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Abstract 

 

Economic theory often provides information on the variables to be included in economic 

relationships (e.g., demands are functions of prices) and sometimes provides information on 

the signs and magnitudes of first- and second-order derivatives (e.g., homogeneity and 

concavity information).  However, it rarely provides information concerning functional forms.  

In the absence of this information, it is common to assume a specific functional form (e.g., 

translog) and subsume errors of approximation into a disturbance term.  Unfortunately, the 

estimated parameters of these approximating relationships do not consistently estimate the 

economically-relevant characteristics of the true relationship unless the latter is of the 

approximating class (White, 1980).  Practical econometric solutions to the problem are now 

becoming available.  This paper discusses kernel regression (KR), flexible least squares 

(FLS), generalized restricted least squares (GRLS) and latent class (LC) estimators.  The 

empirical performance of all four estimators is assessed using an artificially-generated data 

set.  Three of the estimators are then used to estimate characteristics of a labour demand 

function for US agriculture. 

                                                 
1  Paper presented to the 50th Annual Conference of the Australian Agricultural and Resource Economics 

Society, 8-10 February, 2006.    
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1. INTRODUCTION 

 

Consider an economic relationship of the form 
 
 (1) ( )Y m Z E= +  
 
where Y is (the logarithm of) a random variable, Z  is a 1K ×  vector of (logarithms of) non-

stochastic exogenous variables, m(.) is an unknown real-valued continuous function, and E is 

random variable representing the combined effects of all those factors that influence Y but 

have not been included in ( ).m Z   Most models of demand, supply, cost and profit appearing 

in the economics literature are models of this type.  For purposes of inference it is common to 

assume E is independently normally distributed with zero mean and constant variance (the 

normality assumption is often justified using central limit theorems).  The objects of inference 

are usually the conditional mean and first-derivatives of Y with respect to the elements of Z.  

If the variables are measured in logarithms then these first-order derivatives (gradients) are 

elasticities.   

 Estimation and inference is complicated by the fact that the mathematical form of the 

function m(.) is generally unknown2.  The usual solution is to assume a flexible functional 

form such as the generalized Leontief form of Diewert (1971) or the translog form of 

Christensen, Jorgenson and Lau (1973).  These forms are flexible in the sense that they are 

capable of providing a local second-order approximation to an arbitrary twice-continuously 

differentiable function at a point.  The fact that the approximation properties are local is a 

drawback of the approach, not least because the point of approximation is unknown and may 

not be represented in the data set (White, 1980).     

 Problems with flexible functional forms have led to interest in the nonparametric 

estimation approach.  Let z  be any fixed point that lies within the range of values of Z. The 

nonparametric approach to estimating the conditional mean ( | ) ( )E Y Z z m z= =  involves 

taking a weighted average of Y values corresponding to Z values in the neighbourhood of z.  

Much of the nonparametric literature is concerned with choosing between weighting functions 

that can provide local or global approximations to the conditional mean (at the point z).   The 

                                                 
2   There are some instances where the functional form is known.  For example, totally differentiating a function 

1( , ..., )KQ m Z Z= and dividing through by Q yields a linear-in-the-parameters equilibrium displacement model, 

1 1 2 2 ... ,K KY X X X= η + η + + η where ln / lnk kQ Zη ≡ ∂ ∂  denotes the elasticity of Q with respect to kZ  and 
lnk kX d Z≡  /k kdZ Z=  denotes the percentage change in .kZ   Other examples can be found in the pure theory 

of international trade. 
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major drawback of the approach is that very large samples are typically required to obtain 

reasonable estimates of the conditional mean (or the gradients).  Part of the problem is what 

Silverman (1986) calls the empty-space phenomenon, where few points lie around the mean 

of a joint probability density when the number of variables is large3.  The problem is 

sometimes referred to as the “curse of dimensionality”. 

 This paper considers an alternative estimation approach that includes the flexible 

functional form and nonparametric approaches as limiting special cases.  To motivate the 

approach, we note that most of the flexible functional forms used in the economics literature 

can be interpreted as second-order Taylor’s series approximations to an unknown function at a 

single point (i.e., local approximations).  To endow such models with greater flexibility, we 

effectively take Taylor’s series expansions of the unknown function at each of the N points 

represented in the data set.  The resulting model is an observation-varying parameter model in 

which the parameters are non-stochastic.  Two econometric estimators are available for 

models of this type.  If we have time-series data then parameter estimates can be computed 

using the flexible least squares estimator of Kalaba and Tefatsion (1989).  This estimator finds 

time paths for the parameters that minimize an “incompatibility cost” function.  Alternatively, 

and irrespective of the type of data that has been collected, a latent class estimator is 

available.  The latent class approach involves dividing the data set into J N≤  subsets, or 

classes, and estimating a separate flexible functional form model for each class.  Thus, the 

latent class estimator offers a compromise between the conventional flexible functional form 

approach (corresponding to J = 1) and the nonparametric approach (corresponding to ).J N=   

 The paper is essentially divided into two parts.  The first part explains the 

nonparametric (NP), conventional flexible functional form (FFF), flexible least squares (FLS) 

and latent class (LC) estimators of the general model given by (1).  The discussion of 

nonparametric estimators (Section 2) draws from Pagan and Ullah (1999) and references 

therein.  The discussion of the conventional flexible functional form estimator (Section 3) is 

used to motivate an observation-varying parameter model that can be estimated using flexible 

least squares and latent class estimators (Section 4).  An important contribution of the paper is 

to show how these different estimators should be modified to impose linear equality 

constraints involving the first-order derivatives of (1) (Section 5).  Among other things, this 

part of the paper shows that the restricted LC estimator does not generally collapse to the 

restricted FFF estimator when the number of classes is J = 1.  Rather, it collapses to the 

                                                 
3 For example, less than 2% of the mass of a 10-dimensional standard normal distribution lies at points that are 
within a distance of 1.6 of the origin, compared to about 90% in the univariate case. 
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Generalised Restricted Least Squares (GRLS) estimator of Doran, O’Donnell and Rambaldi 

(2003).   

 The second part of the paper assesses the performance of the various estimators using 

artificially-generated time-series data (Section 6) and U.S. Department of Agriculture 

(USDA) panel data on aggregate labour usage in U.S. agriculture (Section 7).  The simulated 

data is constructed using the data generating process previously used by White (1980) and 

Byron and Bera (1983) to investigate the approximation properties of the ordinary least 

squares (OLS) estimator.  The simulation experiment reveals that the (conventional) restricted 

FFF estimator tends to outperform alternative estimators when evaluating characteristics of 

the economic relationship at the variable means.  However, matters are not so straightforward 

when evaluating quantities of interest at other points represented in the data set. 

 
 

2. NONPARAMETRIC ESTIMATION  

 
The  econometric model corresponding to (1) is 

 
(2) ( )i i iy m z e= +    

(3) ( )2~ 0,ie iidN σ  

 
where iy  and iz  denote the i-th observations on Y and Z, and ie  is the corresponding error 

term (i = 1, …, N).   The primary object of inference is the mean of Y conditional on Z = z, 

formally defined as 

 

(4) 
( , ) ( )( | ) ( )
( ) ( )

y p y z dy q zE Y Z z m z
p z p z

= = = =∫  

 
where ( , )p y z  is the joint probability density function (pdf) of Y and Z evaluated atY y=  and 

Z = z, and ( )p z  is the marginal pdf of Z evaluated at Z = z.  We are also interested in the 

gradients, defined as 

 
(5) [ ]1( ) ( ) ( ) ( ) ( )k k km z p z q z p z m z−= −    for k = 1, …, K, 
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where ( )kq z  and ( )kp z  denote the first-order derivatives of ( )q z  and ( )p z  with respect to 
the k-th element of z.   
 The nonparametric approach to estimating the conditional mean (and, subsequently, 
the gradients) essentially involves replacing ( , )p y z  and ( )p z  in (4) with estimators, and then 
evaluating the resulting integral. 
 
 
Kernel Density Estimators 

 
Consider the problem of estimating ( )p z  when K = 1.  Suppose we use our observations on Z 

to construct a simple histogram with I bins, such as that depicted4 in figure 1.  The rectangles 

in figure 1 have areas that sum to 1 ... ,If h f h Nh+ + =  where if  is the frequency count in the i-

th bin and h is the bin width, or bandwidth.  Thus, dividing each frequency count by Nh  

yields rectangles with areas that sum (integrate) to one.  The heights of these scaled rectangles 

can therefore be used as density estimates.  Formally, the local histogram estimator of the 

density at Z z=  is   

 

 (6) 
1

1ˆ ( ) ½ ½
N

i

i

z z
p z I

Nh h=

−⎛ ⎞= − < <⎜ ⎟
⎝ ⎠

∑    

  

where I(.) is an indicator function that takes the value one when the argument is true and zero 
otherwise.     

The local histogram estimator (6) assigns each observation a weight of one if it lies 
within half a bin width of z, otherwise it gets a weight of zero.  Unfortunately, this weighting 
system yields an estimated density function that is neither smooth nor continuous.  Rosenblatt 
(1956) overcame the problem by replacing the indicator function with a continuous kernel5.  
Formally, the kernel density estimator is 

  

(7) 
1

1ˆ ( )
N

i

i

z z
p z K

Nh h=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑    

  

where K(.) is an arbitrary kernel. A common choice of kernel is the standard normal 

probability density function (pdf)6.  

                                                 
4 The histogram in figure 1 has been constructed using N = 200 observations on ~ 0.6 (0,1) 0.4 (4, 4).Z N N+   
The sample standard deviation is s = 2.619. 
5 A real positive function that is symmetric around zero and integrates to one. 
6 If the uniform kernel ( ) ( | ½,½)UK z f z= −  is chosen then (7) collapses to (6).  Thus, the local histogram 
estimator can also be viewed as a kernel density estimator. 
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 The availability of multivariate pdfs means the kernel density estimator (7) is also 
available when K > 1.  For example, the multivariate density ( , )p y z  can be estimated using 
  

(8) 
1

1ˆ ( , ) ,
N

i i

i

y y z z
p y z G

Nh h h=

− −⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑    

  
where G(.) is a multivariate kernel with the property ( ), ( ).G y z dy K z=∫    

 
 
Kernel Regression Estimators 

 
The nonparametric approach to estimating ( | )E Y Z z=  involves taking a weighted average of 

all Y values corresponding to Z values in the neighbourhood of .z   To formally derive such an 

estimator, Pagan and Ullah (1999, p.83) use the estimated joint density (8) to derive the 

following kernel estimator of the numerator in (4): 

  

(9) 
1

1ˆ( )
N

i
i

i

z z
q z y K

Nh h=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑    

  
Substituting (7) and (9) for ( )p z  and ( )q z  in (4) yields the Nadaraya-Watson kernel 

regression estimator of the conditional mean: 
 

(10) 
1

ˆ( )ˆ ( )
ˆ ( )

N

i i
i

q zm z w y
p z =

= = ∑        

 
where 
 

(11) 
1

N
i i

i
i

z z z z
w K K

h h=

− −⎛ ⎞ ⎛ ⎞≡ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑  

  
is a weight that increases as iz  approaches z.  A natural estimator of the first-order derivative 

(5) is 
 
(12) [ ]1ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )k k km z p z q z p z m z−= −  
 
where ˆ ( )kp z and ˆ ( )kq z  denote the first-order derivatives of ˆ ( )p z and ˆ( )q z  with respect to the 

k-th variable.  
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Selecting the Bandwidth and the Kernel 

 
The problem of selecting the bandwidth and kernel in the regression estimator (10) and (11) is 

equivalent to the problem of selecting the bandwidth and kernel in the density estimator (7).  

Common approaches to this problem are based on knowledge of the local properties of kernel 

density estimators.   Again, it is useful to begin with the case where K = 1. 

When statisticians talk about the local properties of density estimators they are 
referring to the accuracy with which ˆ ( )p z  estimates p(z) (i.e., the accuracy of the estimator at 
the point ).Z z=   Under mild regularity conditions, ˆ ( )p z  is consistent and asymptotically 
normal.  However, the estimator is generally7 biased in finite samples.  If we choose a very 
small bandwidth then the bias is small but the variance of the estimator is large – pictorially, 
the estimated density function is very rough.  Conversely, if we choose a very large 
bandwidth then the bias is large but the variance is small – the estimated density is overly 
smooth.  A compromise is to choose the bandwidth that minimizes approximate mean 
integrated square error (AMISE), 

 

(13) 4 1
1 2

1 ( )
4

AMISE h Nh −= λ + λ  

 
where 1λ  and 2λ  are known functions of the kernel and the second derivative (curvature) of 
the true (unknown) density.  The AMISE is clearly minimized when 1/ 5

2 1( / ) .h N −= λ λ   Thus, 
the AMISE-minimising bandwidth also depends on the kernel and the true density.  For 
example, if i) the kernel is a standard normal pdf, and ii) the true density is normal, then the 
AMISE-minimising bandwidth is 1/ 51.059 ,h sN −=  where s is the sample standard deviation.  
There is evidence that this choice of bandwidth and kernel also tends to perform well when 
the true density is not normal, except perhaps when it is heavily bimodal or skewed (see 
Silverman, 1986).   

We can also select an optimal kernel by minimising AMISE.  We simply substitute 
our expression for the optimal bandwidth, 1/ 5

2 1( / ) ,h N −= λ λ  back into (13) and minimise the 
result with respect to K(.), subject to the constraint that K(.) has all the properties of a kernel.  
The solution is the Epanechnikov (1969) kernel: 

 

(14) 
20.75(1 ) if | | 1

( )
0 otherwise.

z z
K z

⎧ − ≤
= ⎨
⎩

 

 

                                                 
7 The bias is negligible if the unknown density is linear in the neighbourhood of Z = z. 
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In practice, most kernels appear to perform nearly as well as the Epanechnikov kernel (see 
Silverman, 1986) so the choice of kernel is often made on the grounds of computational 
convenience.   
 All of these results for univariate densities generalise to the multivariate case.  When 

K > 1, the AMISE-minimising value of h is 1/(4 )Kh cN − +=  where c again depends on the 

kernel and the true density.  For example, if i) the kernel is multivariate standard normal, ii) 

the true density is multivariate normal, and iii) all K variables have been scaled to have unit 

variance8, then 1/( 4)[4 /(2 1)] .Kc K += +   The AMISE-minimising choice of kernel is a  

multivariate Epanechnikov kernel.  Again, the choice of kernel is often made on the grounds 

of computational convenience, with attention focusing on kernels that can be written as the 

product of K univariate densities.  Epanechnikov (1969) shows that the kernel that minimises 

AMISE over the class of so-called “product kernels” is the multivariate standard normal pdf.   

If this kernel is used then it is common to set the bandwidth for each univariate standard 

normal kernel to 1/ 51.059 ,k kh s N −=  where ks  is the sample standard deviation of the k-th 

variable. 
 
 
Standard Errors 

 
To compute standard errors, note that the iy  in (10) are independently distributed and the 

weights are nonstochastic.  Thus, the variance of the estimated conditional mean is   
 

(15) ( ) 2 2 2

1 1

ˆ ( ) ( ) .
N N

i i i
i i

Var m z w Var y w
= =

= = σ∑ ∑  

 
A consistent estimator of 2σ  is (e.g.,  Pagan and Ullah, p. 181) 
 

(16) ( )22

1

ˆ ˆ ( ) .
N

i i i
i

w y m z
=

σ = −∑  

 
The elements of the covariance matrix of the first derivatives can be estimated using  
 

(17) ( ) ( )2

ˆ ˆ( ) ( )
ˆ ˆ ˆ( ), ( ) ( ) .

ˆ ( )
k j

k j

p z p z
Cov m z m z Var m z

p z
=  

 

                                                 
8 The kernel method may not be scale-invariant, so it is common to standardize the data in this way. 
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Practical Issues 

 
Kernel density (and associated regression) estimators are not without their problems.  A minor 
problem is that the bandwidth is independent of the point at which the density is evaluated, 
sometimes resulting in too much smoothing over some data points and too little smoothing 
over others.  To make the bandwidth depend on the data density in a neighbourhood of an 
evaluation point z, it is common to let 1 ( ) ... ( )Nd z d z≤ ≤  denote the distances (arranged in 
ascending order) between z and each of the N data points.  Replacing h in (7) with 2 ( )kd z  
yields the k-th nearest-neighbour density estimator.  Unfortunately, this estimator does not 
integrate to one, so the associated estimated density function is not a proper pdf.  Moreover, 
even though the estimated density function is continuous, it is not smooth. 

A more serious problem with kernel density estimation is that very large samples are 
often required to obtain reasonable estimates of multivariate densities.  Silverman (1986) 
reports a case where a sample of size 842,000 was needed to estimate p(0) to a desired degree 
of accuracy when K = 10, compared to a sample of size 4 when K = 1.  In the remainder of 
this paper we consider estimation approaches that allow us to avoid this so-called curse of 
dimensionality. 

Finally, some popular econometric software packages, including EViews and 
SHAZAM, have options for nonparametric estimation of econometric models.  Unfortunately, 
EViews does not currently provide for estimation of multiple regression models, while 
SHAZAM does not compute standard errors for nonparametric estimators.   
 
 

3. FIXED-PARAMETER FLEXIBLE FUNCTIONAL FORMS 
 
Two methods for approximating unknown functions that are used in the empirical literature 

are Taylor’s series approximations and members of the class of Fourier series expansions9.  In 

this section we consider common flexible functional form models that can be derived as 

Taylor’s series expansions.  Details concerning Fourier expansions can be found in Gallant 

(1981) and Gallant (1984). 

 Let 1( ,..., )i i Kiz z z ′=  denote the i-th observation on Z.  A second-order Taylor’s series 

expansion of ( )im z  around the point z  is (e.g., Greene, 2003, p.838): 
 

(18) 
1 1 1

( ) 0.5 ( )
K K K

i k ki kj ki ji i
k k j

m z z z z a z
= = =

= α + φ + γ +∑ ∑∑  

 
where  
                                                 
9 Fourier series expansions include sine/cosine expansions as well as Hermite and Laguerre expansions. 



 10

 
(19) ( ) ( ) 0.5 ( )m z g z z z H z z′′α = − +   

(20) [ ] ( ) ( )k g z H z zφ = φ = −    

(21) ( ).jk H z⎡ ⎤Γ = γ =⎣ ⎦    
 
and ( )g z  and ( )H z  are the K × 1 gradient vector and K × K Hessian matrix evaluated at 

.Z z=   The last term on the right-hand side of (18) is an approximation error with the 

property10 lim ( ) 0.
i

iz z
a z

→
=   The gradients at the point iZ z=  are: 

 

(22) 
1

( ) ( )
K

k i k kj ji k i
j

m z z a z
=

= φ + γ +∑  

 
where ( ) ( ) / .k i i kia z a z z= ∂ ∂   Substituting (18) into (2) yields the familiar fixed parameter 

flexible functional form econometric model 
 
(23) i i iy x u′= β+  

(24) ( )2~ ( ),i iu iidN a z σ  
 
where the vectors 
 
(25) 2 2

1 1 2 1 2 2 31 0.5 0.5i Ki Ki i i i i Ki i i i Ki Kix z z z z z z z z z z z z ′⎡ ⎤= ⎣ ⎦     
 
and 
 
(26) [ ]1 11 12 1 22 23K K KK

′β = α φ φ γ γ γ γ γ γ     
 
are of row dimension * 21 1.5 0.5 ,K K K= + +  and ( )i i iu a z e= +  is a composite error term.  

 The problem with this model is that, unless all approximation errors are zero, the 

disturbance term is correlated with the explanatory variables and has an unknown 

observation-varying mean.  The usual way forward is to implicitly assume  
 

(27)  *

1

( ) ( ) 0 ( )
K

i k i k i k kj ji
j

a z a a z m z z
=

= ⇒ = ⇒ = φ + γ∑  for i = 1, …, N. 

 

                                                 
10 The approximation error is also zero if all third- and higher-order derivatives of the unknown function are 
zero. 
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Under this assumption, the usual menu of econometric estimators is available.  The possibility 

that * 0a ≠  is of no practical consequence because a fixed non-zero mean can be subsumed 

into the intercept term (see, for example, Greene, 2003, p.14).  Since the error is normally 

distributed by assumption, the OLS estimator is also the maximum likelihood (ML) estimator.   

 The properties of these conventional estimators depend critically on whether the 

assumption *( )ia z a=  is valid.  If not, they are generally biased and inconsistent. – for details 

concerning the OLS estimator, see White (1980) and Byron and Bera (1983).  One solution is 

to subsume ( )ia z  into the deterministic part of the regression model, resulting in a model in 

which the parameters are observation-varying.  Another motivation for an observation-

varying parameter model involves taking Taylor’s series expansions at points represented in 

the data set. 

 

 

4.  OBSERVATION-VARYING PARAMETER MODELS 
 
If the fixed parameter regression model given by (23) and (24) is to provide a second-order 

approximation to the unknown function at the observed point iz  then equations (19) to (21) 

imply 
  
(28) ( ) ( ) 0.5 ( )i i i i i i im z g z z z H z z′′α = − + ≡ α   

(29) [ ]( ) ( )i i i kig z H z zφ = − ≡ φ    and 

(30) ( )i jkiH z ⎡ ⎤Γ = ≡ γ⎣ ⎦    
 
Moreover, the limiting property of the approximation error implies ( ) 0.ia z =   Thus, by 

permitting the model to approximate the unknown function at every point in the data set, the 

gradients (22) become  
 
(31) 

1

( )
K

k i ki kji ji
j

m z z
=

= φ + γ∑  
 
and the econometric model takes the form 
 
(32) i i i iy x e′= β +    

(3) ( )2~ 0,ie iidN σ  
 
where  
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 (33) [ ]1 11 12 1 22 23 .i i i Ki i i Ki i i KKi

′β = α φ φ γ γ γ γ γ γ     
 
The potential for this model to approximate the unknown function at every point in the data 

set is illustrated in figures 2 and 3.  Figure 2 depicts two linear functions providing first-order 

approximations to an (unknown) nonlinear function at two points.  Panels (b) to (d) in figure 3 

depict three linear surfaces that approximate the (unknown) nonlinear surface depicted in 

panel (a). 

 The model given by (32) and (3) differs from the fixed-parameter model given by (23) 

and (24) in two respects.  First, the error term is well-behaved.  Second, every parameter is 

observation-varying.  This second feature of the model is problematic because there are only 

N observations with which to estimate *NK  parameters.  Estimation of the model in a random 

coefficients framework is inappropriate because the unknown parameters are nonstochastic.  

Instead, we must use an estimator that imposes some structure on the .iβ   In this section we 

consider a flexible least squares estimator and a latent class estimator.  
 
 

Flexible Least Squares (FLS) 
 
If time-series data are available then there is a natural ordering of the observations and the 

model can be estimated using the FLS estimator of Kalaba and Tesfatsion (1989).  This 

estimator finds time paths for the parameters that minimize the “incompatibility cost” 

function   
 

(34) 
1

2
1 1 1

1 1

1( ,..., , ) ( ) ( ) (1 ) ( )
1

N N

N i i i i i i i
i i

c y x
−

+ +
= =

⎡ ⎤′ ′ ′β β δ = δ β −β β −β + − δ − β⎢ ⎥− δ ⎣ ⎦
∑ ∑  

 
where 0 1< δ <  is a smoothness parameter.  Relatively high values of the smoothness 

parameter have the effect of placing relatively high weight on holding the parameters constant 

and less weight on minimizing the sum of squared measurement errors.  Indeed, it can be seen 

from (34) that FLS → OLS as 1.δ →  

 Practical implementation of the FLS approach involves choosing a value for the 

smoothness weight.  Unfortunately, the literature provides little guidance in this regard.  It is 

common practice to set 0.5,δ =  thus giving equal weight to the dynamic evolution of the siβ   

and the residual error.  There are two other difficulties with FLS that limit the usefulness of 

the approach.  First, no closed form solutions are available for the covariance matrix of the 



 13

FLS estimator – the few econometrics software packages that compute FLS estimates do not 

provide estimated standard errors (e.g., SHAZAM).    Second, and perhaps more importantly, 

the approach cannot be used for making out-of-sample predictions. 
 
 
Latent Class (LC) Estimators 
 
An alternative estimation approach that is more widely applicable involves dividing the set of 

data points into J N≤ subsets, or classes.  Specifically, we identify subsets 1 ,..., JS S  with the 

property that i jβ = δ  for all .i jy S∈   Then the observation-varying parameter model becomes  
 
(35) i i j iy x e′= δ +    for ji S∈   and 

(3) ( )2~ 0, .ie iidN σ  
 
If the data points can be assigned to classes a priori then this model can be estimated using 

conventional techniques: if J = 1 an appropriate estimator is the ML estimator; if J = N a 

suitable estimator is the kernel regression estimator; and if *1 /J N K< <  the model can be 

estimated within a conventional seemingly unrelated regression framework.  Unfortunately, 

the observations can rarely be classified into subsets a priori, so these conventional estimators 

are unavailable.  Instead, the model must be estimated in a mixtures, or latent class, 

framework.  The use of the term “mixtures” derives from the fact that the random variable yi 

has a distribution that is a mixture of normal random variables having the same variance but 

different means.  The dependent variable in (35) is a mixture of a finite number of normal 

random variables, so the model is an example of a “finite mixture of normals” model.   

 Mixtures models can be estimated by the method of maximum likelihood.  The log-

likelihood for the observed sample is 
 

(36) 2 2

1 1 1
ln ln ( | , ) ln ( | , , )

N N J

i i ij i i j
i i j

L p y z p y z
= = =

⎧ ⎫
= σ = π δ σ⎨ ⎬

⎩ ⎭
∑ ∑ ∑  

 
where Pr( )ij i jy Sπ = ∈  is the (unobserved) prior probability that the random variable yi 

belongs to the j-th class.  For estimation purposes, it is common to specify this probability to 

be of the multinomial logit form: 
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(37) 

1

exp( )

exp( )

i j
ij J

i m
m

x

x
=

′η
π =

′η∑
 

 
where jη is a * 1K ×  vector of unknown  parameters11.  It is also common to specify .ij jπ = π  

 The fact that 2σ  is class-invariant means the log-likelihood function (36) is bounded.  

Thus, in principle, maximum likelihood estimates can be obtained using conventional 

optimization algorithms such as DFP.  Unfortunately, direct maximization of the likelihood 

function often proves difficult, partly because the likelihood function is not necessarily 

concave (so there may be several local maxima), but also because the large numbers of 

parameters in latent class models render standard maximization algorithms unreliable.  A 

more reliable alternative to direct maximization of the likelihood is the EM algorithm of 

Dempster, Laird and Rubin (1977).  This algorithm involves writing the log-likelihood 

function in the form 

 

(38) 
1 1

ln ln ln ( | )
J N

c ji j j i j
j i

L d f y
= =

⎡ ⎤= +⎣ ⎦∑∑ π θ   

 
where 2( ) ;j j′ ′≡θ δ σ  jid  is an unobserved dummy variable that takes the value 1 if and 

only if iy  belongs to the j-th mixtures component (class); and ( | )j i jf y θ  is the density of  iy  

when  1.jid =   The EM algorithm for maximizing (38) is an iterative algorithm involving two 

steps:  E (for expectation) and M (for maximisation).   Details are provided in the Appendix.   

 Implementing the EM algorithm involves selecting a set of starting values and a 

stopping rule.  The algorithm usually converges slowly and the likelihood function may have 

several local maxima, so the algorithm needs to be implemented using several sets of 

carefully-chosen starting values.  If the errors are independently distributed, it is common to 

select starting values by randomly partitioning the data into classes and then estimating the 

parameters using conventional techniques.  The EM algorithm is then applied using each of 

these “random starts”.   To stop the algorithm, let ( )k
cL  denote the value of the likelihood 

function after the k-th iteration.  The E- and M-steps are usually repeated until ( 1) ( )k k
c cL L+ −  

changes by an arbitrarily small amount.  Define 
 

                                                 
11 If ix contains a constant then the constraint 0Jη =  is necessary for identification purposes.  This model is 
sometimes known as a mixture of experts model (e.g., McLachlan and Peel, 2000, p.167). 
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(39) 
( )
( )
( 1) ( )

( ) ( )
( )1

k k
c ck k

c k

L L
D L

a

+ −
= +

−
 

 
where ( ) ( )( ) ( 1) ( ) ( ) ( 1)/ .k k k k k

c c c ca L L L L+ −= − −   Böhning et al (1994) suggest the EM algorithm can 

be stopped if ( 1) ( )k kD D+ −  is less than a desired tolerance. 

 Irrespective of the method used to compute the latent class estimates, implementation 

of the method also involves selecting the number of classes, or components.  A natural way of 

doing this is to use the likelihood ratio statistic to test for the smallest value of J that is 

compatible with the data.  Unfortunately, not enough regularity conditions hold for the 

likelihood ratio statistic to have the usual chi-squared distribution, so it is common to simply 

select the number of classes using a conventional information criterion, such as the Akaike 

Information Criterion (AIC) or the Bayesian information criterion (BIC).  The AIC has a 

tendency to fit too many components, while the BIC has a tendency to fit too few components 

when the model for the component densities is valid and the sample size is small – see Celeux 

and Soromenho (1996).  An alternative criterion that has performed well in simulation 

experiments is the Integrated Classification Likelihood Criterion (ICL) of Biernacki, Celeux 

and Govaert (1998).  

 Unfortunately, none of the well-known econometrics packages have latent class 

options that implement the EM algorithm or compute the ICL.  LIMDEP does have an option 

for maximizing the latent class likelihood function directly, but it is only available for use 

with panel data.   

 
 
5.  RESTRICTIONS 
 
Economic theory very often provides information concerning linear functions of the first-

order derivatives of (1).  This information can be written in the form 
 
(40) ( ) ( ) ( )R Z g Z r Z=    
 
where ( )g Z  is the K × 1 gradient vector with ( )km Z in the k-th row; ( )R Z  is a known J × K 

matrix; and ( )r Z  is a known J × 1 vector.  Constant returns to scale production functions, 

input and output distance functions, and all demand, supply, cost and profit functions must 

satisfy homogeneity constraints that take this form.  The econometric model incorporating 

these constraints is given by equations (2), (3) and 
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(41) ( ) ( ) ( ).i i iR z g z r z=   
 
In this section, we show how different estimators can be used to incorporate this information 

into the estimation process. 

 Linear equality constraints involving the first-order derivatives have no bearing on the 

nonparametric estimation of the conditional mean, but do impact on estimation of the 

gradients.  The  restricted nonparametric estimator of the gradient vector is 
   
(42) ( ) ( )1ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )g z g z R z R z R z R z g z r z−′ ′ ′= − −  
 
where ˆ ( )g z  is the unrestricted estimator of ( ),g z  with elements ˆ ( )km z  computed using (12) .  

 The linear equality constraints (41) can often be incorporated into fixed-parameter 

flexible functional form econometric models, but in a very restrictive way.   To see this, 

observe that the gradients (22) are linear in the unknown parameters, so the constraints (41) 

take the form 
 
(43) i iR rβ =  for i = 1, …, N,  
 
where ( )i iR R z≡  is a known *J K× matrix, and ( )i ir r z≡  is a J × 1 vector that is known if and 

only if *( )ia z a=  (recall that this assumption is usually implicit when estimating models of 

this type).  Unfortunately, these observation-varying constraints represent a system of JN 

equations in *K  unknowns, for which there is no general solution.  The usual way forward is 

to devise a set of observation-invariant constraints that are sufficient but not necessary for 

(41) to hold: 
 
(44) R rβ =  
 
where R is *J K×  and r  is J × 1.   Examples include the adding-up constraints that are 

usually imposed on the parameters of flexible functional forms in order to impose 

homogeneity.  These constraints can be imposed using conventional econometric estimators, 

including restricted least squares (RLS).  A problem with this approach is that sufficient 

conditions of the form (44) may not be available.  In any event, the constraints (44) are 

sufficient but not necessary for the constraints (41) to hold, so conventional econometric 

estimators potentially over-constrain the parameter space, leading to biased and inconsistent 

estimates. 
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 The observation-varying constraints (41) are most easily incorporated into a flexible 

functional form model in which the parameters are also observation-varying.  To estimate the 

observation-varying parameter model given by (32), (3) and (41) it is convenient to write the 

constraints (41) in the form 
 
(45) i i iR rβ =  for i = 1, …, N,  
 
which is the same as (43) except that the parameter vector is observation-varying .  Moreover, 

there is no approximation error in this model, so iR  and ir  are always known.  If iR  is of full 

rank then the general solution to (45) is (Graybill, 1969, p.142) 
 
(46) i i i i iR r H+β = + γ   
 
where iγ  is an arbitrary * 1K ×  vector, iR+  is the unique *K J×  Moore-Penrose generalised 

inverse of ,iR  and *i i iK
H I R R+≡ −   is a symmetric idempotent * *K K×  matrix.  A vector iβ  

will satisfy the observation-varying constraints (45) if and only if it has the form given by 

(46).  Substituting (46) into the regression equation (32) yields an estimating equation of the 

form 
 
(47) R R

i i i iy x e′= γ +    
 
where R

i i i i iy y x R r+′= −  is 1N ×  and R
i i ix x H′ ′=  is *.N K×   The observation-varying 

parameter model is now given by (47) and (3).  Importantly, the parameter vector iγ  in this 

model is theoretically unconstrained, so the unconstrained flexible least squares and latent 

class estimators discussed in the previous section are available.  Letting iγ  denote a flexible 

least squares or latent class estimator of ,iγ  an estimator of iβ  is then .i i i i iR r H+β = + γ   If we 

use a latent class estimator with J = 1 then iβ  collapses to the Generalised Restricted Least 

Squares (GRLS) estimator12 of Doran, O’Donnell and Rambaldi (2003).   The GRLS 

estimator derives its name from the fact that it collapses to the conventional RLS estimator if 

and only if iR  and ir  are observation-invariant.  Thus, whereas the unrestricted latent class 

estimator collapses to OLS whenever J = 1, the restricted latent class estimator only collapses 

to RLS when J = 1 and the constraints are of a very simple (i.e., observation-invariant) form.  

                                                 
12 The GRLS estimator is identical to the Singular Value Decomposition (SVD) estimator of O’Donnell, 
Rambaldi and Doran (2001).  Doran, O’Donnell and Rambaldi (2003) present the estimator in a more general 
framework and establish some additional theoretical properties. 
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For more details concerning the GRLS estimator and its properties, see Doran, O’Donnell and 

Rambaldi (2003).  
 
 
6.  SIMULATION EXPERIMENT 
 
To assess the empirical performance of different estimators, we took the two-input stochastic 

production function used in experiments by White (1980, p.151), Byron and Bera (1983, 

p.255) and Pagan and Ullah (1999, p.190): 
 

 (48) ( )1 1 1 2
2

1

1 ln i iz z
i iy e e e−γ −γ= − + γ +

γ
  i = 1, …, 200 

 
where iy  represents the i-th observation on the logarithm of output and kiz  represents the i-th 

observation on the logarithm of the k-th input (k = 1, 2).  We set 1 5,γ =  2 2,γ =  

1 (0.5 0.5) ,z ′=  and drew another 199 observations on the two log-inputs from independent 

standard uniform distributions13.  We then drew 200 observations on ie  from a normal 

distribution with mean zero and variance 0.01.  These settings are identical to those used by 

White (1980) and others, apart from the fact that we set the elements of 1z  equal to the 

population means of the log-inputs.  These other authors evaluated the performance of 

different estimators at this particular point and, in order for us to assess the performance of the 

FLS estimator, we needed to ensure this point was included in the data set (recall that the FLS 

estimator cannot be used to obtain out-of-sample predictions).  Note that the variables are 

measured in logarithms, so the parametric models all have translog functional forms14.   

 The economic quantities of primary interest are the conditional mean and the two 

elements of the gradient vector, all evaluated at the mean log-inputs.  Four unrestricted 

estimators were used to estimate these quantities: 
 
 KR  Kernel regression 
 FFF  Flexible functional form 
 FLS  Flexible least squares 
 LC(3)  Latent class estimator with J = 3.  

                                                 
13 Pagan and Ullah generate the Xjs from “two independently distributed uniform random variables with mean .5 
and variance 1/12” (p.191).  A uniform random variable defined over the interval [0,1] has mean 0.5 and 
variance 1/12. 
14 A special case of the translog is the Cobb-Douglas functional form.  As it happens, the production surface in 
this experiment is the surface depicted in panel (a) of Figure 3.  The surfaces depicted in panels (b) to (d) in 
Figure 3 are the estimated surfaces obtained using a Cobb-Douglas functional form (and an unrestricted latent 
class estimator with J = 3). 
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The number of classes in the LC model was chosen without computing any information 

criteria, but in the knowledge that mixtures of J = 3 normal densities are sufficiently flexible 

to approximate a very large range of density shapes.  In any event, the results reported in this 

section are robust to this choice. 

 The production function (48) exhibits constant returns to scale (CRS).  Accordingly, 

we also estimated the economic quantities of interest subject to the constraint:  
 

(49) 
1

( ) 1.
K

k i
k

m z
=

=∑  

 
This is the necessary and sufficient condition for homogeneity established by Euler’s 

Theorem.  Acronyms for the restricted estimators are: 
 
 KRR  Restricted kernel regression 
 FFFR  Restricted flexible functional Form (translog) 
 FLSR  Restricted flexible least squares 
 LCR(3) Restricted latent class estimator with J = 3.  
 GRLS  Generalised restricted least squares (restricted LC estimator with J = 1).  
 
Obtaining the KRR estimates was straightforward – the econometric model is given by (2), 

(3) and (41) with ( ) [1 1]iR z =  and ( ) 1.ir z =    Restricted estimation of the fixed-parameter 

flexible functional form model was also reasonably straightforward (under the assumption 

that the approximation error is observation-invariant).  For this model the CRS restriction (49) 

becomes 
 

(50) 
1 1 1

1
K K K

k kj ji
k k j

z
= = =

φ + γ =∑ ∑∑  

 
which will be satisfied at all data points if and only if: 
 

 (51) 
1

1
K

k
k=

φ =∑  and 
1

0
K

kj
j=
γ =∑   for all k. 

 
Thus, the CRS flexible functional form econometric model is given by (23), (24) and (44) 

with 
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 (52) 
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 1 1

R
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 and 
1
0 .
0

r
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Importantly, the constraints (51) are sufficient but not necessary for the CRS property (49) to 

hold.  To impose this property within a flexible functional form framework, the parameters of 

the model must be observation-varying.  Then the necessary and sufficient condition for CRS 

is 
 

(53) 
1 1 1

1.
K K K

ki kji ji
k k j

z
= = =

φ + γ =∑ ∑∑  

 
This constraint is identical to (50) except that the parameters are observation-varying.   The 

CRS observation-varying parameter model is given by (32), (3) and (45) with  
 
(54) [ ]1 1 2 20 1 1 ( )i i i i iR z z z z= +   

 
and 1.ir =   Substituting the restriction into the estimating equation yields the (unrestricted) 

estimating equation (47), which can be estimated using flexible least squares or a latent class 

estimator.  The FLSR, LCR and GRLS estimates reported in this section were obtained in this 

way.   

 The covariance matrix of the unrestricted kernel regression estimator was computed 

using (15) to (17).  The restricted kernel regression estimator of the gradient vector is a linear 

transformation of the unrestricted estimator, so its covariance matrix was computed using a 

simple transformation of the unrestricted covariance matrix (e.g., Greene, 2003, p.869).   

 Standard errors for the unrestricted and restricted flexible least squares estimates were 

computed using a simple bootstrapping procedure involving re-sampling from the (artificial) 

data set with replacement.  The standard errors reported below were computed using 500 

bootstrap samples.  Standard errors for the latent class estimators were obtained as the 

diagonal elements of the inverse of the following estimate of the information matrix: 
 

(55) 
1

ln lnˆ( ) ( ; ) ( ; )
N

c c
i i

i

L L
I E E s y s y

= =
=

⎡ ⎤′∂ ∂ ⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥ ′= =⎜ ⎟⎜ ⎟ ⎢ ⎥∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦
∑

θ θ
θ θ

θ θ θ
θ θ

 

 
where  θ  is an estimate of θ  and the score vector is: 
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 (56) 
1

ln ( | )
( ; )

J
j i j

i ji
j

f y
s y d

=

∂⎡ ⎤
= ⎢ ⎥∂⎣ ⎦
∑

θ
θ

θ
 

 
 

Results 
 
GAUSS was used to estimate all models and compute estimates of all economic quantities of 

interest15.  Results are summarised in table 1, which is divided into three sections.  The top 

section of the table reports estimates of the economic quantities of interest evaluated at the 

population means of the log-inputs.  The true value of the conditional mean is  1( ) 0.280m z =   

and the true values of the first derivatives are 1 1( ) 0.333m z =  and 2 1( ) 0.667.m z =   Estimated 

standard errors are given in parentheses.   Restricted estimates of 2 1( )m z  have not been 

reported because they are redundant (the estimated gradients sum to one).  

 The second section of the table reports differences between the estimated values and 

the true values (bias).  The unrestricted estimator exhibiting least bias is marked with the 

symbol “‡”, while the restricted estimator with least bias is marked with an asterisk.  When 

bias is used as a criterion, it appears that the unrestricted latent class estimator outperforms all 

other unrestricted estimators of the conditional mean.  The flexible least squares estimator is a 

superior unrestricted estimator of the first gradient, while the fixed-parameter flexible 

functional form estimator is a superior estimator of the second gradient.  If the CRS restriction 

is imposed, the fixed-parameter flexible functional form estimator dominates all other 

estimators in terms of bias.  This result is encouraging for economists using fixed-parameter 

flexible functional form models to evaluate economic quantities at variable means. 

 The third section of table 1 reports the root mean square error (RMSE) for each 

estimator.  Using this criterion, the latent class estimator outperforms all other estimators of 

the conditional mean, whether or not the constant returns to scale restriction is imposed.    

This result should not discourage researchers from using the fixed-parameter FFF estimator, 

on the grounds that it is better to be vaguely right (small bias) than precisely wrong (small 

RMSE).  In any event, the restricted FFF estimator also has lowest RMSE when it comes to 

estimation of the gradients. 

 Finally, table 2 reports results obtained when economic quantities of interest are 

evaluated at the point 49 (0.05 0.03) .z ′=   This is a point where both log-inputs are at the low 

end of the range of values represented in the data set.  The rankings of the estimators are 

unchanged when it comes to estimation of the conditional mean – the latent class estimator 
                                                 
15 Where possible, the results were validated using in-built functions in SHAZAM. 
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has lower bias than the fixed-parameter FFF estimator unless the CRS restriction is imposed.  

However, the opposite is the case when it comes to estimating the first gradient – the FFF 

estimator outperforms the LC(3) estimator unless the CRS restriction is imposed.   
 
 
7.  DEMAND FOR LABOUR IN U.S. AGRICULTURE 
 
To illustrate the application of different estimators in a panel data context, we also estimated 

an aggregate demand function for labour in U.S. agriculture.  The data file contained 

observations on input and output prices and quantities used in agriculture in state i in year t: 
 

x1it = quantity index of materials  
x2it = quantity index of capital  
x3it = quantity index of land  
x4it = quantity index of labour  
w1it = implicit price index of materials 
w2it = implicit price index of capital  
w3it = implicit price index of land  
w4it = implicit price index of labour  
qit = quantity index of total output 

 
for the N = 48 contiguous states of the U.S. from 1960 to 1996.   Thus, there are T = 37 time 

periods and a total of NT = 1776 observations in the data set.  The data is the same as that 

described in Ball et al (1999) except that it has been extended from 1990 to 1996, and the 

EKS technique due to Elteto and Koves (1964) and Szulc (1964) has been used to convert 

binary Tornquist indices into transitive multilateral Tornquist indexes. 

 All the models and estimation methods discussed in previous sections are applicable in 

the panel context, with the exception of flexible least squares (FLS is only available in a time-

series context).  We simply append a t subscript to all observation-varying quantities to index 

time periods.  For simplicity, we chose not to assume an error structure that accounted for the 

panel nature of the data set (i.e., we assumed the covariance matrix for all NT errors was 
2 ).Iσ   

 Economic theory prescribes a conditional input demand function for labour that takes 

the form of (2) with: 
 
(56) 4lnit ity x≡    

(57) 1 2 3 4(ln ln ln ln ln ) .it it it it i itz w w w w q ′≡    
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and 
 

(58) 
4

1
( ) 0.k it

k
m z

=

=∑  

 
Equation (58) is a necessary and sufficient condition for the demand function to be 

homogeneous of degree zero in prices.  Economic theory also suggests 4 ( ) 0itm z ≤  (i.e., the 

own-price elasticity of demand for labour is negative). 

 For nonparametric estimation, the homogeneity constraint is written in the form of 

(41) with ( ) [1 1 1 1 0]itR z =  and ( ) 0.itr z =   For estimation of the fixed-parameter 

flexible functional form model, the constraint is written in the form of (44) with  
 

(59) 

. 1 1 1 1 . . . . . . . . . . . . . . . .

. . . . . . 1 1 1 1 . . . . . . . . . . .

. . . . . . . 1 . . . 1 1 1 . . . . . . .

. . . . . . . . 1 . . . 1 . . 1 1 . . . .

. . . . . . . . . 1 . . . 1 . . 1 . 1 . .

. . . . . . . . . . 1 . . . 1 . . 1 . 1 .

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  

 
and [ ]0 0 0 0 0 0 .r ′=    Again, this constraint is sufficient but not necessary for zero-

degree homogeneity of the unknown input demand function.  Finally, in the case of the 

observation-varying parameter model, the constraint is in the form of (45) with 
 
(60)  [ 1 1 2 1 3 1 40 1 1 1 1 0 ( ) ( ) ( ) 0i i i i i i i iR z z z z z z z= + + +   

 
   ]2 2 3 2 4 3 3 4 4( ) ( ) 0 ( ) 0 0 0i i i i i i i i iz z z z z z z z z+ + +  

 
and 0.ir =   The latent class estimator was estimated with J = 2. 
 
 
Results 
 
GAUSS was again used to obtain the empirical results.  The parameter estimates are reported 

in table 3, where standard errors are presented in parentheses.  The unrestricted first-order 

coefficients reported in the FFF and LC(2) columns of table 3 are estimates of the parameters 

in (23) and have meaningful interpretations – the output and input price variables were scaled 
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in such a way that these first-order coefficients can be interpreted as elasticities evaluated at 

the variable means.  The FFF estimate of the materials elasticity is 0.275, while the LC(2) 

estimate is (0.643)(0.561) + (0.357)(-0.132) = 0.314 (i.e., a probability weighted average of 

the class-specific estimates).  Thus, both elasticity estimates are positive, suggesting labour 

and materials are substitutes in production.  In contrast, the unrestricted estimates of the 

capital elasticity are both negative, suggesting labour and capital are complements. 

 The first-order coefficients reported in the FFR column in table 3 are restricted 

estimates of the elasticities evaluated at the variable means, and they sum to zero.  However, 

the estimates reported in the LCR(2) and GRLS columns have no such convenient 

interpretations, nor do they satisfy any adding-up constraints.  This is because the coefficients 

in these remaining columns are estimates of the theoretically-unconstrained parameters in the 

transformed model (47).  To obtain restricted LCR and GRLS estimates of elasticities at the 

variable means, we need to apply the transformation given by (46).  Such a transformation has 

been used to generate the results reported in table 4.   

 Table 4 reports KR, KRR, FF, FFR, LC, LCR and GRLS estimates of economic 

quantities of interest (expected log-demand and elasticities with respect to all explanatory 

variables) when evaluated at the variable means.  It can be seen from table 4 that imposing 

homogeneity has led to a sign reversal in the estimated land elasticity.  It is also apparent that 

different restricted estimation approaches yield qualitatively different estimates of quantities 

of economic interest: the kernel regression estimates of the land elasticity have a different 

sign to estimates obtained using all other estimators; the LCR and GRLS estimates of the 

elasticities are large by comparison with the FFR estimates, with the exception of the 

materials elasticity.  Even greater differences emerge when economic quantities of interest are 

evaluated at points away from the variable means.  To illustrate, table 5 reports estimated 

quantities of interest when evaluated at the first observation in the data set (Alabama in 1960).   

It can be seen from this table that the LCR and GRLS output predictions are (precise and) 

almost twice as large as the FFR predictions; the FFR estimates suggest that labour and 

materials are substitutes in production while the LCR estimates suggest that they are 

complements; and the FFR estimates suggest that labour demand is own-price elastic while 

the LCR estimates suggest that it is own-price inelastic.  Most of these results can be 

validated by selectively citing conflicting results reported across studies by Chambers (1982), 

Andrikopoulos and Brox (1992), Lopez, Shumway, Saez and Gottret (1988) and O’Donnell, 

Shumway and Ball (1999).  The conclusion we draw from this empirical illustration is that the 
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choice of estimation methodology matters when evaluating economic quantities of interest, 

whether or not they are evaluated at the variable means. 
 
 

7.  CONCLUSION 
 

Common econometric approaches to estimating economic relationships range from 

nonparametric kernel regression estimators to more conventional estimators of fixed-

parameter flexible functional forms.  This paper has motivated and empirically evaluated a 

latent class estimator that includes the nonparametric and flexible functional form estimators 

as limiting special cases.  The unrestricted latent class estimator collapses to the OLS 

estimator when there is only one class, and is equivalent to a nonparametric estimator when 

the number of classes coincides with the number of observations in the data set.  Unlike 

conventional flexible functional form models, latent class models can be motivated without 

making restrictive assumptions concerning the remainder terms in Taylor’s series expansions. 

 Latent class models are typically estimated by the method of maximum likelihood.  

Empirical examples from the economics literature include Beard, Caudill and Gropper (1991, 

1994), Caudill (2003) and Orea and Kumbhakar (2004).  These authors have maximized the 

likelihood function in one of two ways: directly, using well-known gradient methods; or using 

the EM algorithm of Dempster, Laird and Rubin (1977).  Unfortunately, direct maximization 

of the likelihood function can be problematic – gradient methods often fail to converge, 

particularly when the number of classes is large.  The EM algorithm is guaranteed to 

converge, but has not yet been programmed into well-known econometrics software packages.  

 The simulation example presented in the paper provides evidence that fixed-parameter 

flexible functional form models can provide adequate approximations to economic quantities 

of interest when the latter are evaluated at or near the variable means.  However, matters are 

not so straightforward when interest extends to points at the outer ranges of values 

represented in the data set.  In these cases, latent class estimators (with more than one class) 

may outperform fixed-parameter estimators in some, and possibly many, empirical 

applications. 

 This paper has explained and evaluated latent class estimators in the context of a 

model where the error term is normally distributed (a finite mixture of normals model).  

Latent class estimators can also be used to estimate other types of models, including probit 

and tobit models, and random-effects stochastic frontiers.  Maximum likelihood estimation of 
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such models using the EM algorithm is computationally demanding, not least because there is 

no closed form solution to the maximization problem in the M-step (so iterative solution 

methods must be used).   Fortunately, these types of models can be conveniently estimated 

within a Bayesian framework.  Koop (2003) provides details concerning Bayesian estimation 

of finite mixtures of normals models, while O’Donnell and Griffiths (2006) provide details 

concerning latent class stochastic frontiers.  
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APPENDIX 

The EM Algorithm 

 

The E-Step 
 
Suppose the values of the jπ and jθ  were known.  Then the conditional expectation of ln cL  

(i.e., conditional on the data) would be 
 

 (A.1) 1 1
1 1

{ln | ,..., } { | ,..., } ln ln ( | ) .
J N

c N ji N j j i j
j i

E L y y E d y y f y
= =

⎡ ⎤= +⎣ ⎦∑∑ π θ  

 
where 1 1{ | ,..., } ( 1 | ,..., )ji N ji N jiE d y y P d y y= = = τ  is the posterior probability that iy  

belongs to the j-th component and is given by 
 

 (A.2) 

1

( | 1) ( 1) ( | )
( 1 | )

( ) ( | )

j i ji ji j j i j
ji ji i J

i
s s i s

s

f y d P d f y
P d y

f y f y
=

= =
≡ = = =

∑

π θ
τ

π θ
 

An estimate of jiτ  is 
 

 (A.3) 
( ) ( )

( )

( ) ( )

1

( | )

( | )

k k
j j i jk

ji J
k k

s s i s
s

f y

f y
=

=

∑

π θ
τ

π θ
. 

 
where ( )k

jπ  and ( )k
jθ  denote estimates of jπ  and jθ  at the k-th iteration of the EM algorithm.  

Thus, an estimate of (A.1) is  
 

 (A.4) ( ) ( )

1 1

ln ln ln ( | )
J N

k k
c ji j j i j

j i

L f y
= =

⎡ ⎤= +⎣ ⎦∑∑τ π θ      

 
 
The M-Step 
 
The M-step involves maximising (A.4) with respect to jπ  and jθ  to obtain ( 1)k

j
+π  and ( 1) .k

j
+θ   

The mixing proportions ( 1)k
j
+π  are updated independently of the ( 1) .k

j
+θ   To update the mixing 

proportions, we note that if the sijd  were observed then the maximum likelihood estimator of 

jπ  would be the sample mean: 
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 (A.5) 
1

1ˆ
N

j ji
i

d
N =

= ∑π          

 
Recall that in the E-step we replaced each ijd  with its conditional expectation.  This suggests 

we should estimate jπ  using: 
 

 (A.6) ( 1) ( )

1

1 N
k k

j ji
jN

+

=

= ∑π τ         

 
To update the  ( 1)k

j
+θ  we maximise 

 

 (A.7) ( ) ( )

1 1

ln ( | )
J N

k k
ji j i j

j i

S f y
= =

= ∑∑τ θ  

 
with respect to ( 1) .k

j
+θ   If the mixture densities are normal then closed form solutions are 

available. 
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Figure 1.  Local Histogram Estimator 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2.  Linear Approximations in Two Dimensions 
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Figure 3. Linear Approximations in Three Dimensions  
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Table 1.   Economic Quantities of Interest Evaluated at 1 (0.5 0.5)z ′= (a) 
       
 

  1( )m z  1 1( )m z  2 1( )m z  
       
 

 Estimates 
 

 TRUE 0.280 0.333 0.667 
 

 KR 0.258 0.440 0.376 
  (0.017) (0.022) (0.001)  
 

 FF 0.274 0.404 0.593 
  (0.013) (0.024) (0.026)  
 

 FLS 0.231 0.283 0.585 
  (0.077) (0.122) (0.144)  
 

 LC 0.278 0.401 0.587 
  (0.006) (0.010) (0.011)  
 

 KRR 0.258 0.532  
  (0.017) (0.012)   
 

 FFR 0.281 0.405  
  (0.009) (0.018)   
 

 FLSR 0.235 0.464  
  (0.073) (0.121)   
 

 LCR(3) 0.278 0.492  
  (0.006) (0.050)  
 

 GRLS 0.274 0.456  
  (0.014) (0.122)   
       
 

 Bias  
 

 KR -0.023 0.107 -0.290 
 FF -0.006 0.070 -0.074‡ 
 FLS -0.049 -0.051‡ -0.082 
 LC(3) -0.002‡ 0.068 -0.079 
 

 KRR -0.023 0.199  
 FFR 0.001* 0.072*  
 FLSR -0.046 0.131  
 LCR(3) -0.003 0.158  
 GRLS -0.006 0.123  
       
 

 RMSE  
 

 KR 0.029 0.109 0.290 
 FF 0.015 0.074 0.078‡ 
 FLS 0.091 0.132 0.166 
 LC(3) 0.006‡ 0.069‡ 0.080 
 

 KRR 0.029 0.199  
 FFR 0.009 0.074*  
 FLSR 0.086 0.178  
 LCR(3) 0.006* 0.166  
 GRLS 0.015 0.173  
       
 (a) Estimated standard errors in parentheses 
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 Table 2.   Economic Quantities of Interest Evaluated at 49 (0.05 0.03)z ′= (a) 
       
 

  49( )m z  1 49( )m z  2 49( )m z  
       
 

 Estimates 
 

 TRUE -0.184 0.308 0.692 
 

 KR -0.095 -0.026 0.047 
  (0.023) (0.121) (0.136) 
 

 FF -0.164 0.301 0.595 
  (0.028) (0.092) (0.104) 
 

 FLS -0.132 0.393 0.555 
  (0.066) (0.142) (0.173) 
 

 LC -0.170 0.325 0.623 
  (0.012) (0.038) (0.043) 
 

 KRR -0.095 0.463  
  (0.023) (0.008)  
 

 FFR -0.182 0.387  
  (0.009) (0.018)  
 

 FLSR -0.131 0.452  
  (0.068) (0.142)  
 

 LCR -0.166 0.373  
  (0.009) (0.013)  
 

 GRLS -0.170 0.376  
  (0.022) (0.031)  
       
 

 Bias  
 

 KR 0.089 -0.334 -0.645 
 FF 0.020 -0.007‡ -0.097 
 FLS 0.052 0.085 -0.138 
 LC(3) 0.014‡ 0.017 -0.069‡ 
 

 KRR 0.089 0.155  
 FFR 0.002* 0.079  
 FLSR 0.053 0.144  
 LCR(3) 0.018 0.065*  
 GRLS 0.014 0.069  
       
 

 RMSE  
 

 KR 0.092 0.355 0.659 
 FF 0.034 0.092 0.142 
 FLS 0.085 0.165 0.221 
 LC(3) 0.018‡ 0.042‡ 0.081‡ 
 

 KRR 0.092 0.156  
 FFR 0.010* 0.081  
 FLSR 0.086 0.202  
 LCR(3) 0.020 0.066*  
 GRLS 0.026 0.075  
       
 (a) Estimated standard errors in parentheses 
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Table 3.   Parameter Estimates – US Labour Demand (a) 
 
  

 Variable FFF FFFR LC(2) LCR(2) GRLS 
      
 

 j = 1 j = 2 j = 1 j = 2 
 
  

 Constant 0.635 0.689 0.760 0.459 0.464 -0.219 0.566 
  (0.018) (0.016) (0.013) (0.043) (0.021) (0.045) (0.029) 
 

 ln w1it 0.275 0.991 0.561 -0.132 -1.751 -0.033 0.033 
  (0.060) (0.056) (0.037) (0.016) (0.040) (0.019) (0.062) 
 

 ln w2it -0.516 -0.590 -0.499 -0.463 -1.021 0.897 -1.654 
  (0.052) (0.061) (0.025) (0.009) (0.033) (0.009) (0.056) 
 

 ln w3it 0.150 -0.030 -0.038 0.423 3.132 -0.973 -0.343 
  (0.023) (0.024) (0.274) (0.222) (0.273) (0.238) (0.026) 
 

 ln w4it -0.411 -0.372 -0.386 -0.506 -0.243 -1.256 -0.876 
  (0.034) (0.042) (0.072) (0.137) (0.078) (0.150) (0.046) 
 

 ln qit 0.853 0.844 0.797 0.900 0.370 2.718 0.846 
  (0.012) (0.013) (0.035) (0.257) (0.036) (0.294) (0.012) 
 

 ½ln w1itln w1it -0.230 -0.168 -0.457 0.648 -1.492 -0.649 1.865 
  (0.380) (0.339) (0.069) (0.128) (0.073) (0.142) (0.378) 
 

 ln w1itln w2it -0.207 0.824 0.128 -0.271 -0.001 0.684 -0.628 
  (0.309) (0.322) (0.028) (0.031) (0.030) (0.029) (0.328) 
 

 ln w1itln w3it 0.225 -0.360 0.377 -0.019 -0.010 -0.033 -0.046 
  (0.099) (0.091) (0.044) (0.009) (0.044) (0.009) (0.108) 
 

 ln w1itln w4it -0.106 -0.295 -0.081 -0.654 1.766 -0.212 -0.283 
  (0.190) (0.182) (0.107) (0.019) (0.119) (0.019) (0.208) 
 

 ln w1itln qit 0.160 0.190 0.167 0.138 -0.071 0.643 0.257 
  (0.049) (0.047) (0.007) (0.013) (0.007) (0.021) (0.050) 
 

 ½ln w2itln w2it 1.824 0.106 1.162 1.987 0.265 -1.560 1.688 
  (0.357) (0.418) (0.043) (0.037) (0.045) (0.040) (0.407) 
 

 ln w2itln w3it -0.675 -0.145 -0.433 -1.089 -0.548 -0.851 -0.840 
  (0.096) (0.108) (0.016) (0.025) (0.019) (0.033) (0.101) 
 

 ln w2itln w4it -0.705 -0.785 -0.747 -0.422 0.783 1.525 -1.088 
  (0.178) (0.212) (0.009) (0.274) (0.009) (0.273) (0.197) 
 

 ln w2itln qit -0.118 -0.174 -0.193 0.054 -0.183 0.295 -0.188 
  (0.040) (0.046) (0.222) (0.072) (0.238) (0.078) (0.041) 
 

 ½ln w3itln w3it 0.293 0.193 0.080 0.836 -0.050 0.224 0.113 
  (0.043) (0.043) (0.137) (0.035) (0.150) (0.036) (0.040) 
 

 ln w3itln w4it 0.200 0.312 0.118 0.130 0.749 -0.608 0.187 
  (0.061) (0.063) (0.257) (0.069) (0.294) (0.073) (0.061) 
 

 ln w3itln qit -0.021 0.041 0.030 -0.032 -1.275 -0.278 -0.003 
  (0.012) (0.013) (0.128) (0.028) (0.142) (0.030) (0.013) 
 

 ½ln w4itln w4it 0.653 0.768 0.573 1.098 -0.090 0.187 0.589 
  (0.149) (0.181) (0.031) (0.044) (0.029) (0.044) (0.164) 
 

 ln w4itln qit 0.054 -0.057 0.036 -0.115 0.055 0.015 0.031 
  (0.026) (0.030) (0.009) (0.107) (0.009) (0.119) (0.027) 
 

 ½ln qitln qit -0.007 -0.038 -0.038 -0.053 0.044 -0.041 -0.006 
  (0.009) (0.011) (0.019) (0.007) (0.019) (0.007) (0.010) 
  
 jπ    0.643 0.357 0.358 0.642  
 σ  0.311 0.383 0.224  0.235  0.325 
  
(a) Estimated standard errors in parentheses.  Subscripts refer to 1 = materials, 2 = capital, 3 = land, 4 = labour. 
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 Table 4.   Expected Log-output and Elasticities Evaluated at Variable Means(a) 
       
 

   Materials Capital Land Labour Output 
 

  1,1( )m z  1 1,1( )m z  2 1,1( )m z  3 1,1( )m z  4 1,1( )m z  5 1,1( )m z  
       
 

 KR 0.705 0.058 -0.491 -0.022 -0.194 0.424 
  (0.025) (0.034) (0.001) (0.004) (0.014) (0.000) 
 

 FF 0.635 0.275 -0.516 0.150 -0.411 0.853 
  (0.018) (0.060) (0.052) (0.023) (0.034) (0.012) 
 

 LC 0.652 0.314 -0.486 0.127 -0.429 0.834 
  (0.009) (0.032) (0.027) (0.012) (0.018) (0.006) 
 

 KRR 0.705 0.221 -0.329 0.140 -0.032 0.424 
  (0.025) (0.028) (0.007) (0.002) (0.019) (0.000) 
 

 FFR 0.689 0.991 -0.590 -0.030 -0.372 0.844 
  (0.016) (0.056) (0.061) (0.024) (0.042) (0.013) 
 

 LCR 0.579 0.092 -1.629 -0.363 -0.912 0.824 
  (0.015) (0.033) (0.030) (0.014) (0.024) (0.007) 
 

 GRLS 0.566 0.033 -1.654 -0.343 -0.876 0.846 
  (0.029) (0.062) (0.056) (0.026) (0.046) (0.012) 
       
 (a) Estimated standard errors in parentheses. 
   
 
 
 
 
 
 
 
 Table 5.   Expected Log-output and Elasticities Evaluated at Alabama Prices and Outputs in 1960(a) 
       
 

   Materials Capital Land Labour Output 
 

  1,1( )m z  1 1,1( )m z  2 1,1( )m z  3 1,1( )m z  4 1,1( )m z  5 1,1( )m z  
       
 

 KR 1.034 -0.161 0.026 0.067 -0.395 0.394 
  (0.041) (0.016) (0.002) (0.050) (0.122) (0.015)  
 

 FF 1.240 0.139 0.590 -0.338 -1.161 0.834 
  (0.049) (0.180) (0.183) (0.056) (0.115) (0.023)  
 

 LC(2) 1.208 0.222 0.645 -0.423 -1.042 0.837 
  (0.026) (0.104) (0.102) (0.031) (0.065) (0.013)  
 

 KRR 1.034 -0.045 0.141 0.183 -0.279 0.394 
  (0.041) (0.055) (0.037) (0.011) (0.082) (0.015) 
 

 FFR 1.256 1.448 0.456 -0.636 -1.267 0.911 
  (0.060) (0.170) (0.188) (0.057) (0.140) (0.026) 
 

 LCR(2) 2.101 -0.552 1.263 -0.053 -0.658 0.825 
  (0.027) (0.166) (0.203) (0.061) (0.102) (0.014) 
 

 GRLS 2.117 -0.160 0.930 0.071 -0.840 0.816 
  (0.051) (0.312) (0.382) (0.115) (0.192) (0.026)  
       
 (a) Estimated standard errors in parentheses. 
  


