparability between the two auction formats was chosen, whereas 

in Perth rounds 2 and 3 were implemented in a theoretically rigorous way. Round 1 

replicated the Kiel implementation to allow comparison between the two experiments.  
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 Tables 4 a,b and 5 a,b seem to indicate there is no qualitative difference in the 

results observed in Kiel and Perth. The structural consistency of the other aspects seen 

above lends credence to the overall consistency of the results obtained. This can be 

further checked by examining Figure 5, where the expected highest costs have been 

shown together with actual bids for the TC auction in Kiel and Perth. The vertical 

dotted line in round 2 and 3 of the Perth experiment represent the upper bound ($300) 

to the participation costs, information given to participants. A comparison between 

round 2 and 3 in Kiel and Perth shows that, except for two points in Kiel round 3, 

bidders’ behaviour appears very similar. This indicates that the difference in the 

implementation of the TC information structure has had no noticeable impact on the 

results. The learning effects in Kiel and in Perth are therefore comparable, and the 

results analysed above do not need qualification on these grounds.  

 

 

 

V. CONCLUSIONS 

 

 This study addresses the repeated purchase by a government agency of public 

environmental goods from private landowners by means of auctioned contracts. Such 

auctions are characterized as repeated multiunit procurement auctions. Farmer 

provision of biodiversity, land and water conservation, or landscape management are 

examples of such public goods. In this context, the government agency has the choice 

between setting itself a target and setting itself a budget. An example of a target 

constrained (TC) auction is the decision to sign contracts with landowners to manage 

at least N hectares, and to pay whatever cost the auction will entail. A budget 

constrained (BC) auction fixes the budget, but accepts the risk of seeing less than N 

hectares under contract. A practical question for a government agency is, which 

auction format is best?  

 Auction theory is well developed for TC, but not for BC auctions. By contrast, 

nearly all environment-oriented procurement auctions implemented by government 

agencies are BC auctions. As a result, there is a gap between what is understood by 

economic theory and what is common practice. It turns out that the analytical study of 

BC auctions is very difficult if undertaken from the same theoretical standpoint as for 

TC auctions. Instead, an auxiliary assumption must be made, by introducing an 
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exogenous ‘bid cap’ in the formation of bidders’ bids. This assumption results in a 

very simple model, much simpler than the more standard TC model. Before asking 

which of the two auction institutions might be preferable in this context, it was 

deemed necessary to assess the validity and credibility of this model. Doing otherwise 

would not allow it to be used to predict auction outcomes and provide guidance to 

policy makers.  

 This study focused on assessing the validity and credibility of the BC model. 

To do so, the model  was submitted to two repeated experiments, in two different 

countries (Germany and Australia), and it was compared with the repeated multiunit 

TC procurement auction, which was also investigated experimentally. Comparability 

across the two auction types and across the two experiments was controlled for. 

Particular attention was given to the information structure of the two auctions.  

 The experimental results clearly show that the BC model predicts not only as 

well as the TC model, but, especially in the first round, better. It also performs well in 

absolute terms. The model is able to predict actual bids in both experiments in a more 

consistent way than the TC model. The conclusion may therefore be drawn from this 

study that the BC model is credible and can be used to address the second question, of 

more direct interest to policy makers: which of the two auction institutions performs 

best? In particular, how robust is each to repetition and bidder learning? How do they 

compare in terms of bidders’ information rents and efficiency in resource allocation?  

 These questions will be addressed in a publication to follow.  
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Figure 2: First rounds in Kiel and Perth, BC and 

TC auctions  

 

The 45 degree lines of perfect fit are shown. The 

two circled points in the Perth BC auction 

correspond to participants who had not 

understood the rules of the game. They were left 

out of the analysis.  
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Figure 3 – The Kiel experiment 
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Figure 4 – The Perth experiment (The two outliers in the first graph are explained under Figure 2). 
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Figure 5 – TC auction in Kiel and Perth, expected highest participation cost and actual bids 
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ENDNOTES 

                                                 
i This is not an essential assumption and could be relaxed to include risk aversion. However, it would 

not add much to the argument and might confuse matters unnecessarily.   

ii The results are not very sensitive to different assumptions about the type of distribution.  

iii The following three statements were put to participants: (1) Agriculture contributes more to the 

destruction than to the conservation of the land; (2) Larger farms harm the environment more than 

smaller farms do; (3) Organic agriculture is more environmentally friendly than conventional 

agriculture. Participants were asked to indicate their degree of agreement or disagreement on a 5-point 

scale, with the middle point indicating “don’t know” or hesitation.  

iv As will appear in comparing with the Perth experiment, round 2 in Kiel appears to contain an 

anomaly – one which we have not been able to explain.  


