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Perhaps the most important insight o¤ered by the state-space approach to decisionmaking

under uncertainty is that standard economic concepts and reasoning apply in an uncertain

world. This insight stands in stark contrast to much of the existing literature in agricultural

economics, where it has become commonplace to question even the most basic facts of

rational economic behavior, for example, whether rational economic agents facing a stochastic

technology minimize cost. Inevitably that latter world view has led agricultural economists

to emphasize the apparently unique aspects of decisionmaking under uncertainty rather than

its commonality with the rest of modern economics.

The state-space approach, however, reveals that the main thing that truly separates the

theory of the nonstochastic producer from the theory of the stochastic producer is the partial

nonlinearity (risk aversion) of the latter�s objective function. So much emphasis has been

placed on this aspect that the commonalities, which are far greater, have been ignored and

even the di¤erences that do exist have been overstated. This world view, in turn, has led

agricultural economists to develop a very specialized set of models and jargon to analyze

producer decisionmaking under uncertainty. Even a casual perusal of this literature would

convince an unbiased reader that its intuition is grounded more �rmly in regression analysis

than in economics.

The point of this paper is to show that a simple economic concept, cost minimization,

underlies virtually all existing models of rational producers facing stochastic technologies

and stochastic markets. Recognizing that point, in turn, reveals a straightforward path to

modeling stochastic technologies and farmer behavior that is closely associated with modern

�nancial economics.

In what follows, I demonstrate how this basic economic principle can be used to model an

important component of stochastic technologies and thereby to address two salient problems

in the agricultural economics literature: do farmers hedge optimally,1 and how to price crop

insurance products for farmers?

1Carter points out that observed farmer behavior on hedging and production suggests that "...both the

theoretical and empirical literature [on hedging] appear to contradict reality..." (p. 216)
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1 The Theoretical Model

I study competitive farmers facing stochastic production and markets in a generalization

of the framework considered by Danthine, Holthausen, Anderson and Danthine, and Rolfo.

Throughout the paper, I speak in terms of farmers. However, it is apparent that the argument

is general. It applies to any producer facing any mix of stochastic production, stochastic

product prices, and stochastic �nancial markets.

Formally, there are two periods. The �rst period, t; is nonstochastic, and the second,

t+1; is stochastic. The stochastic setting is modeled formally as a probability space (S;
; �)

where S represents the set of states of �Nature�, � is a probability measure, and 
 represents

the events (subsets of S) measurable with �:2 Random variables are represented as bounded

maps from S to the reals. Hence, random variable, ~f; can be thought of as the element of

RS de�ned by
~f = ff (s) : s 2 Sg ;

where f : S ! R is the map de�ning the random variable (Savage, Du¢ e). Random variables

will always be distinguished from their ex post values by a tilde (~) : Hence, ~f represents the

random variable, and f (s) denotes the ex post (observed) outcome associated with Nature

choosing s:

The stochastic production technology is represented by a single-product, input corre-

spondence that maps a stochastic output, ~z 2 RS+; into sets of inputs that are capable of

producing it. I operate with a single product technology solely because the empirical appli-

cation that follows is for a single product speci�cation. It is trivial to extend these ideas to

a multiple output framework (Chambers and Quiggin, 2000).

Inputs are chosen in period t and are nonstochastic. Denote those inputs by x 2 RN+ and

their prices, which are nonstochastic, by w 2 RN+ : The stochastic output is also chosen in

period t but realized or observed in period t + 1. The period t + 1 price of the output is

stochastic and denoted by ~p 2 RS++: Notationally, therefore, if ~z is chosen by the producer

in period t and s 2 S is picked by Nature, then the ex post or observed output is z (s) and

the ex post (spot) output price is p (s) :

2S can be either �nite or in�nite.
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The input correspondence describing the technology, X : RS+ ! RN+ , maps stochastic

output into variable input sets according to:

X (~z) = fx 2 RN+ : x can produce ~zg:

Intuitively, X (~z) is associated with all of the variable-input combinations on or above the

�rm�s production isoquant for ~z. The only technical requirement is that X (~z) be closed. No

curvature or disposability assumptions are imposed.

The (period t) minimal cost of producing the stochastic output, ~z; is given by the pro-

duction cost function

c (w;~z) = min fw0x : x 2 X (~z)g ;

if X (~z) is nonempty and1 otherwise. As usual, c (w;~z) is nondecreasing, positively linearly

homogeneous and concave in w: The proof of these properties is standard and, therefore,

omitted.

The only restriction on the farmer�s ex ante (period t) preferences is that he or she

strictly prefers more period t consumption to less and at least weakly prefers more period

t+ 1 consumption to less. More formally, if we denote the farmer�s ex ante preferences over

period t consumption, qt; and period t+ 1 consumption, ~qt+1; by W : R+ � RS+ ! R; then

q�t > qt ) W (q�t ; ~qt+1) > W (qt; ~qt+1) ;

and

~q�t+1 � ~qt+1 ) W
�
qt; ~q

�
t+1

�
� W (qt; ~qt+1) :

The farmer can also transform period t income into period t+1 consumption by investing

in �nancial markets. These markets include but are not restricted to futures and forward

markets for agricultural products. These markets are frictionless but stochastic, and the

ex ante �nancial security payo¤s are given by the S � J matrix A (a matrix of J random

variables). The stochastic payout on the jth �nancial asset is denoted ~Aj 2 RS; and its period

t price is denoted vj: The �rm�s portfolio vector, corresponding to the period t purchases of

the �nancial assets, is denoted h 2 RJ : Denote the jth stochastic return by ~Rj =
~Aj
vj
: In

what follows, we shall refer to the farmer�s choice of h as his or her hedge even though it

may include investment in assets that have nothing to do with agriculture or the commodity

produced.
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2 Equilibrium Production and Hedging Behavior

We start by demonstrating a basic result that characterizes equilibrium production and

hedging behavior.

Proposition 1 Given any stochastic consumption, ~qt+1; the farmer solves:

C (~qt+1) = inf
~z;h
fc (w;~z) + v0h : Ah+~p~z � ~qt+1g ;

where ~p~z denotes the random variable whose ex post realization is p (s) z (s) :

Proof. Suppose to the contrary that for given level of stochastic consumption, ~qt+1; the

farmer chooses ~z and h that are not cost minimizing as claimed, but that yield ~qt+1. Denote

these choices by ~z0 and h0: This cannot be optimal because by choosing inf ~z;h fc (w;~z) + v0h : Ah+~p~z � ~qt+1g ;

the farmer saves

c
�
w;~z0

�
+ v0h0 � inf

~z;h
fc (w;~z) + v0h : Ah+~p~z � ~qt+1g > 0;

which can be used to strictly increase period t consumption.

Proposition 1 can be explained simply in terms of eliminating arbitrages (Chambers and

Quiggin, 2005), the Fisher separation theorem, or current period pro�t maximization. To

emphasize the formal similarity with ideas originally articulated by Holbrook Working over

a half century ago, I choose the last.

Suppose in period t that the farmer chooses a production/hedging position of (~z0;h0) that

achieves ~qt+1; and that he or she is considering another position (~z1;h1) that also achieves

~qt+1: By changing the hedge from h0 to h1; the farmer e¤ectively sells (shorts) the composed

asset A (h0 � h1) for a return of v0 (h0 � h1) : To replace the stochastic consumption lost

by selling the composed asset, the producer reallocates stochastic production from ~z0 to ~z1

at a marginal cost of c (w;~z1)� c (w;~z0) : If v0 (h0 � h1)� [c (w;~z1)� c (w;~z0)] > 0; a strict

period t pro�t is realized from this change while not sacri�cing any stochastic consumption

loss in period t + 1: By the assumed monotonicity of preferences, all such changes will be

made until none remain available.3 Thus, position (~z0;h0) is optimal if and only if there is

3If v0
�
h0 � h1

�
> 0 and A

�
h1 � h0

�
� 0; an arbitrage exists. It is then trivial to establish that

C (~qt+1) = �1 implying that an in�nite period t pro�t is available from operating in �nancial markets.

This represents a money pump and cannot exist in any well-de�ned equilibrium
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no feasible alternative (~z1;h1) satisfying

v0h0 + c
�
w;~z0

�
> v0h1 + c

�
w;~z1

�
;

which trivially requires

v0h0 + c
�
w;~z0

�
� v0h1 + c

�
w;~z1

�
:

Proposition 1 is trivial.4 Analytically, once the model is set up, it certainly is. But so

is the no-arbitrage notion that underlies much of modern �nancial economics. And that

notion has rich empirical implications that have laid the foundation for many developments

in �nancial economics. Proposition 1 extends that notion to encompass arbitrary stochastic

production technologies for stochastic markets in a simple, and thoroughly understood, eco-

nomic decision model. It also makes a prediction that can help one determine empirically

whether farmers rationally produce and hedge without requiring any assumptions on the

farmer�s risk attitudes.

In developing that implication, it eases exposition if we can use di¤erential arguments.

Because we work with potentially in�nite dimensional objects, the usual notions of partial

derivatives and gradients may not be available. De�ne the (one-sided) directional derivative

of c (w;~z) in the direction ~n 2 RS by

c0 (w;~z; ~n) = lim
t!0+

�
c (w;~z + t~n)� c (w;~z)

t

�
;

and assume that this limit exists. c is Gateaux di¤erentiable if there exists @c (w;~z) 2 RS

such that

c0 (w;~z; ~n) = E
�
@c (w;~z)0 ~n

�
; for all ~n 2 RS

4The only reason that I present a formal proof is that some authors have maintained the notion that

cost minimization is not consistent with decision making under uncertainty except under very restrictive

assumptions on the decision maker�s risk preferences.
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where E denotes expectation taken with respect to �:5 @c (w;~z) is referred to as the Gateaux

derivative.6

Given ~qt+1; Proposition 1 allows us to restrict attention to cost minimization in determin-

ing the optimal hedge. A detailed examination of the solution to the problem is available by

the use of standard (although possibly in�nite dimensional) optimization arguments (Clarke).

That manipulation is left to the interested reader. The fundamental prediction that emerges

can be established directly.

Let

(~z�;h�) 2 argmin fc (w;~z) + v0h : Ah+~p~z � ~qt+1g ;

and consider moving from (~z�;h�) to
�
~z� + �

~Aj
~p
; h�1; ::; h

�
j�1; h

�
j � �; h�j+1; :::; h�J

�
for � small

but positive, where
~Aj
~p
denotes the random variable whose ex post realization in state s is

Aj(s)

p(s)
. In words, consider selling o¤ a small amount of the jth asset and replacing it by

producing an additional amount of the physical commodity in each state of Nature, with the

value of the additional output equal to the amount of the foregone payout from the jth asset

in that state, and then selling the extra output produced in the spot market. Because this

change maintains ~qt+1; it is feasible. The associated change in the objective function at the

margin is

lim
�!0

8<:c
�
w;~z� + �

~Aj
~p

�
� vj� � c (w;~z�)
�

9=; = c0

 
w;~z�;

~Aj
~p

!
� vj:

5These assumptions can be relaxed to only require that c be locally Lipschitzian in ~z; and analysis can

then be based on the generalized directional derivative introduced by Clarke. In that case, the results derived

for the Gateaux derivative would apply to any element of the generalized gradient de�ned by Clarke.
6Suppose that S is �nite dimensional and that c (w;z (1) ; z (2) ; :::; z (S)) is di¤erentiable in the usual sense

in each z (s) with the corresponding partial derivative being denoted cs (w;~z) : Then using the de�nition

c0 (w;~z; ~n) =
X
s

cs (w;~z)n (s)

=
X
s

�s
cs (w;~z)

�s
n (s)

= E
�
@c (w;~z)

0
~n
�
;

where

@c (w;~z)
0
=

�
c1 (w;~z)

�1
; :::;

cS (w;~z)

�S

�
:
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If this expression is negative, a marginal change in the farmer�s production/hedging behavior

reduces period t cost while maintaining ~qt+1: This contradicts the assumed optimality of

(~z�;h�) : Thus, I have established:

Proposition 2 (~z�;h�) is optimal only if

c0

 
w;~z�;

~Aj
~p

!
� vj � 0; j = 1; :::; J:

By Proposition 2, a strictly interior solution exists only if

c0

 
w;~z�;

~Aj
~p

!
= vj; j = 1; :::; J: (1)

Expression (1) is my key analytic expression. It also serves as the basis for the empirical

work that follows. In simple economic terms, c0
�
w;~z�;

~Aj
~p

�
is the marginal cost to the farmer

of replicating
~Aj
~p
(the marginal cost of replicating the jth asset physically). Expression (1)

thus requires that the price of any asset equals its marginal cost of production� the most

basic requirement for pro�t maximization. The pro�t motive requires that production and

hedging behavior are chosen to exploit or eliminate any arbitrage opportunities between the

the farmer�s physical technology and �nancial markets. This argument applies regardless

of the farmer�s risk preferences. Thus, the �rst order of business for a producer is not, as

many models presume, to smooth risky consumption. Rather, as Working pointed out over

a half century ago, optimal behavior is fundamentally driven by the pro�t motive. Rational

farmers will exploit any opportunity to raise pro�t nonstochastically.

On the other hand, expression (1) does not imply that risk attitudes are irrelevant.

Remember, the behavior described by Propositions 1 and 2 is conditioned by ~qt+1: That

choice hinges importantly on the individual�s attitudes towards risk. This is the essential

point. It is ~qt+1 that re�ects the farmer�s risk attitudes directly, not the hedge. The hedge

and the production are tools that the farmer uses to achieve the desired ~qt+1: They are not

ends in themselves. In essence, they are derived and not direct demands. The principle of

eliminating any potential for sure pro�t thus drives choices between feasible alternatives.

Working states this idea better than I: "...any curtailment of risk may be only an incidental

advantage gained, not a primary or even very important incentive to hedging".
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If the cost structure is Gateaux di¤erentiable, (1) can be rewritten in a perhaps more

familiar format:

E

�
@c (w;~z)

~p

0
~Aj

�
= vj; j = 1; 2; :::; J: (2)

In equilibrium, the expected value of the product of @c(w;~z)
~p

and ~A equals the acquisition

price of the asset.7 Thus, @c(w;~z)
~p
; which is a random variable, is interpretable as a stochastic

discount factor.8 Expression (2) requires that the discounted value of the stochastic payouts

from the assets equal their acquisition price.

3 A Test of the Theory

If farmers behave according to this theory, (2) must apply for Gateaux di¤erentiable tech-

nologies. A straightforward and well understood test for optimal producer behavior, based on

the generalized method of moments (GMM) tests for nonlinear model identi�cation (Hansen

1982; Hansen and Singleton, 1983; Hansen and Jagannathan, 1991,1997; Campbell, Lo, and

MacKinlay, 1997; Cochrane, 2000), is thus available. Because time-series data are to be

used, it is appropriate to be more careful with subscripts. Henceforth, I subscript all period

t variables with a t and all random variables chosen in period t but whose realization occurs

in t+ 1 with t+ 1: At time period t; (2), in returns notation, then requires

Et

�
@ct (wt;~zt+1)

~pt+1

0
~Rjt+1

�
= 1; j = 1; 2; :::; J (3)

where Et denotes the expectation conditional on information available at time t:

Theoretically, wt has been treated as nonrandom. Econometrically, however, wt is pre-

determined at time, t. Because the theory requires that (3) holds exactly, it is also true for

7As far as I am aware, Chambers and Quiggin (1997) were the �rst to derive an expression of this form

explicitly in terms of a cost function for a stochastic technology. They assumed that the objective was to

maximize the expected utility of pro�t. They later generalized this to general preference structures over

net returns (Chambers and Quiggin, 2000). Versions of (2) for nonstochastic technologies and no basis risk,

albeit in a very disguised form, are also implicit in results reported in Danthine and Holthausen. Both

studies assume expected utility maximization.
8Here we follow the terminology of Cochrane. However, stochastic discount factors go by other names

including the pricing kernel (for obvious reasons), risk-neutral probabilities, the state-claim densities, and

the ideal portfolio.
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any other predetermined random variable; say vt; that

vtEt

�
@ct (wt;~zt+1)

~pt+1

0
~Rjt+1

�
= vt; j = 1; 2; :::; J: (4)

The law of iterated expectations applied to (3) and (4) gives the unconditional expectations

h � E
�
@ct (wt;~zt+1)

~pt+1

0
~Rjt+1

�
� 1 = 0; j = 1; 2; :::; J; (5)

and

g � E
�
vt
@ct (wt;~zt+1)

~pt+1

0
~Rjt+1

�
� E [vt] = 0 j = 1; 2; :::; J: (6)

These expressions o¤er a way to check the consistency of a given body of data with (2).

The test that I use chooses a parametric speci�cation for the stochastic discount factor,
@ct(wt;~zt+1)

~pt+1
; replaces (5) and (6) with sample moments (denoted, respectively, by hT and gT )

for a given data set, and then derives estimates of the parameters of the stochastic discount

factor by minimizing the criterion function

JT = [gT ; hT ]�
�1[gT ; hT ]

0; (7)

where � is the spectral density matrix for the implied pricing errors associated with (5) and

(6). As is well-known, TJT is distributed as �2 with degrees of freedom equal to the number of

moment conditions less the number of estimated parameters, where T is the sample size. The

theory predicts that TJT = 0: Thus, replacing TJT with a consistent estimate and comparing

it with tabulated values of the �2 distribution o¤ers an asymptotically appropriate test of

the validity of (2).

4 Data and Empirical Model

To implement a test, I use annual US data (1957 to 1997) that are publicly available but from

di¤erent sources. The agricultural production, price, and input data are aggregate annual

data taken from the United States Department of Agriculture�s total factor productivity data

base.9 The output data correspond to an (implicit) aggregate agricultural output index,10

9These data are publicly available at http://www.ers.usda.gov/Data/AgProductivity/.
10The output data were divided by 100,000 to ensure conformability of units in estimation.
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the output price variable is the associated price index, and the input price is an input price

index for agricultural inputs.

If the theory is correct, it should apply for any �nancial asset and, by the law of one price,

to any composed asset derived from marketed assets. In the empirical analysis, I consider two

�nancial assets. The �rst is a returns measure constructed from the Commodity Research

Bureau�s monthly futures price index for the United States.11 The second measures annual

returns on commercial paper in the United States.12

The next step is to specify a parametric form for the stochastic discount factor. Be-

cause the theoretical model imposes no structure on X (~z) ; other than closedness, the only

functional restriction inherited by the stochastic discount factor from the cost structure is

superlinearity (positive linear homogeneity and concavity) in input prices. Thus, I opt for a

simple linear representation:

@ct (wt;~zt+1)

~pt+1
=
� (wt)

~pt+1
[�+ � (~zt+1 � zt)] ; (8)

where � (wt) is understood to correspond to the input price index.13 The choice of form is

based on several considerations. Most important is simplicity. The linear form appears to

be the simplest, nontrivial representation of the stochastic discount factor possible. Output

di¤erences are used for two reasons. First is the practical reason of ensuring stationarity

in the data. Second, the stochastic discount factor at time t corresponds to the �marginal

cost�of stochastic output for the technology available at time t: Because we deal with time-

series data, it is implausible that that marginal cost did not change over the sample period.

The di¤erence speci�cation accommodates a very simple (and practical) form of learning by

doing (Chambers; Berndt) that does not involve the standard (but nonstationary) arti�ce

of introducing a time trend into the technical speci�cation.

11These data are publicly available, for example, at https://www.economy.com/freelunch/. The returns

measure was constructed using the April futures price index for each year. This corresponds roughly to the

early part of the crop season for most �eld crops in the United States.
12The return on commercial paper was drawn from http://kuznets.fas.harvard.edu/~campbell/data.htm.
13A note on timing. The data were constructed so that the input price data and the output price data for

the same year correspond to the planning and received prices. Therefore, the observed values of these prices

for year t and t+ 1 respectively are taken from the same year.
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5 Results

In the empirical analysis, I �t two versions of (5) and (6) using the parametric speci�cation

(8). In both cases, the estimation procedure is iterated GMM with an ideal weighting matrix

(��1) which involves iteratively minimizing (7) after replacing � with a consistent estimate

from the previous step. � was estimated using the Hansen procedure with lag length set to

3.14

In the �rst version, I �t (5) and (6) for a single asset, the constructed commodity futures

return. In constructing (6) two instruments were used, the lagged commodity future return

and the input price index. Both are reasonably presumed to be predetermined at time t:

Overall there are three moment conditions and two parameters, resulting in one degree of

freedom. The parameter estimates as well as the computed J�statistic are reported in Table

1.

Table 1: CRB

� � TJT

Estimate 2.308095 -24.650112 .0579

t 7.52 -2.46

deg. freedom 1

P-value .8113

Next (5) and (6) were �t using the commodity future returns data as well as the data on

returns on commercial paper. The instruments were lagged returns on commodity futures,

lagged returns on commercial paper, and the input price index. There are eight moment

conditions resulting in six degrees of freedom. The results are summarized in Table 2.

14All estimation was done in a Matlab framework using the publicly available GMM program library

developed and maintained by M. T. Cli¤. Di¤erent procedures were used for estimating � with little change

in calculated results.
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Table 2: CRB and Commercial Paper

� � TJT

Estimate 2.069348 -17.7163 2.980

t 11.46 -5.26

deg. freedom 6

P-value .8112

The estimation results reported in Tables 1 and 2 are similar. In particular, the parameter

estimates reported in Table 2 fall within the implied con�dence intervals for the parameter

estimates in Table 1. The reported J statistics are quite similar. Both provide statistical

support for (2). The parameters are estimated precisely, and the degree of pricing error as

measured by the J statistic seems acceptably small.

The results reported in Table 1 and Table 2 are supportive of (2). Strictly speaking,

however, (2) need not hold exactly, and farmers could still behave optimally. By Proposi-

tion 2, optimality requires that the marginal cost of replicating the asset at least equal its

market price. Because physical production is involved, one can easily imagine situations (for

example, corner solutions) where requiring equality in (2) might entail the producer moving

in infeasible (negative real output) directions. For that reason, the sample average pricing

errors corresponding to (2) are of interest. Although not signi�cantly di¤erent from zero,

they are all positive as required by Proposition 2. For the model reported in Table 1, the

sample average pricing error on the CRB futures return measure is .017 with a standard

error of .072. For the model reported in Table 2, the sample average pricing error on the

CRB futures return is .0346 with a standard error of .075, while the sample average pricing

error on the commercial paper return is .0338 with a standard error of .070.15 On the basis

of these results, it appears that observed production and hedging behavior as it is embedded

in these agricultural output choices and these agricultural prices is not inconsistent with

Proposition 2.

15In fact, for all versions of the model estimated all estimated moment conditions were slightly positive.
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6 An Inherently Risky Technology?

To this point, (2) has been viewed solely as a means of characterizing and testing optimal

producer behavior. However, the estimated stochastic discount factor also conveys structural

information on c (w;~z).

Table 1 and Table 2 suggest that, holding higher moments constant, increasing mean

output increases cost. On the other hand, holding mean output constant, decreasing dis-

persion raises cost. Thus, the estimated structure is consistent with a technology that is

"inherently risky" in the sense of Chambers and Quiggin (2000). That is, introducing a

mean preserving spread of the output distribution reduces period t cost. Given the nature

of agricultural technologies, this is very reasonable because it implies that, in grappling with

Nature, farmers must incur signi�cant costs to mitigate production risk.

However, there is an empirical issue. The � parameter does double duty. It also measures

�size" e¤ects.16 And when interpreted in that light, it suggests that signi�cant economies of

size are present. Most observers argue that economies of size in US agriculture, as measured

by average cost, are either positive and signi�cant or positive but small. The stylized fact, as

derived from a broad range of empirical studies, is a �sagging" L-shaped average cost curve

(Hallam) that is never positively sloped. This stylized fact is consistent with the evidence

here, but for the speci�cation chosen, the results also suggest that marginal cost (in an

appropriately de�ned sense) is decreasing in output. This will strike many as intuitively

implausible. I agree. However, I also hasten to add that the theoretical development does

not require marginal cost to be positive much less increasing. Neither for that matter does

basic production economics unless explicit structure is placed upon X (~z) (free disposability

of output and convexity of the graph, respectively (Chambers)).

That said, the problem is that the empirical speci�cation confounds two e¤ects. For

purely time-series data, these two e¤ects are not simply identi�able independently for much

the same reasons that Diamond and McFadden have argued that size and technical change

cannot be disentangled. Sorting these e¤ects appropriately requires either more data or

16Actually, � does triple duty because it also captures the �learning-by-doing�e¤ect. See Chambers and

Quiggin (2005) for a discussion of this problem in terms of aggregate US production behavior and asset

pricing.
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more data and a much richer technical speci�cation under a stronger set of stationarity

and identifying assumptions. I leave its resolution to future research. For the present, an

appropriate and intuitive interpretation is that the point estimates suggest that the risk-

mitigation e¤ect dominates the size e¤ect. Given the positive measured returns to size that

are typical in US agricultural studies, this is very reasonable.

7 Willingness to Pay for Insurance Products

Expression (2) also suggests a cost-based asset pricing model that potentially could explain

asset price behavior under the presumption that agricultural output is predetermined (and

predictable) much as the consumption-based capital asset pricing model (e.g., Hansen and

Singleton, 1983; Cochrane, 2000; Campbell, 2003) is used to explain asset price behavior

in terms of aggregate consumption patterns. Chambers and Quiggin (2005) study such

a cost-based asset pricing model for equity and commercial paper returns data using a

macroeconomic data set. There the stochastic discount factor is a function of aggregate

wages, aggregate output (real GDP), aggregate investment, and aggregate capital stock.

It stretches credulity, however, to suggest that agricultural output �uctuations are a

serious causal factor driving returns on �nancial assets that are only remotely related to

agricultural markets. Thus, it seems to me that interpreting (2) as a model potentially

capable of explaining a broad spectrum of security returns is, at best, ptolemaic, and, more

likely, just wrong headed. What (2) does o¤er is a method for virtual (shadow) valuation of

�nancial assets for agricultural producers.

Consider, for example, the empirical problem of pricing agricultural insurance products.

Because these products are publicly supported in the United States, a growing (and some-

what controversial) literature has emerged on calculating actuarially fair insurance rates

(Skees, Reed, and Barnett; Goodwin and Ker, 1998; Ker and Goodwin, 2000; Babcock,

Hart, and Hayes). Although the technical details di¤er, the basic approach is to characterize

the yield distribution empirically in a parametric or non parametric framework, and then

combine that estimate with a premium/indemnity formula to arrive at actuarially fair rates.17

17Not surprisingly, given the approach that has been taken, most of the controversy in this literature
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As such, it is mainly an exercise in rate setting for a hypothetical insurer that presumes that

the yield distribution is stable enough to be estimated and characterized empirically. More

to the point, it�s an attempt to calculate an actuarially fair marginal willingness to sell for

an insurance provider.

Expression (2) o¤ers a method for empirically investigating the other side of the market,

the farmer�s marginal willingness to pay for crop insurance. Purely for the sake of illustration,

suppose that the empirical version of (2) associated in Table 2 is credible. Then at time t;

an estimate of a representative farmer�s marginal willingness to pay for an insurance product

~A�t+1 is

v�t = � (wt)

"
2:07Et

"
~A�t+1
~pt+1

#
� 17:72Et

"
~A�t+1
~pt+1

(~zt+1 � zt)
##
: (9)

Hence, if ~A�t+1 covaries negatively with ~zt+1, the farmer has a higher willingness to pay for

it than if it covaried positively.

It is here that the interpretation of � as capturing the inherent riskiness of agricultural

technologies comes into play economically. If the technology is inherently risky, farmers pay

a premium to avoid dispersion in their output. So if an asset naturally covaries negatively

with ~zt+1, it should be more valuable to the farmer not because purchasing it helps stabilizes

random consumption (as, for example, in the consumption-based capital asset pricing model),

but because it allows the adoption of less costly production practices in achieving ~qt+1 . The

cost saving in production realized at the margin, ceteris paribus, enables the farmer to

pro�tably pay a higher price for the asset.

Conceptually, this point becomes more transparent when one realizes that Proposition 1

represents a situation where a farmer uses two stochastic technologies to achieve a desired

~qt+1: The �rst technology is his or her physical production technology, the second is the

linear constant returns technology associated with the span of the �nancial market. The

second technology, in fact, consists of J stochastic linear technologies. If one component of

the �nancial technology (i.e., one asset) reduces the physical technology�s marginal cost (in

usual parlance, is complementary but in a stochastic sense), it should be more valuable to

has nothing to do with the economics of the problem. Instead, it focuses almost exclusively on the proper

statistical estimation of the yield distribution.
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the farmer than an asset that raises that marginal cost.

Perhaps the greatest empirical puzzle of agricultural insurance valuation is the large sub-

sidy that is required to entice presumably risk-averse farmers to purchase the various types

of marketed insurance products (Hennessy and Moschini). If farmers are so risk averse, why

are they so insurance-averse? Truly risk averse farmers would buy actuarially fair insurance.

In fact, they would happily pay a premium for it. In a sense, this is the central challenge to

the whole rate-setting literature. So far, despite a number of attempted explanations, most

of which focus on market failures (moral hazard, adverse selection), this puzzle remains un-

resolved.18 The model here presented advances an, as yet, unexplored further possibility.

Agricultural insurance products, as they currently exist, may not complement the farmer�s

ability to deal with the production and revenue risk associated with his or her physical

technology.

I do not mean to suggest that expressions of the form (9) should replace the rate setting

exercises I described above. Those (rate setting) are fundamentally important. They measure

what the insurer needs to break even. But the buying price is equally important. This is

doubly so since it is routinely argued (and routinely accepted) that crop insurance is not

commercially viable in the United States. Given that farmers do have access to other �nancial

markets (which they certainly do), and that they appear to be using those markets in a

fashion that approaches optimality as the empirical results here suggest, then the presence

of a signi�cant gap between the marginal willingness to sell and the marginal willingness to

buy the insurance product would be empirically-based evidence that the product is, indeed,

not viable. The question of whether the government should be in the business of subsidizing

nonviable �nancial products is best left to other arenas. The important point is that the

approach here outlined o¤ers the promise of an empirical approach to grounding the debate

in measurable economic magnitudes.

18One challenge to these explanations is why agricultural-insurance should not be able to deal more

e¤ectively in a commercial setting with problems faced by other insurance products. Any objective reading

of this literature reveals that it is typically grounded in less than compelling aempirical assertions about the

�special nature�of agriculture.
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8 Concluding Remarks

In evaluating the empirical results, there are numerous reasons for caution. First, the data

series are quite short19 and were constructed at a very high level of aggregation. Second, the

stochastic discount factor assumes a particularly simple form that imposes a fair amount of

structure upon the underlying technology.20 Third, although the range of �nancial assets

covered in the empirical analysis is broader than usually considered in empirical hedging

models, it is much smaller than the class of assets to which it should apply. In principle, it

should apply to any asset lying in the span of A: Thus, even though some of these caveats

are usually encountered as apologies for empirical results do not coincide with theoretical

predictions, �nal empirical acceptance of the behavior depicted by (2) must await a broader

and more thorough empirical validation of its implications.

19They are shortened even further by the requirement to splice di¤erent series together for a common

period.
20Notice, however, that the linear stochastic discount factor used here can be manipulated to produce a

factor-based asset pricing model of the type that is routinely used in empirical �nancial economics (Cochrane,

2001; Chambers and Quiggin, 2005).
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