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DISCRETE STOCHASTIC PROGRAMMING:
CONCEPTS, EXAMPLES AND A REVIEW OF EMPIRICAL APPLICATIONS

Jeffrey Apland and Grant Hauer1

Introduction

Mathematical programming techniques have been used extensively in analyses of decision-
making and economic behavior under risk. Because of the pervasive nature of risk in
farming, risk programming applications have been especially prominent in the agricultural
economics literature. Risk programming models have been used to study a wide array of
problems involving production, marketing, investment, technology and policy choices. The
many approaches to risk analysis using mathematical programming techniques are discussed
in detail by Boisvert and McCarl and summarized by Hardaker, Pandey and Patten. Mathe-
matical programs which account for risk in components of the objective function are
sometimes classified as risk programming techniques -- programming models which capture
risk in the constraint functions and righthand sides can then be classified as stochastic pro-
gramming techniques [Hardaker, Pandey and Patten].

This paper provides an overview of the discrete stochastic programming model. The con-
ceptual basis of the model is presented and illustrated with numerical examples, and a sum-
mary of empirical applications of the technique is presented. The purpose is to introduce
discrete stochastic programming to those familiar with risk analysis and to provide a concise
review of empirical applications. The general discussion of discrete stochastic programming
and its application is intended to be useful to both experienced and unexperienced practi-
tioners of the technique.

The most widely used mathematical programming techniques for risk analysis are the EV
and MOTAD models, which in their common forms provide means of addressing random
variations in objective function coefficients. Other, less widely used, risk programming
models include Target MOTAD [Tauer], Direct Expected Utility Maximizing Nonlinear Pro-
gramming or DEMP [Lambert and McCarl], Utility Efficient Programming [Patten,
Hardaker and Pannell], Mean-Gini [Yitzhaki; Okunev and Dillon], and Focus Loss
[Boussard and Petit]. Although many more examples of risk programming applications
appear in the literature, stochastic programming techniques are often desirable because they
allow a broader range of sources of risk to be analyzed. Models which address risk in
elements of the constraint set include Chance-Constrained Programming (righthand side
risk) [Charnes and Cooper], a generalized quadratic programming model presented by Paris
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(righthand side risk), and an extension of the MOTAD technique developed by Wicks and
Guise (constraint coefficient risk). Among the alternative stochastic programming
techniques, discrete stochastic programming [Cocks; Rae, 1971a] is the most general, allow-
ing for the analysis of risks which influence constraint function coefficients, righthand sides,
and the objective function, in a dynamic framework.

In the next section of the paper, the general structure of the discrete stochastic programming
model is presented. Particular attention is given to the sequence of decisions and the flow
of information about random variables which influence those decisions. Issues pertaining
to the objective function of stochastic programming models and issues of model size are
discussed. A numerical example of a production problem will presented under various levels
of information. Finally, a summary and review of empirical applications of discrete stochas-
tic programming is presented.

Structure of the Discrete Stochastic Programming Model

Rae [1971a] is often credited with the introduction of discrete stochastic programming
(DSP) in the Agricultural Economics literature and with recognizing it applicability to
problems of the farm firm. Beyond its flexibility in capturing sources of risk which influence
the objective function and constraint set, DSP also allows for a multi-stage decision process
in which the decision maker's knowledge about random events changes through time as
economic choices are made. Despite the considerable appeal of this framework for
modeling real world problems, adoption of discrete stochastic programming since its formal
introduction two decades ago has been relatively slow. The limitations to adoption most
often cited are model size (stochastic programming matrices tend to be quite large) and
related limitations of data availability, data handling and modeling time. Applications of
discrete stochastic programming are, however, appearing in the agricultural economics
literature with increasing frequency.

To understand the general structure of the DSP model, consider the following deterministic
linear programming problem:

Maximize: CX [1]

Subjectto: AX s b [2]

X > 0 [3]

Where: X is an nxl vector of decision variables, C is a lxn vector of objective function coef-
ficients, A is an mxn matrix of constraint coefficients, and b is an mxl vector of righthand
side coefficients. Discrete stochastic programming provides a formal framework for model-
ing such optimization problems when elements of C, A and b are random. Discrete parame-
ter values or states of nature are used to represent the range of possible coefficient values.
The DSP framework also captures the flow of information to the decision maker about the
values of objective function and constraint set parameters and matches that flow of informa-
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Figure 1: A Decision Tree Depicting a Two-Stage, Two-State Problem.

tion to the sequences of decisions to be made. This is done through the specification of
decision stages -- time periods in which decisions are made. The sequential and stochastic
framework of DSP can be represented by a decision tree. A decision tree is shown in Fig-
ure 1 for a two-stage problem with two states of nature in each stage.

Let ekn t represent the occurrence of state of nature k in stage t, where subscript nt indicates
the decision vector which will be selected with the occurrence of the kth state in stage t.
In discussing DSP, the concept of an event history or state history is often useful. Here,
event history at a particular stage in the decision process refers to the cumulative sequence
outcomes of random events in prior stages. Thus, referring to the decision tree in Figure
1, at the end of stage two (or the beginning of stage three if there was one), one of four
possible event histories will have occurred -- {e1 ll,e112}, {e1j1 ,e212}, {e2 11,e122}, or {e2 11,e222}.
Construction of the DSP matrix depends upon what Rae refers to as the information struc-
ture of the problem. The information structure is the "pattern of information receipt in
relation to the decision dates" [Rae, 1971a, p. 449]. Stage t activities are assumed to be
selected at the beginning of the stage. Suppose that at the beginning of stage t, the decision
maker knows the outcomes of random events in stages t-i, t-i-1, ... , 1. The decision maker

knows only the probabilities, conditional on known outcomes in prior stages, of outcomes
in t-i + 1, t-i + 2, .... If i = 0, the information structure may be described as complete knowl-

edge of the past and present. Complete knowledge of the past is implied if i= 1 and the
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decision maker has incomplete knowledge of the past if i > 1. It may be useful to note that
for many problems, a mixed information structure is appropriate. This is the case, for
example, when complete knowledge of the past characterizes the knowledge about some
random variables while complete knowledge of the past and present better represents the
information flow with respect to other random variables. The information structure of a
problem has important implications for the construction of the DSP matrix.

Matrix Construction with Complete Knowledge of the Past. The events (ek,t) shown in
Figure 1 imply an information structure of complete knowledge of the past. That is, when
stage one decisions are made, only the probabilities of stage one and stage two states of
nature are known. When the stage two decision vector is selected, the values of random
variables in stage one are known, but only the probabilities of stage two states, conditional
on stage one events, are known. It is the decision vector of subscript n, on e,,t in Figure
1 which implies an information structure of complete knowledge of the past. Note that
decision vector 1 is chosen in stage one regardless of which state of nature occurs. Since
the outcome of stage one random events is not known when stage one decisions are made,
those decisions must be "permanently feasible" -- that is, feasible whether state 1 or state
2 occurs. The linear program for the two-stage, two-state problem under complete
knowledge of the past is constructed as follows:

Maximize: aIY1 + a2Y2 + a 3Y3 + 4Y 4 [4]

Subject to: AllXi1 bill [5]

Al Xl 1 b2 [6]

A12X12 1 bll2 [7]

A212X12 < b212 [8]

A 12 2X22 b [ 9]

A=X22 222 [10]

- DlX ni1 + E12Xl2 < 0 [11]

- D21 X nll + E22X22 0 [12]

Yl - CnliXn1 - C112X12 < 0 [13]

Y2 - ClllXll - C212X1 2 X 0 [14]

Y3 - C211X,, - C122X 22 < 0 [15]

Y4 - C2X1 - C222X 0 [16]

Yp, Y2, Y 3, Y4 , Xll, 1 2 , X2 Ž 0 [17]

Decision vectors Xn,t for the problem include Xn , for stage one, and X12 and X2 2 for stage
two. In stage two, activities X 12 follow the occurrence of state 1 in stage one -- X22 follows
state of nature 2 in stage one. Activities Yl, Y2, Y 3 and Y 4 are the net revenue levels for
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each of the four joint stage one/stage two states of nature, and al , a 3 and a 4 are the
corresponding joint probabilities. The objective function [4] of this maximization problem
is expected net revenue. Stochastic elements of the problem are captured in constraint
coefficients Akn,t, righthand sides bk,,t, and net revenue coefficients Ck,,,t. Constraints [5] and
[6] require stage one activities X1n to be feasible under both states 1 and 2. Similarly, stage
two constraints [7] - [8], and [9] - [10] insure the feasibility of stage two decision vectors 1
and 2, respectively, under both of the stage two states of nature.

Constraints [11] and [12] link stage one and stage two decisions, accounting for the multi-
period attributes of the decision problem. For example in a typical production problem,
these constraints could provide for the transfer of resources between stages, the continuation
of production processes which occur in more than one stage, and other inter-temporal
linkages. Constraint [11] makes the inter-stage links given the occurrence of state 1 in stage
one -- constraint [12] make the link given state 2 in stage one.

Matrix Construction with Complete Knowledge of the Past and Present. Under an
information structure of complete knowledge of the past and present, the decision maker
knows the outcome of stage t random events when stage t decisions are made. Thus the
DSP model will have a decision vector for each discrete state of nature. Because the
sequence of decisions begins with the stage one state of nature known, the complete optimal
strategy (X*1 , X2i, X12, X*22, X*2, X42) is found in the solutions to two separate linear pro-
gramming problems -- one for each stage one state of nature.2 Matrix construction
proceeds as follows, with [18]-[26] corresponding to the occurrence of state 1 in stage one,
and [27]-[35] corresponding to the occurrence of state 2:

Maximize: alY1 + c2Y2 [18]

Subject to: Al1 lXii < bill [19]

A112XI2 < bl [20]

A2 2X2 2 < b222 [21]

- DIliX 1 + Ei2Xl2 < 0 [22]

- D211XI + E22X22 0 [23]

YI - C1 llXll - C11 2 X12 0 [24]

Y2 - C1 IXI - C222X 0 [25]

YI, Y2, X1, X12, X2 2 > 0 [26]

2 Rae points out the separability of the programming problems for the complete knowledge
of the past case when a forecast of random events is available at the beginning of each
stage. The overall model could, in that case, be separated into a subproblem for each
discrete outcome of the stage one forecast [Rae, 1971a, p. 451].
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Maximize: a3Y3 + a4Y4 [27]

Subject to: A221 X 21 < b221 [28]

A132X32 < b132 [29]

A242X42 s b22 [30]

- D32 1X2 1 + E3 2X32 • 0 [31]

- D421X21 + E42X42 < 0 [32]

Y3 - C22iX2, - C 1 32X 32 0 [33]

Y4 - C22X21 - C242X42 0[34]

Y3, Y4, X21, X32' X42 2 0 [35]

In some empirical applications of discrete stochastic programming where complete
knowledge of the past and present is assumed, a single stage one state of nature is assumed
and therefore only a single LP model is required [Lambert; Lambert and McCarl; Schroeder
and Featherstone].

Forecasts and the Value of Information. Rae discusses how the information underlying the
basic DSP problem may be augmented with forecast information. Modified in this way, the
DSP model yields a strategy which is optimal given the forecast, and may, by various means,
be used to estimate the value of the forecast. The level of information, as implied by the

state definitions and their probabilities for example, is a fundamental characteristic of a DSP

model. Procedurally, the inclusion of additional information such as that from a forecast
may be accomplished through changes in the discrete probability distributions of random
variables or changes in the information structure associated with the random variables.
Figure 2 shows in a decision tree how the two-stage, two-state problem is altered by the

availability of a forecast.

In discrete stochastic programming, forecast events, like states of nature, are characterized

by discrete probability distributions. Figure 2 illustrates a case in which forecasts are

received at the beginning of each stage. Each forecast has two possible outcomes. The

symmetry in this example between the number of forecast events and states of nature is a

matter of convenience -- the number of forecast events could be greater than or less than

the number of states. The underlying information structure is complete knowledge of the

past. Each stage one forecast outcome is followed by one of two stage one states of nature,

so a less than perfect forecast is implied. Two stage one decision vectors are indicated --

one for each forecast event. Only one stage one decision vector is used for the no forecast

problem. The forecast at the beginning of stage two will be received following one of four

possible forecast/state of nature histories. Following the receipt of the stage two forecast,

a decision vector is selected for each of eight possible joint events -- the no forecast problem

has only two stage two vectors. For the complete knowledge of the past case, each stage

two decision vector must be feasible under both stage two states of nature. In all, there are
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16 terminal branches in the decision tree, representing all possible forecast/state histories
for the problem.

Rae points out that for the expected net revenue case discussed here, the value of the
forecast information may be estimated by subtracting the objective function value for the
no forecast problem from that for the model which incorporates the forecast "provided that
the model includes no restraints on cash supplies" [Rae 1971a, p. 458]. If cash flow
constraints are imposed, the incidence of the payment for information will influence the
opportunity set and possibly the optimal solution. In this case, the value of information may
be estimated by solving the model with successively increasing information charges until the
objective function value is the same as for the no forecast problem. The information cost
which produces an equal objective function value is the value of the forecast information.
This procedure for finding the value of information could be extended to any situation in
which the acquisition of information uses the firm's resources, whether operating capital or
labor for activities such as "scouting" for pest infestations. When the objective is a non-
linear or multi-dimensional expected utility function, the iterative procedure described above
is also required. Objective function considerations are addressed in the next section.
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The Objective Function in DSP

The general DSP models presented up to this point have had expected net revenue as their
objective functions. In this section, various general approaches to incorporating expected
utility as an objective are discussed. First, the extensions into the DSP format of the widely
used EV and MOTAD objective functions are discussed. Then, more general expected
utility maximization formulations are discussed, including the direct nonlinear programming
approach and the separable programming approximation. Finally, other objective function
issues are discussed including the implications of time and multi-dimensional utility.

EV and MOTAD Objective Functions. The EV risk programming model requires that
expected utility be expressed as a function of expected income and the variance of income.
Normality of the probability distribution of income and/or quadratic utility are sufficient
conditions for the appropriate use of the EV objective function [Anderson, Dillon and
Hardaker], but Meyer [1987] has shown that normality or quadratic utility are not necessary.
The use of an EV-type objective function in DSP proceeds as follows. The occurrence of
joint events is characterized by a multinomial distribution in which one of m joint events will
occur for each cycle of the decision process. Let the probability of joint event j be aj,
j=1...m, where ai>0 and at+a2+ ... am = 1. Then the expected value of the jth joint
event is aj and the variance is ai = aj(1-aj). The covariance of joint events i and j is aij =
-aiai (i'j) [Cocks]. So the EV objective function for the DSP model is:

m m

Maximize: Ea cYJ - E VijYiY [36]
j=1 . j-i

where $ is the risk coefficient and V.ii is the variance (i =j) or covariance (i*j). Alternatively,
the variance may be minimized subject to a minimum constraint on expected net revenue.
Since the variance-covariance matrix is positive semi-definite, the DSP-EV objective function
[36] is concave and a global solution to the problem is ensured. The DSP-EV model is a
quadratic programming problem and may be solve using a quadratic or nonlinear program-
ming solver, or a matrix diagonalization procedure may be used and the solution may be
approximated using separable programming [McCarl and Tice].

In the MOTAD model, the standard deviation, and thus the variance, is approximated using
the mean absolute deviation. A MOTAD version of the DSP model can be constructed as
follows. A constraint can be added to the model which defines expected net revenue as
follows:

E ajYj - Y = 0 [37]
j-l

The following constraints will define elements of absolute deviations vectors d- and d+ for
negative and positive deviations from the mean:

Yj - Y + d - dj = 0 j=l,...,m [38]

The mean absolute deviation of net returns is the probability weighted sum of absolute
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deviations. So the following MOTAD-type objective function can be used:
m

Maximize: Y - [9 aj(dj+ dj) [39
j-1

Where e is the mean absolute deviation risk coefficient.

Expected Utility Maximization and the Separable Programming Approximation. Since the
DSP model includes a net revenue activity Y) for each joint event, modification of the
problem to one of expected utility maximization is straight forward. The concepts and
procedures are discussed at length in Rae [1971a] and Lambert and McCarl [1985], and are
summarized here. Suppose the producer's utility, expressed as a function of net revenue,
is U(Y). Then expected utility is:

m
E ajU(Yj) [40]
ji-

and [40] may be used as the objective function of a nonlinear programming, expected utility
maximizing, DSP model. The functional form of the objective is that of the utility function.
Note that since the expected utility function is separable, the problem may be readily
approximated using separable programming and solved with a linear programming solver.
In the separable programming formulation, a set of variables Qjk, k = 1...q is defined for each
of the nonlinear net revenue variables in the expected utility function. Each set of separable
programming variables is used to represent consecutively-increasing values of a net revenue
activity in a utility function approximation. Let the discrete net revenue levels used in the
approximation be j <,9j2 < ..Sjq. Then the separable programming approximation of the
expected utility maximizing, two-stage, two-state DSP model is constructed as follows:

m m m m

Maximize: a 1E U(YC)Qli + a2E U(Y2i)Q 2 + a 3E U(Y3i)Q3 i + a4E U(Y4i)Q 4i [41]
i=l i=1 i-1 i=l

Subject to: Ai•Xii n bmi [42]

A211Xll < b2i [43]

A1 12X12 < bl 12 [44]

A2 12X12 < b212 [45]

A 122X 2 2 b 12 2 [46]

A222X22 b2n [47]

- D111Xi1 + E2X12 0 [48]

- D211Xl1 + E22X22 0 [49]



11
m

E YliQni - CnlX - C2X12 < 0 [50]i.1
m

Y2iQ2- CX C212X12 0 [51]i-I
m

E ?3iQ3i - C211X - C122X22 0 [52]
i=l

m

SE 4i^4i - - C222X2 0 [53]
m

E Qli = 1 [54]i-l
m

E Q2i =1 [55]i-I
m

ES~~~~~ Q3i ~= 1 [56]
i-I

ES Qt~i ~= 1 [571
i-I

QIP Q2i, Q 3i, Q4i, X11 , X 12, X22 0 i = l,...,m [58]

[42]-[49] are, as before, resource and transfer constraints, and other relevant restrictions on
the decision vectors. The separable programming variables Q may be interpreted as
weights, which must sum to 1 by convexity constraints [54]-[57], for each of the nonlinear
approximations. For a given set of decisions X, constraints [50]-[53] insure the proper
accounting of net revenue for each joint event in the definition of the separable program-
ming variables. The corresponding convex combination of net revenue levels is used in the
piecewise linear approximation of the expected utility function [41]. Figure 3 illustrates a
utility function and its separable programming approximation using four points-- that is,
q =4. Note that the approximation becomes increasingly accurate as the number of points
q is increased and or as the range of the approximation, "t~ to 'jq, is decreased. No
additional constraints are needed to accomplish this increased accuracy, however.

The separable programming technique allows the use of relatively efficient and robust linear
programming solvers. For DSP models, which tend to be large and complex, the relative
efficiency and reliability of LP solvers is especially attractive. However, the availability of
large scale nonlinear programming solvers such as MINOS [Murtagh and Saunders] extends
the viability of the nonlinear programming approach considerably.3

3 See McCarl and Onal for a discussion of nonlinear programming versus separable program-
ming approximations.
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Figure 3: Illustration of the Separable Programming Approximation of the Utility Function

Patten, Hardaker and Pannell [1988] have presented an extension of the expected utility

maximization approach to risk programming which is applicable to DSP. Their "utility-

efficient programming" technique can be used to derive risk efficient solutions to program-

ming problems for a relatively broad range of utility function types. For utility functions

which can be expressed as the parametric sum of parts of the utility function and for which

the degree of risk aversion varies with the parameter, a parametric programming approach

can be applied to the problem of deriving a set of risk efficient solutions.

Other Objective Function Considerations. Since the decisions in the two-stage problem take

place over two time periods, equation 40 is an objective function for expected utility of net

revenue at a particular point in time. This point in time could be the beginning or the end

of the planning horizon depending on whether revenues and costs are discounted or

compounded. In many applications, this may be an acceptable approach. However, there

may be occasions where a discounted utility approach is desirable. In this approach,

incomes and costs at each decision stage are converted into utilities and then discounted.

This approach might be more desirable when the planning horizon, made up of the stages

of the DSP model, covers a long period of time. To implement this for the general two

stage problem with complete knowledge of the past, equations [13]-[16] must be modified
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as follows:

Ynl - Cu1 1Xll 0 [59]
Y21 - C2 11Xll 0 [60]

Yll 2 - C 2Xl2 0 [61]

Y212 - C212X12 5 0 [62]

Y 22 - C1 X X2< 0 [63]

Y2 =-( C222X22 : 0 [64]

Here, a net income variable Ykn, is specified for each state of nature k, decision vector n,
and stage t. The objective function then becomes:

Maximize: allxU(Ylll) + a,2,1 pU(Y211) + a 11213 U(Y 1 2) + a22 U(Y212) [65]

+ a 12 2 3 U(Y1 2 2 ) + a22 2 13 U(Y22 2)

Here aH + a21 1 = 1, a 112 + a 212 + 122 + a 222 = 1 and 3 is a discount rate. Rae [1971a]
argues that this approach is impractical because of the need for future utility functions.
However, if it is assumed that utility of net returns is fairly stable over time, then a discount
rate could be used to account for the differences in the timing of net returns. Another
method suggested by Rae is to discount returns to the beginning of the planning horizon and
then convert this into a utility. If Yknt is a vector of two or more payoff factors, rather than
just net income, then equation [65] is a multi-dimensional utility function. In this case, the
Ckn,, elements are matrices of payoff coefficients with each row representing a different
payoff factor and each U function has a multi-dimensional domain.

Discrete stochastic programming allows a lot of flexibility in choosing the utility functions.
For example, the U functions in equation [65] could be additively separable:

n

U(Yat,) = wiU(Yti) [66]
i-1i

where the wi's are weights and i indexes n payoff factors. More general forms of multi-
attribute utility functions may also be used in DSP models depending on what independence
conditions the modeler chooses to assume. Independence assumptions and their relation
to various utility functional forms are discussed by Keeney and Raiffa [1976].
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The Dimensionality Problem and Its Management

It is easy to see that the discrete stochastic programming matrix is large relative to its
deterministic counterpart. Consider, for example, a deterministic LP model with 200
variables and 100 constraints. In the extension to a two-stage, two state DSP model with
complete knowledge of the past, as stated in equations [4] through [17], the problem grows
to 600 decision variables plus 4 net revenue variables, with 600 resource constraints plus 4
net revenue accounting constraints and the necessary transfer constraints. Should it be
necessary to use more states of nature to adequately characterize random elements of the
problem, the matrix grows substantially. With more states, it is not only necessary to further
constrain decision vectors in a particular stage, but it is necessary to include more vectors
in later stages to allow decisions to be made following each of the expanded number of
possible event histories. Inclusion of more stages in a DSP model leads to a similar
explosion in matrix size. To some extent, the general DSP model exaggerates din-m sionali-

ty. In many cases, the decision vectors in each stage of a multi-stage DSP mol I include
only a proper subset of the variables in the single decision vector of the deterministic model.

Similarly, many constraints may not be needed in some stages. However, in most empirical
applications, management of the size of a DSP model is an essential task.

Four areas of concern might be identified with the dimensionality problem -- data
availability, model construction, model solution and interpretation of results. While the

matrices of DSP models are often sparse, the models tend to contain an enormous number
of constraint and objective function coefficients. In many cases, data sets which seem wholly
adequate for a deterministic modeling exercise, will fall short of the requirements of a

stochastic model. For example, average crop yields from time series data may work well for

a deterministic farm model. In a static risk programming model (a typical EV or MOTAD
model for example), the same data may be suitable for developing probability distributions
of yields. When dynamic aspects of crop production are acknowledged, however, many

readily available data sets may fall short. What is the probability distribution of yields when

planting decisions are made? Later, after many important random events have occurred,
such as spring rain, temperature, pest infestations and the like, what probability distribution
of yields is appropriate to support post-planting, pre-harvest decisions, such as fertilization,
pest management or forward contracting of crop sales? The construction of an adequate

model of a risky decision problem depends critically on the definition of decision stages and

states of nature, and places high demands on data collection. In many cases, stochastic

simulation models will be necessary to produce estimates of stochastic variables. For

example, one might use a biological model of plant growth to estimate yield distributions

from random weather variables. Data limitations are, arguably, the most restrictive problem

to the use of DSP, as well as other stochastic modeling techniques.

Model construction costs increase with model size as do the costs of interpreting optimal

solutions to the model. In constructing large DSP models, the use of specialized "matrix-

generators" is often warranted. Matrix generators are computer programs which read a

condensed form of input data and produce the necessary input for the programming solver

[see McCarl and Nuthall for a more complete discussion]. The repetitive patterns which

often appear in LP matrices frequently make them well suited to computerized matrix
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construction -- such patterns are readily apparent in DSP models. In discrete stochastic pro-gramming, variables and constraints are repeated under various states of nature, often withidentical coefficient placement but varying coefficient values. Matrix generators may bedesigned to construct a DSP matrix for any number of decision stages and states of nature,making changes in this significant attribute of the model less costly. Matrix generatingsoftware is generally developed in programming languages such as FORTRAN and generallyfocuses on a specific problem. However, technological developments in software havegreatly improved the accessibility of the computer for automating the construction of mathe-matical programming models. Many solvers have the ability to read data from spreadsheets,
thus facilitating the use of a flexible and widely-used class of software for data manipulation.
Also, the development of software such as GAMS, a powerful mathematical programming
language, lowers the costs of many programming applications, including DSP. The largenumber of variables in a DSP model can make the interpretation of optimal solutionsburdensome, also. Here, software to aid in constructing solution reports and summaries isoften important.

The fourth area of concern related to model size, the problem of solving a large DSPproblem, is perhaps the least significant. Commercial LP codes of very large capacity arewidely available, even for microcomputers. As will be seen in the review of empiricalapplications later in the paper, even large nonlinear DSP models have become practical withthe advent of general nonlinear programming codes such as MINOS [Murtaugh andSaunders]. Linear approximations via separable programming make nonlinear models moreaccessible by allowing their solution with LP solvers. As discussed earlier, the expectedutility maximizing DSP model. may be adapted quite readily to solution by separable pro-gramming.

Because DSP models grow quickly with increases in the number of decision variables,
constraints, decision stages, and the number of random variables and states of nature, thesimple answer to a size management problem is to reduce the problem size in each of these
dimensions. How this is done depends on the system to be modeled and the problem to beanalyzed. Standard validation exercises should be used to determine acceptable levels ofaggregation for each size parameter. The data problem associated with developing coef-ficients for a DSP model which was discussed earlier is paralleled by the problem of finding
real world data with which the model can be validated. The large number of joint events
which may characterize a problem implies a large number of decision variables to validate.4
Because of the significance of the "curse of dimensionality" in DSP, the topic of size man-
agement has received some special consideration in the literature.

Anderson, Dillon and Hardaker point out that some decision variables may be judged to be
suboptimal, allowing them to be eliminated from the decision vector before the model is
solved [p. 229]. It may also be possible to shorten the planning horizon (that is eliminate

4Helmers, Spilker and Friesen discuss a validation exercise which involves using stochastic
simulation to evaluate solutions to DSP models with various number of states and decision
stages.
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later decision stages) if the choices in those stages do not influence decisions in the early
stages. In a similar way, it may be possible to include less detail in later stages in the model
without influencing optimal decision in early stages of the problem. Less detail, in this
context, means fewer states of nature and more aggregated decision variables and
constraints. To derive a complete optimal strategy, detail in later stages must eventually be
restored, but the model may be solved with the early decisions and states taken as given.

Another promising technique for managing model size in DSP has been suggested by Yaron
and Horowitz [1972b]. They present a planning model involving a series of short run (single

stage) decisions which are inter-related and linked within an overall, long run planning
problem. They solve a short run, single stage LP model using parametric programming
techniques to derive a set of alternatives to be evaluated in the long run context. The

parametric analysis concentrates on attributes of the plan for which long run considerations
are crucial, thereby insuring that one of the alternative solutions is optimal in the long run
plan. In approaching the problem in this way, the choice variables and constraints in each
stage are dramatically simplified, thus reducing the size pressure on the DSP model.
Solutions derived under such an approach could be refined once an initial solution is

derived by concentrating the parametric analysis of the single stage problems in the
neighborhood of the first solution.
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Numerical Examples of DSP

In this section, numerical examples of discrete stochastic programming will be presented in
order to illustrate elements of model structure and information concepts. All of the
problems will be variants of a two stage, two state production problem. The hypothetical
firm produces two products -- product A in stage one and product B in stage two. Both
products require three inputs. Input 1 is available in infinitely elastic supply in each
decision stage. Inputs 2 and 3 are available in fixed supply and the endowments of the fixed
inputs in each stage are stochastic -- all other coefficients in the problem are deterministic.
The interdependence of stage one and stage two decisions results from the fact that
quantities of input 2 which are not used in stage one may be stored for use in the
production of product B in stage two. The following Cobb-Douglas production functions
characterize the prevailing technologies for products A and B.

Y 3.5 X25 X3 X 40 [67]

Y. 4.0 X 20 X 40 X40 [68]

YA is the output of product A and YB is the output of product B. X.j is the use of input i
in the production of product j. The price of input 1 is 0.5 in both stages. The price of
product A is 2.5 and the price of product B is 3.5. The endowments of inputs 2 and 3 by
stage and state of nature are given in Table 1. Note that in both stages, input 2 is relatively
scarce in state 1 and input 3 is relatively abundant. It is assumed that the marginal
probability of each state of nature in each decision stage is 0.5, and that stage one and stage
two states are independent. Therefore, the probability of each joint event is 0.25.

Matrix Construction and Solutions by Information Structure. The construction of DSP
models for the production problem just described will now be explained for two information
structures -- complete knowledge of the past and complete knowledge of the past and
present. Then optimal solutions under each information structure will be presented and
compared to the case of perfect foresight. The model is set up to maximize net revenue,
which can be expressed as a function of input use as follows:

1^ X15XY *5XY.35 Y-]_ -p + P \A nX Y X-2 0X *40 _pvi -w ] f[69]PA [3.5 XA XA XA] -PXIA + PB [4.0 XB B X3B] B [69]

Table 1: Fixed Resource Endowments by Decision Stage and State of Nature.

Stage One Stage Two
Input 2 Input 3 Input 2 Input 3

State of Nature 1 50 125 70 175
State of Nature 2 90 75 120 125
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Where P^A and P8 are the product prices and P1 is the variable input price. The structure
of the DSP model under complete knowledge of the past (CKP) is shown in Table 2.

Activities in the model are net revenue levels for each joint event, levels of input use, and
levels of input transfer. Because complete knowledge of the past is assumed, decisions in
each stage must be made without knowledge of the current stage state of nature. Thus, the
decision vectors must be permanently feasible. The result is a single decision vector, X n,
in stage one and two decision vectors, X12 and X22, in stage two -- one for each stage one
state of nature. The decision vectors include levels of use for inputs 1, 2 and 3 and transfer
activities for input 2. Two transfer activities are used in stage one, representing the transfer
to stage two of unused amounts of input 2 under each of the possible stage one states of
nature. In stage two, a single activity in each of the decision vectors transfers input 2. In
vector X12, the transfer occurs subsequently to the occurrence of state 1 in stage two. The
transfer activity in vector X22 brings input 2 into stage two following state 2 in stage one.5

The objective, expected net revenue, is a linear function of the net revenue activities with
joint probabilities as coefficients. Resource constraints limit the use plus transfers out (stage
one) of the fixed inputs to no more than the endowment plus transfers in (stage two). As
dictated by the prevailing information structure, two sets of resource constraints are imposed
on each decision vector -- one for each state of nature in the decision stage. A transfer
constraint for input 2 is needed for each stage two decision vector. A net revenue constraint
for each joint event defines the corresponding net revenue activity. Note that the net
revenue function [61] makes the net revenue constraints nonlinear.6 The complete
knowledge of the past model has 18 constraints, four of which are nonlinear, and 17
variables, 9 of which are nonlinear.

The structure of the DSP model under complete knowledge of the past and present (CKPP)
is illustrated in Tables 3 and 4. Recall that under complete knowledge of the past and
present, the model may be separated into subproblems by stage one state of nature. Table
3 shows the tableau for the first subproblem, which yields a strategy dependent on the
occurrence of state 1 in stage one. Table 4 shows the second, state 2, subproblem. With
complete knowledge of the past and present, there are a total of six decision vectors. In
stage one there is one vector for each state of nature. In stage two there are four decision
vectors -- one for each joint stage one/stage two state of nature. Elements of the decision
vectors are the same as in the complete knowledge of the past model, except each stage one

5 To some, the definition of the transfer activities in this example may contradict the notion
of permanent feasibility. However, the transfer activities are designed to account for inter
temporal links in the problem and are more a consequence of resource use decisions than
a management decision per se. This case demonstrates the modeling flexibility which may
be achieved through the definition of specific activities in a DSP model.

6 There is no logical reason for limiting DSP to linear programming. Practical consider-

ations involve the availability and performance of nonlinear programming software, and the
viability of linear approximation techniques.
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vector has only one transfer activity since each vector corresponds to a unique endowment.

The two subproblems of the complete knowledge of the past and present problem each have

ten constraints, including two nonlinear, net revenue constraints. There are four input

transfer constraints -- one for each stage two decision vector. Each subproblem has 14

variables. There are a total of 28 variables under CKPP compared to 17 for the CKP

problem. The 18 input use variables are nonlinear. An optimal strategy for the CKPP

problem is formed by combining the solutions to the two subproblems, and expected net

revenue is the sum of the optimal objective function values for the two subproblems.

Across states of nature, the constraints in these numerical examples differ only in the RHS

values.7 Notice, however, that if random variations in resource constraint or net revenue

coefficients occur, the constraints under each state could reflect the discrete states. For this

problem, potential stochastic elements include product prices, variable input prices and

output elasticities.

Solutions to the two DSP problems just described appear in Table 5, along with a third

solution for the perfect foresight case. For the perfect foresight (PF) case, it is assumed that

while random variation occurs in the fixed resource endowments, the decision maker knows

the outcome of random events in both stages when a decision cycle begins. The perfect

foresight strategy was constructed from the solutions to a deterministic model of the

problem solved for each of the possible joint events. Thus, the perfect foresight strategy

includes eight decision vectors -- one for each stage and joint event. In moving from the

complete knowledge of the past case to the complete knowledge of the past and present

case, and finally, to perfect foresight case, the decision maker has increasing levels of

information. This fact is reflected in the increasing optimal net revenue values of $2,540

(CKP), $3,014 (CKPP), and $3,021 (PF).

Under complete knowledge of the past, 255.3 units of product A are produced. If state 1

occurs in stage one, 25.4 units of input 2 are transferred to stage two. If state 2 occurs, 65.4

units are transferred. As a result, 671.8 units of product B are produced in stage two

following stage one state 1, but 800.4 units are produced following state 2. With complete

knowledge of the past and present, output levels of product A are greater under both states,

383.5 and 269.7, respectively, than in the CKP case. This result reflects the added flexibility

in resource allocation when permanent feasibility is relaxed. The improved information is

reflected in the use and transfer activities for input 2, also. More of input 2 is used under

both states (32.8 and 27.7, respectively) than in the CKP case (24.6). When input 2 is

known to be scarce (state 1), 17.2 units are transferred -- 8.2 units fewer than in the CKP

case. When input 2 is relatively abundant, 62.3 units (3.1 less than CKP) are transferred.

Incorporation of a Forecast. Two new solutions are reported in Table 6 along with the

complete knowledge of the past solution. For all three of the problems, complete

7 The constraint coefficients for the stage I input transfer activities in the CKP problem are

an exception, as explained earlier.
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knowledge of the past is the underlying information structure. Results are reported for a
"myopic" case in which the problem is solved using two independent, single stage, mathemat-
ical programming models. With the inter-stage links ignored, excess amounts of the
transferable input are considered valueless in stage one. Therefore, use of input 2 in stage
one is 50 -- the entire endowment associated with the state of nature most limiting for that
input. The occurrence of state 2 in stage one results in a 40 unit surplus of input 2 which
is added to the stage two endowments of the input for joint events 3 and 4 -- stage two
decision vector 2. A comparison to the two stage CKP case reveals that in the myopic
solution, production in stage one is too high, with 234.0 units of product A versus 141.7
units. In addition both inputs 1 and 2 are over-utilized in stage one, 83.6 and 50.0 units,
respectively, versus 50.6 and 17.1. Correspondingly, production of product B in stage two
is too low -- in the myopic case 544.5 units are produced following state 1 in stage one and
682.6 following state 2, compared to 660.3 and 778.1 for the dynamic, CKP problem. The
$86 difference in the objective function value between the two-stage CKP solution and the
myopic solution may be interpreted as the value of the probabilistic information about stage
two resource endowments and production alternatives. The third solution reported in Table
6 is for a complete knowledge of the past problem with information augmented by forecasts.

It is assumed that a forecast is made at the beginning of each stage. Each forecast has one
of two discrete outcomes. When forecast event j occurs at the beginning of stage t, the
endowment of input 3 is known to be the state of nature j endowment. Thus, with the
forecast information, the decision maker has complete knowledge of the past and present
with respect to the endowment of input 3. It is assumed that the marginal probability of
each forecast event is 0.5 regardless of the event history, and the probabilities of the states
of nature are as before. Thus each of the sixteen possible combinations of forecast events
and states of nature are equally likely -- the probability of each joint event is 0.0625. The
problem here fits the general case illustrated in the decision tree of Figure 2. Two stage
one decision vectors are selected -- one for each forecast outcome. Subsequent to each of
the four possible combinations of stage one forecasts and states, a stage two forecast is
received. With the two possible stage two forecast events, the stage two decision vector is
selected with one of eight possible forecast and state histories known. Therefore, eight stage
two decision vectors are selected to construct a complete strategy.

The optimal value of the objective function with forecast information is $2,233 -- up from
$2,028 in the no forecast case. The $205 increase in net revenue may be interpreted as the
value of information, assuming that resources expended to acquire the information do not
limit the feasibility of the optimal strategy. The average production of products A and B
is 171.8 and 780.0, respectively, for the forecast case, compared to 141.7 and 719.2 without
the forecast. Most of the increase in productivity is attributable to the increased flexibility
in the allocation of input 3 which results from the improved information about its
availability. However, the forecast results in a small adjustment in the transfer of input 2
from stage one to stage two. With forecast event 1 in stage one, indicating the relative
abundance of input 3 in that stage, more of input 2 is used and thus less is transferred than
in the no forecast case. Similarly, when forecast event 2 establishes the relative scarcity of
input three, relatively more of input 2 is saved for later use.
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Review of DSP Applications

The purpose of this section is to give a brief survey of the types of applications for which
DSP has proved a useful framework in the past, focusing mostly on the characteristics of the
models. Applications selected for review were taken from various agricultural economics
journals. The review is based on information in the journal articles as well as information
from a survey of the authors and discussions with authors. DSP was first introduced in
agricultural economics by Rae in 1971, but was used very infrequently as a tool until
recently. Tables 7 and 8 provide summaries of the most notable applications appearing in
the literature.

Given the relatively small number of examples of DSP found in the literature, it is difficult
to classify the applications. However, for discussion purposes, the applications in Tables 7
and 8 might be thought to fall into two categories: production unit problems and regional
problems. All the production unit problems are based on activities at the farm level and
focus on the decisions and objectives of farm owners. The only regional-level applications
are the plant location analysis by Brown and Dynan, and the irrigation development paper
by McCarl and Parandvash. Both of these models have two stages with long run capital
investment decisions taking place in the first stage. Short run operating decisions are
modeled in both the first and second stage with decisions in the second stage made
dependent on random events in the first stage.

The farm-level problems explore decisions of three types: production, marketing and
finance. Some of the applications are purely production problems. For example, Rae's
paper contains only harvesting, cropping and labor hiring decisions [Rae, 1971b]. The
papers written by Apland; Apland, McCarl and Baker; Kaiser et al.; Olson and Mikesell;
and Garoian, Conner and Scifres are also examples concerned exclusively with production.
All of these papers include sources of risk that affect production decisions. Examples from
these papers include: field days, yield and price risk [Apland]; effectiveness of prescribed
burns in controlling undesired plant competition in rangeland [Garoian, Conner and Scifres];
and rangeland forage yield [Olson and Mikesell]. These papers also include price risk,
however they cannot be considered marketing problems because each of these applications
considers only one marketing option.

Two of the paper's are exclusively marketing problems. Schroeder and Featherstone include
cash sale, hedging and put option activities in their paper "Dynamic Marketing and
Retention Decisions for Cow-Calf Producers". Stochastic variables are product prices at four
stages of production. Lambert and McCarl also present a pure marketing problem but their
paper is concerned with the marketing of grain.

The rest of the papers contain mixes of finance and production decisions, marketing and
production decisions, and finance and marketing decisions. The finance and production
papers include Featherstone, Preckel and Baker [1991], Leatham and Baker [1988], and
Yaron and Horowitz [1972a]. Featherstone, Preckel and Baker's model includes production
decisions concerning crops and hogs and an array of capital structure and finance decisions
including land purchase, share rent production, machinery sale and purchase, building
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purchases and sales, off farm investment and labor hiring. The model also contains
variables tracking machinery assets, hog facility assets, hog assets, land ownership, debt, and
owner's equity. Sources of risk include crop and hog prices and interest rates. Through
these stochastic variables the author's are able to model liquidity risk, collateral risk, and
credit reserve risk. Leatham and Baker's model also includes production and investment
activities but in addition there are activities that model alternatives for farm loans including
fixed rate, adjustable rate, and fixed rates hedged with interest rate options. Yaron and
Horowitz's paper considers production decisions for irrigated crops, borrowing and lending,
and alternative capital investments [1972a].

Papers that include marketing and production decisions include Kaiser and Apland [1989]
and Lambert. In Kaiser and Apland's paper marketing decisions include cash grain sales
at harvest and after storage, as well as grain sales by hedging. Lambert's paper emphasizes
production decisions. Marketing decisions in this paper are concerned more with timing of
calf sales through retention decisions than with marketing alternatives such as futures or put
options. Stochastic variables in these papers include field days, field rates and crop yields
in Kaiser and Apland, and prices in both papers.

Turvey and Baker present a marketing and finance model, although they also consider some
production decisions. Finance and capital structure aspects of the model include decisions
for land purchase and sale, cash renting, acquiring debt, investing in liquid assets, debt
repayment, and asset liquidation. Marketing decisions include cash crop sales, futures
options and put options. These decisions are made subject to stochastic crop yields and
prices.

Information structures used in these applications are either complete knowledge of the past
or complete knowledge of the past and present. We are unaware of any DSP model in the
agricultural economics literature which uses incomplete knowledge of the past as an
information structure. The choice of information structure tends to be problem specific.
However, there is one pattern that emerges. Production activities in these applications are
modeled with either complete knowledge of the past or complete knowledge of past and
present, depending on the problem. However, marketing and finance decisions tend to be
modeled with complete knowledge of the past and present as an information structure. The
reason is that the current and past values of stochastic variables upon which these decisions
depend -- usually interest rates and product prices -- are usually known at the time of the
decision. Hence applications such as those by Turvey and Baker, and Schroeder and
Featherstone, which involve marketing and finance decisions, tend to use complete
knowledge of the past and present as an information structure.

The objective functions in these applications vary from linear expected net revenue or cost
functions to nonlinear EV or direct utility functions -- none of the studies reviewed used a
multi-dimensional utility function. Kaiser and Apland, Kaiser et al. , and Leatham and
Baker use MOTAD formulations. Olson and Mikesell use an EV approach in one of their
formulations while Lambert uses target MOTAD. Rae [1971b] was the first to use an
expected utility approach in the objective function, implemented using separable program-
ming. With the recent advent of reliable and powerful non-linear algorithms, direct
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inclusion of expected utility with a variety of functional forms is becoming standard practice
[Featherstone, Preckel and Baker; Lambert and McCarl; Schroeder and Featherstone;
Turvey and Baker].

Recent applications have also become very large and have begun to incorporate non-
linearities in both objective functions and in production activities. For example, Turvey and
Baker had over 15,000 variables and 9,000 constraints, while Featherstone, Preckel and
Baker had over 6,000 variables (900 being nonlinear) with over 4,000 constraints. Lambert's
paper on calf production and retention decisions contains non-linearities in the production
model for calves. Integer variables have also been introduced into DSP applications with
Brown and Dynan's paper. Given the dimensions of these applications, it appears that
model size is becoming less of an obstacle for applications in agricultural economics. In
fact, few of the author's mention efforts to manage matrix size. Garoian, Conner and Scifres
do describe a way of limiting the number of variables in their model by establishing rules
that restrict the number of feasible burning schedules. The rules were established based on
results from field experiments for their particular management problem.

Although the number of applications is small, discrete stochastic programming has been
used effectively by agricultural economists for a wide variety of problems. Equally diverse
are the various dimensions of empirical models reviewed. Of the sixteen models discussed
in the review, fourteen had two, three or four decision stages. However, one model had
seven [Lambert] and another had ten stages [Garoian, Conner and Scifres]. The number
of terminal branches or complete event histories used in the problems ranged from three
to over five thousand -- not surprisingly, the largest of the programming matrices were the
models which had the most terminal branches. The range of model sizes suggests that for
many applications of DSP, analysts have found a desired level of model performance well
within the capabilities of current mathematical programming software.
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Summary

Stochastic programming is a flexible technique for analyzing decision problems under risk.
Compared to more widely used risk programming models, the DSP model allows for the
analysis of a broader range of risk sources, by allowing random variations in coefficients of
the constraint set, often resource requirements and supplies, as well as objective function
coefficients. Further, DSP allows decisions to be made in a sequential fashion with
information concerning sources of risk entering the decision process at various times. This
sequential decision framework, and the ability to capture information availability in a variety
of ways, make DSP well suited to a variety of firm-level problems. The technique may be
effectively applied to public resource planning problems also.

A realistic representation of decision variables and constraints in a DSP model often leads
to large programming models. In many cases, the models may have nonlinear objective
functions or technical constraints, also. A review of empirical applications of discrete
stochastic programming reveals that many analysts have constructed acceptable models well
within the technical limits of available linear and nonlinear programming solvers. The
critical issues, then, in determining the viability of DSP in particular applications appear to
be the cost of model construction and the availability of data. Automation of the model
building process is critical, whether through the use of specialized matrix generating
computer programs, mathematical programming software which links to spreadsheet and
database management applications, or flexible mathematical programming languages such
as GAMS [Brooke, Kendrick and Meeraus]. Well maintained technical and economic
databases are critical to the effective use of DSP as well as other risk modeling techniques.
Where data limitations are especially critical, effective use may be made of simulation
techniques to synthetically generate random states of nature for model coefficients.
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