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Abstract

Democracy tends to cultivate short-sighted politicians, for whom the
horizon extends more or less till next election. This feature gives rise
to a discrepancy between the time rate of discount of a country’s polity
and the interest rates at which the country borrows. I show how this
discrepancy induces public debt swelling. Moreover, if the discrepancy
exceeds a certain threshold, public debt will accumulate to the point
of insolvency and, to make matter worse, this (unfortunate) state of
affairs will be approached at a finite time. Conversely, if budget decision
makers are so far-sighted that their time rate of discount is smaller than
the relevant interest rate, the country becomes an excessive saver. If
the polity’s time rate of discount falls neither below the market interest
rate nor exceeds it too much, equilibrium will be reached at a debt-to-
GDP ratio between insolvency and excessive saving. Economic growth
exacerbates the debt accumulation problem, making insolvency more
likely compared to a ceteris-paribus stationary economy.

“Democracy is the worst form of government, except for all the oth-
ers that have been tried from time to time.” - Winston Churchill.
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1 Introduction

Excessive buildup of public debt has become increasingly worrisome in re-

cent decades and advanced democracies seem particularly vulnerable to the

disease. The gross government debt of Japan will reach 236 percent of GDP

this year and the comparable figures for the United States and the Euro area

are 107 percent and 90 percent, respectively, with Greece, Italy, Ireland, Por-

tugal and Belgium at or above the 100 percent mark (IMF 2012, Table 1.1).1

Dealing with the problem requires understanding the causes of the malaise and

the literature offers a variety of explanations, including intergenerational redis-

tribution motives, intra-generational distribution conflicts, and debt buildup

as a strategic commitment device (see the survey of Alesina and Perotti 1995,

and references therein). In this work I offer an explanation based on the

discrepancy between the time rate of discount of a country’s polity and the

interest rate at which the government borrows. I find that if this discrepancy

exceeds a certain margin, government debt will accumulate to the point of

insolvency and, to make matter worse, this unfortunate state of affairs will be

approached at a finite time.

Far from being coincidental, a positive discrepancy between polity’s impa-

tience and market interest rates stems from the short-sightedness of politicians

inherent in democratic systems, as crisply put in:

Politicians themselves have, for the most part, short time horizons.
For most of them, each election presents a critical point, and the
primary problem they face is getting past this hurdle. ...... This is
not to say that politicians never look beyond the next election in
choosing courses of action, but only that such short-term consider-

1These figures pertain to official debt (held by the public) and are but fractions of the
broader, fiscal gap indebtedness (see Kotlikoff and Burns 2012, for a discussion of the U.S.
fiscal gap).
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ations dominate the actions of most of them. Such features are, of
course, an inherent and necessary attribute of a democracy. But
when this necessary attribute is mixed with a fiscal constitution
that does not restrain the ordinary spending and deficit creating
proclivities, the result portends disaster. (Buchanan and Wagner
1977, p. 166.)

Empirical evidence on the link leading from political horizons to public

debt swelling can be found in Roubini and Sachs (1989) and Grilli et al. (1991).

The former constructed an indicator of political fragmentation in a group of

OECD countries, based on the number of parties, and found that government

tenure significantly affects public debt. The latter found that longer-lived

governments have smaller deficits. The model developed here explains the

underlying mechanism.

Time preferences in general and short-termism in particular are succinctly

represented by discount rates and a polity’s time rate of discount is inversely

related to the length of the period it expects to hold power. In advanced

democracies this period ranges between a few months and 8-10 years, giving

rise to polity’s time rate of discounts that often exceed market rates. I show

how this discrepancy gives rise to public debt buildups. Particularly, I find

that if the polity’s time rate of discount exceeds the market interest rate at

which the government borrows by a certain margin, government debt will accu-

mulate to the point of insolvency and, to make matter worse, this unfortunate

state of affairs will be approached at a finite time.

It seems natural to expect that economic growth would be conducive for

debt handling, as a richer economy can more easily service any given debt.

I find the opposite: economic growth often exacerbates insolvency prospects.

The reason is that growth alters borrowing incentives in a way that motivates

transfers from (wealthier) future generations to the present. As a result, the
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bound on the discrepancy between the polity’s time rate of discount and the

market interest rate under which the country is doomed to becoming insolvent

changes in such a way that, ceteris paribus, a growing economy is more likely

to be driven to insolvency than its stationary counterpart.

If the polity’s discount rate is smaller than the market interest rate, the

country becomes a net saver, eventually reaching an excessive saving limit. If

the polity’s discount rate neither falls below the market interest rate nor ex-

ceeds it too much, equilibrium will be reached at a debt-to-GDP ratio between

insolvency and excessive saving.

The idea that differences in impatience across economic agents underlie

borrowing-lending and debt patterns has recently been used by Eggertsson and

Krugman (2012) to explain several episodes observed in the current economic

slump and to rationalize certain cures. Here, the impatience discrepancy is

between that of politicians (or budget decision makers) and of the public at

large (as represented by the market interest rate) and is shown to drive the

dynamics of public debt.

A related strand of literature is concerned with governments’ defaults (see

Reinhart and Rogoff 2009, for a comprhensive account and historical perspec-

tives). On the one hand, defaults are a consequence of public debt buildups.

On the other hand, defaults may well be a legitimate cause (particularly of

sovereign debt buildup) if taken by (yet perfectly solvent) governments as a

viable course of action in dealing with future excessive debts. The often (sur-

prisingly) low cost by which countries get away with defaults suggests that

the latter (moral hazard) role of the option to default may also contribute to

public debt buildup.2

2See Acharya and Rajan (2012) for further evidence and recent literature. These authors
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My results regarding the conditions under which an economy is driven to

the insolvency brink are obtained under the assumption that defaults are not

feasible. Relaxing this assumption, allowing defaults, can only exacerbate

the insolvency prospects (make it more likely to happen or increase the pace

at which it is reached) but will not otherwise change the results. This is so

because the consequences of insolvency can only be harsher without the option

to default than with it. Thus, a government that drives its country to the

brink when the option to default is not feasible (e.g., too costly) will certainly

do so when the option to default is taken as a viable course of action in the

future.

Since the aim here is to examine long run trends of public debt processes,

stochastic fluctuations are ignored. This, no doubt, is an abstraction but

one that allows grasping the essence of the underlying currents and focusing

sharply on the role of short-sighted politicians. The next section presents the

model’s basic ingredients, explains why, in democratic societies, individuals

tend to behave more impatiently when acting as politicians than when engag-

ing in ordinary market transactions, and shows how this phenomenon leads

to public debt swelling and insolvency. Section 3 introduces default risks

and shows that the ensuing risk premium function has a self-correcting role

but is unlikely to be solvency-proof. Section 4 shows that growth tends to

exacerbate the insolvency prospects by motivating transfers from the (would

be wealthier) future to the present. Some policy implications are discussed in

the concluding section and the appendix contains technical derivations.

observe that penalties are painful mostly immediately following a default; they use this ob-
servation to explain why myopic governments, wishing to avoid the short-term consequences,
tend not to default.
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2 The basic setup

I begin with a simple model of government spending, where the government

faces an exogenous stream of income3 and uses it to finance its expenses,

of which some are mandatory and some discretionary.4 Let y(t), t ≥ 0,

denote the discretionary part of the income stream, i.e., total income minus

mandatory expenses (henceforth income and discretionary income are used

interchangeably). The deterministic income flow y(t) is assumed positive and

fluctuates around a constant value (growth will be considered in Section 4).

The value at time t of the income stream from time t onward is

Y (t) =

∫ ∞

t

y(τ)e−r(τ−t)dτ, (2.1)

where r is the market interest rate facing the government, assumed constant.

The government’s discretionary budget at time t is

b(t) = y(t)− x(t) ≥ 0, (2.2)

where x(t) ≤ y(t) is the surplus (if positive) or deficit (if negative). The

budget b ∈ IR+ generates the instantaneous utility u : IR+ 7→ IR, satisfying

u′(·) > 0, u′′(·) < 0, and lim
b→∞

u ′(b) = 0. (2.3)

The utility u(·) reflects the preferences of the budget decision-makers, namely

3The government’s income can be taken as a constant share of GDP. This is consistent
with Barro’s (1979) constant tax prescription, resulting from the desire to smooth consump-
tion over time when the government decides on tax rates and takes spending parametrically.

4See, for example, the mandatory-discretionary breakdown of USA’s proposed 2013 bud-
get in http://www.nytimes.com/interactive/2012/02/13/us/politics/2013-budget-proposal-
graphic.html.
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the country’s polity, and accounts for households’ (voters’) preferences via the

latter effect on elections outcomes. In a democratic society, thus, the polity’s

instantaneous utility will resemble that of a representative household (voter).

A budget policy {x(t) ≤ y(t), t ≥ 0}, or equivalently {b(t) ≥ 0, t ≥ 0},

generates the payoff ∫ ∞

0

u(b(t))e−ρtdt, (2.4)

where ρ is the polity’s time rate of discount (impatience). Unlike u(·), which

(for reasons mentioned above) is likely to represent households’ preferences,

there are good reasons for ρ to be substantially higher than the discount rate

of (most) market participants. This is so because ρ is inversely related to the

polity’s planning horizon (i.e., the time length expected to remain in office)

and this horizon extends more or less till next election, which in advance

democracies is substantially shorter than the horizon of ordinary households.

The relation between ρ and the polity’s planning horizon can be demon-

strated in the context of the following simple setting (Yaari 1965). Let T be

the polity’s random time horizon (the time remaining in office) and suppose

that the probability of not surviving beyond [t, t + ∆] given survival up to

time t is ρ̃∆ = Pr{T ≤ t + ∆|T > t} = fT (t)∆
1−FT (t)

+ o(∆), where FT (t) and

fT (t) = F ′
T (t) are the distribution and density functions of T , respectively,

and o(∆) is a term that approaches zero faster than ∆ (i.e., lim∆→0
o(∆)
∆

= 0).

Thus, ρ̃ = −d ln(1 − FT (t))/dt, giving FT (t) = 1 − e−ρ̃t. Assuming that the

polity’s utility is u(b(t)) while in office and zero otherwise, its objective is

E

{∫ T

0

u(b(t))e−ρ0tdt

}
,
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where E is expectation with respect to T and ρ0 ≥ 0 represents innate (natu-

ral) impatience common to politicians and ordinary citizens (households) alike.

Taking the expectation, using FT (t) = 1− e−ρ̃t, gives

E

{∫ T

0

u(b(t))e−ρ0tdt

}
=

∫ ∞

0

u(b(t))e−ρtdt,

where ρ = ρ̃ + ρ0. Since ρ̃ = 1/E{T}, the polity’s impatience ρ is inversely

related to its expected time in office: the shorter it expects to stay in office, the

more impatient (i.e., higher ρ) it becomes. Where elections occur more fre-

quently, the span of the polity’s planning horizon becomes accordingly shorter

and the ensuing discount rate higher.

The budget surpluses/deficits accumulate to form the outstanding debt

D(t) and the latter evolves in time according to

Ḋ(t) = rD(t)− x(t), (2.5)

I consider the case were the debt servicing policy pertains to total debt (do-

mestic and external).5

A budget deficit (when x(t) < 0) requires borrowing and the government

5Although governments have a salient motive to prefer domestic over foreign creditors
(e.g., because domestic creditors vote whereas foreigners do not), separating the two is
not always possible. In developed economies, with a sophisticated and (internationally)
integrated financial sector, domestic and foreign owners of government debt cannot be easily
identified (see, e.g., Guembel and Sussman 2009, Broner et al. 2010) and this feature hampers
the ability of governments to treat external and domestic debts separately. For emerging
economies, with limited international exposure, letting D(t) stand for sovereign debt, might
be more appropriate. In the latter case, the cost of servicing the domestic debt becomes
part of the mandatory expense (that have been subtracted from government’s income at the
outset) and is not included in the discretionary income.
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can borrow freely at the going rate r as long as

D(t) ≤ Y (t). (2.6)

If (2.6) is violated, the country’s net worth

W (t) = Y (t)−D(t) (2.7)

is negative. Now, W (t) satisfies

W (t+ s) ≤ ersW (t) for all s ≥ 0, (2.8)

equality holding if the entire income is used to service the debt from time

t onward (i.e., x(t + τ) = y(t + τ) for all τ ≥ 0).6 Thus, a negative net

worth today implies that future net worths will become ever more negative

and the government will not be able to pay the interest on its debt, let alone

the principal, even when its entire income is allocated to service the debt now

and forever. Under such circumstances, borrowing becomes impossible, as no

(private) lender will be willing to lend at any rate.

The country, thus, becomes insolvent when W (t) = Y (t) − D(t) = 0 and

I refer to (2.6) as the insolvency constraint. Without defaulting on some of

the debt (unilaterally or by consent), (2.8) implies that the insolvent state

W (t) = 0 is trapping, in that debt cannot be reduced below Y (t) and the

entire income is doomed to service the debt forever (i.e., b(t + τ) = 0 for

6To verify (2.8), integrate (2.5) from t to t+ s to obtain D(t+ s)e−r(t+s) −D(t)e−rt =

−
∫ t+s

t
x(τ)e−rτdτ ≥ −

∫ t+s

t
y(τ)e−rτdτ , where the inequality follows from x(τ) ≤ y(τ).

Noting (2.1),
∫ t+s

t
y(τ)e−rτdτ = e−rt [Y (t)− e−rsY (t+ s)] and the inequality can be ex-

pressed as e−rsD(t+ s)−D(t) ≥ e−rsY (t+ s)− Y (t), which noting (2.7) gives (2.8).
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all τ ≥ 0). The loss of the option to borrow and the trapping property

should deter governments from reaching insolvency. Suppose that defaults are

not feasible, so the insolvency state is trapping. Will a (currently perfectly

solvent) government reach insolvency as a planned outcome? The answer,

it is shown below, is in the affirmative. The reason is the short-sightedness

of governments which, far from being coincidental, is an inherent attribute of

democracy.

A negative debt occurs when the accumulated surpluses exceed (in current

value) the accumulated deficits, in which case the country is a net lender.

However, lending cannot be extended without limit, since the demand for

credit (domestic and global) is finite. The lending constraint is imposed in

terms of the country’s net worth as

W (t) = Y (t)−D(t) ≤ W̄ , (2.9)

where W̄ is possibly very large but finite. The bound W̄ is the excessive

saving limit.

A budget policy is feasible if x(t) ≤ y(t), or equivalently b(t) ≥ 0, and

D(t) ∈ [Y (t)−W̄ , Y (t)] for all t ≥ 0. The optimal policy is the feasible policy

that maximizes (2.4) subject to (2.5), given D(0) < Y (0). Let D∗(t), t ≥ 0,

represent the optimal debt process andW ∗(t) = Y (t)−D∗(t) the corresponding

net worth trajectory. Define

Ŵ =


W̄ if ρ− r < 0

W (0) = Y (0)−D(0) if ρ− r = 0

0 if ρ− r > 0

. (2.10)
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Then:

Proposition 1. Suppose (2.3) holds. Then: (i) W ∗(t) converges monoton-

ically to a steady state at Ŵ from any initial state W (0) ∈ (0, W̄ ]. (ii) If

ρ < r, the steady state W̄ will be reached at a finite time. (iii) If ρ = r, the

steady state is entered instantly (at the initial time) and the optimal policy is to

maintain a constant budget b = rW (0). (iv) If ρ > r, the country is doomed

to become insolvent (Ŵ = 0) and this (unfortunate) state of affairs will occur

at a finite time or asymptotically (as t→ ∞), depending one whether u′(0) is

finite or infinite, respectively.

The proof is presented Appendix B.

The interest rate r reflects the time preferences of market participants

(Ramsey 1928), i.e., r = ρ0, where ρ0 was defined above as an innate impa-

tience or the utility discount rate of a representative household. A case can

be made for a benevolent polity that freely chooses the discount rate to set

ρ = r. The optimal policy in this case is to maintain a constant budget

b(t) = b = rW (0) = r[Y (0) −D(0)]. Thus, recalling that x(t) = y(t) − b(t),

when income is low (during recession periods), x(t) is appropriately reduced

by borrowing and running a budget deficit, and during boom periods a surplus

x(t) > 0 occurs. This property stems from the diminishing marginal utility

of budget, which operates to smooth out the budget trajectory over time.

The case ρ > r occurs when the polity’s time horizon is shorter than the

planning horizon of (most) market participants. In this case the country is

doomed to become insolvent. Moreover, when u′(0) is finite (a likely property

given that the income is net of the mandatory spending), insolvency will occur

at a finite time. Avoiding this outcome requires some form of external con-
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straints on government spending. Examples include the Stability and Growth

Pact, which specifies limits on deficits and public debts for the 27 member

states of the European Union, and the United States’ “ceiling” on public debt.

3 Default risk

In actual practice, a country will encounter difficulty borrowing at the

riskless rate r long before it becomes insolvent. As soon as potential lenders

begin to doubt the country’s ability and determination to service its debt, they

will demand a risk premium to balance out their concerns. Consequently, the

interest rate at which the government borrows includes a risk premium that

depends on the debt-income ratio. To allow a sharp focus on the effects of

default risk, a constant income stream y(t) = y is assumed.7 Normalizing y

to unity implies that the budget b(t), the surplus/deficit x(t) and the ensuing

debt D(t) are all measured as income shares (in this section, “debt” and “debt-

income ratio” are used interchangeably).

Governments borrow by issuing bonds at prices that vary with the bonds’

characteristics. A detailed account of such term structure is beside the present

scope. It is expedient in the present context to consider the case where the

government constantly recycles debt by issuing short-term bonds whose price

includes a risk premium, denoted h, that depends on the debt-income ratio.

As long as the debt does not exceed some critical income share, no default risk

is perceived (by potential lenders) and h = 0. As debt increases above this

threshold, the risk of default becomes real and h increases at an increasing

rate. Without loss of generality, the threshold debt above which the risk

7This is equivalent to assuming that a-priori (independent of the budget policy) income
is stabilized at the annual-equivalent flow y = rY (0).
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premium is positive is assumed zero.8 Thus, h(·) satisfies:

h(D) = 0 for D ≤ 0; h′(D) > 0 and h′′(D) > 0 for D > 0. (3.1)

The function h(·) varies from country to country and reflects (potential lenders)

beliefs regarding the government ability and determination to service its debt.

The interest cost of a debt D is [r + h(D)]D and debt evolves in time

according to

Ḋ(t) = [r + h(D(t)]D(t)− x(t). (3.2)

Let D̄ be the debt level satisfying

[r + h(D̄)]D̄ = y = 1 (3.3)

(recall the normalization y = 1). Since x(t) ≤ 1, at debt level D̄, the interest

cost [r + h(D̄)]D̄ consumes the entire income and any increase in debt above

D̄ implies that the debt will increase indefinitely (the right-hand side of (3.2)

remains positive even when x(t) = 1), in which case the government becomes

insolvent. In actual practice, as soon as debt reaches D̄, borrowing becomes

impossible (no potential lender will be found), implying that, barring a default,

D(t) ≤ D̄. (3.4)

The insolvency bound D̄ is trapping, in that once the debt-income ratio

reaches D̄, without defaults, the country is doomed to allocate its entire in-

come to cover the interest cost now and forever. Facing this situation, the gov-

8This assumption simplifies notation and can be relaxed, by allowing a positive threshold,
without any effect on the nature of the results.
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ernment may default, provided the consequences (penalties, trade sanctions,

reputation loss, use of military force) are not too harsh. Suppose defaults are

not feasible. Can a perfectly solvent government reach insolvency while acting

“optimally” when it is fully aware of the consequences (that there is no way

out of insolvency and instant gratifications are obtained at the expense of pos-

terity’s well-being)? As in the previous case, the answer is in the affirmative.

All it takes is that the polity’s impatience rate ρ exceeds the risk-adjusted

interest rate r + ψ(D̄), where

ψ(D) = h(D) + h′(D)D (3.5)

is the marginal cost of the default risk. If this is the case when defaults are

not feasible (e.g., because their cost is prohibitive), if anything, governments

will be less reluctant to reach insolvency when defaults are not ruled out at

the outset.

A negative debt means that the country is a net lender and the lower bound

D = (Y − W̄ )/y ≤ 0 applies (see discussion of W̄ below (2.9)), i.e.,

D(t) ≥ D . (3.6)

The budget management problem can be formulated as

max
x(t)≤1

∫ ∞

0

u(1− x(t))e−ρtdt (3.7)

subject to (3.2) and D(t) ∈ [D, D̄], given D(0) ∈ [D, D̄).
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Define

D̂ =



D if ρ < r

min(D(0), 0) if ρ = r

ψ−1(ρ− r) if r < ρ ≤ r + ψ(D̄)

D̄ if ρ > r + ψ(D̄)

(3.8)

where D(0) is the initial debt (notice that the equation ψ(D) = ρ− r admits

a unique solution ψ−1(ρ− r) ∈ (0, D̄] when 0 < ρ− r ≤ ψ(D̄)). The optimal

debt process D∗(t) is characterized in:

Proposition 2. Suppose (2.3) and (3.1) hold. Then: (i) D∗(t) converges

monotonically to a steady state at D̂ from any initial debt D(0) ∈ [D, D̄).

(ii) If ρ < r, the steady state D̂ = D will be reached at a finite time. (iii)

If ρ = r then: if D(0) ≤ 0, the steady state D̂ = D(0) is entered instantly; if

D(0) > 0, the steady state D̂ = 0 will be reached asymptotically (as t → ∞).

(iv) If r < ρ ≤ r + ψ(D̄), the steady state D̂ = ψ−1(ρ − r) ∈ (0, D̄] will be

reached asymptotically. (v) If ρ > r+ψ(D̄), the country is doomed to become

insolvent (D̂ = D̄) and this (unfortunate) state of affairs will occur at a finite

time or asymptotically as u′(0) is finite or infinite, respectively.

The proof is presented in Appendix C.

As expected, default risk plays no role when ρ < r, in which case debt

is negative (or will eventually turn negative) and the risk premium vanishes.

When ρ ≥ r, the risk effects are pronounced. Consider first the case ρ = r,

where the polity’s impatience ρ coincides with the riskless market rate r. In

this case, no debt with a positive risk (i.e., h(D) > 0) will prevail in the long-

run. If the initial debt is nonnegative, the optimal policy is to retain debt

at its initial level (by running a balance budget). If the initial debt D(0) is
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positive, debt will be gradually reduced, approaching zero asymptotically (as

t→ ∞).

When ρ > r, the equilibrium debt is positive, but as long as ρ < r + ψ(D̄),

debt will not reach the insolvency level D̄. If ρ ≥ r + ψ(D̄), insolvency is

inevitable (the equilibrium debt equals D̄) and will occur at a finite time if the

inequality is strong (ρ > r + ψ(D̄)) and u′(0) is finite (since the discretionary

income is net of the mandatory expenses, a finite u′(0) is plausible).

Comparing with the results of Section 2, it is seen that the risk premium

function h(·) mitigates the tendency of politicians to drive their country to the

brink, in that the critical polity’s impatience rate ρ above which the country

will sooner or later become insolvent is higher with risk premium than without.

As a market phenomenon, the risk premium is thus a self-correcting mecha-

nism, though far from being solvency-proof, as frequent episodes of bailout-

seeking countries reveal.

4 Growth

I turn now to examine effects of exogenous economic growth on public debt

buildup and insolvency prospects.9 Suppose the economy grows at a constant

rate g > 0:

y(t) = egt, (4.1)

where the normalization y(0) = 1 is used. Total debt is D(t) and

d(t) = D(t)e−gt (4.2)

9There may also be a causality link running from debt to growth (see Reinhart and
Rogoff 2010), which is not considered here.
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is the debt-income ratio. Likewise, b(t) and x(t) represent, respectively, the

budget and surplus/deficit at time t, expressed as income shares, so the total

budget is b(t)egt, the total suprlus/deficit is x(t)egt and b(t) = 1− x(t).

The risk premium function h(·) is the same as in the stationary case (spec-

ified in (3.1)), with the debt-income ratio d as its argument:

h(d) = 0 for d ≤ 0; h′(d) > 0 and h′′(d) > 0 for d > 0. (4.3)

The interest cost associated with a (total) debt D(t) is [rg + h(d(t))]D(t)

and D(t) evolves in time according to

Ḋ(t) = [rg + h(d(t))]D(t)− x(t)egt, (4.4)

where rg is the (riskless) interest rate (which may differ from its stationary

economy counterpart r, hence the subscript g). Differentiating (4.2) with

respect to time, using (4.4), gives

ḋ(t) = [rg − g + h(d(t))]d(t)− x(t). (4.5)

Noting (4.5), the insolvent debt-income ratio d̄ is defined by

[rg − g + h(d̄)]d̄ = 1. (4.6)

Since x(t) ≤ 1, when d(t) = d̄, the interest payments consume the entire

income and any debt above d̄ will increase without bound. The debt level d̄

is trapping, in that it cannot be reduced (without the government defaulting
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on some of its debt). Thus, barring defaults,

d(t) ≤ d̄. (4.7)

A negative d occurs when the country becomes a net lender. In a growing

global economy, potential lending increases at the rate g and equals Degt,

where D = (Y − W̄ )/y (see equation (3.6)). Thus,

d(t) ≥ d = D. (4.8)

The utility flow generated by the budget (1− x(t))egt takes the form

((ζ + 1− x(t))egt)1−η − 1

1− η
=

(ζ + 1− x(t))1−ηe−(η−1)gt − 1

1− η

where η > 0 is the elasticity of marginal utility (or the inverse of the intertem-

poral elasticity of substitution) and ζ ≥ 0 is a nonnegative parameter (the

logarithmic form is used when η = 1). The present value of the utility flow is

∫ ∞

0

(ζ + 1− x(t))1−η

1− η
e−(ρ+(η−1)g)t − 1

(1− η)ρ
,

which, using

u(b) =
(ζ + b)1−η

1− η
(4.9)

and ignoring the constant term, can be expressed as

∫ ∞

0

u(1− x(t))e−(ρ+(η−1)g)t. (4.10)

A feasible budget policy satisfies x(t) ≤ 1 at all times. The optimal policy
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is the feasible policy that maximizes (4.10) subject to (4.5) and d(t) ∈ [d , d̄],

given d(0) ∈ [d , d̄).

The marginal cost of risk corresponding to d(t) is

ψ(d) = h(d) + h′(d)d, (4.11)

and d̂ is defined by:

d̂ =



d if ρ < rg − ηg

min(d(0), 0) if ρ = rg − ηg

ψ−1(ρ+ ηg − rg) if rg − ηg < ρ ≤ rg − ηg + ψ(d̄)

d̄ if ρ > rg − ηg + ψ(d̄)

(4.12)

(note that ψ−1(ρ+ ηg − rg) ∈ (0, d̄] when 0 < ρ+ ηg − rg ≤ ψg(d̄)).

The optimal debt process d∗(t) is characterized in:

Proposition 3. Suppose (4.3) and (4.9) hold. Then: (i) d∗(t) converges

monotonically to a steady state at d̂ from any initial debt d(0) ∈ [d, d̄). (ii) If

ρ < rg − ηg, the steady state d̂ = d will be reached at a finite time. (iii) If ρ =

rg−ηg then: if d(0) ≤ 0, the steady state d̂ = d(0) is entered instantly; if d(0) >

0, the steady state d̂ = 0 will be reached asymptotically (as t → ∞). (iv) If

rg−ηg < ρ ≤ rg−ηg+ψ(d̄), the steady state d̂ = ψ−1(ρ+ ηg − rg) ∈ (0, d̄] will

be reached asymptotically. (v) If ρ > rg − ηg + ψ(d̄), the country is doomed

to become insolvent (d̂ = d̄) and this (unfortunate) state of affairs will occur

at a finite time when ζ > 0 (i.e., u′(0) is finite).

The proof is presented in Appendix D.
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Comparing with the the results of the stationary economy (Section 3), eco-

nomic growth affects insolvency prospects in two ways. First it changes the

(riskless) interest rate from r to rg. Second, it changes the condition charac-

terizing the equilibrium debt-income ratio d̂ (note in particular the conditions

leading to insolvency, where d̂ = d̄). The equilibrium interest rate satisfies

(Ramsey 1928) rg = ρ0+ηg, thus rg = r+ηg, where r is the equilibrium inter-

est rate in a stationary economy (g = 0) and ρ0 is the representative agent’s

utility discount rate (discussed in Section 2). Substituting rg = r+ηg in (4.6)

and comparing with (3.3), one verifies that d̄ < D̄ if η > 1, d̄ = D̄ if η = 1

and d̄ > D̄ if η < 1.

A stationary economy is doomed for insolvency when ρ > r+ψ(D̄) (Propo-

sition 2(v)). The corresponding condition for a growing economy, according to

Proposition 3(v), is ρ > rg − ηg+ψ(d̄) = r+ψ(d̄). Thus, the effect of growth

on a country’s insolvency prospects boils down to the relation between ψ(D̄)

and ψ(d̄). In particular, η > 1 implies d̄ < D̄ and ψ(d̄) < ψ(D̄), in which case

growth exacerbates the insolvency prospects by lowering the upper bound on

ρ above which insolvency is inevitable. When r + ψ(d̄) < ρ < r + ψ(D̄), the

same polity will drive a growing economy (g > 0) to insolvency but will retain

a stationary economy (g = 0) perfectly solvent. This situation is depicted in

Figure 1.

The explanation for this result rests on the role of η as a measure of aver-

sion to intergenerational inequality: The introduction of growth means that

future generations will be richer, and high aversion to intergenerational in-

equality (η > 1) induces redistribution from (wealthier) future generations to

the present; such a redistribution, which takes the form of borrowing, pushes

an economy further towards insolvency. The magnitude of η is a subtle (and
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Figure 1: The curves [r+h(D)]D and [r+(η−1)g+h(d)]d correspond to stationary

and growing economies, respectively, with an exponential h(·) and parameters r =

0.05, η = 4 and g = 0.02. D̄ and d̄ solve, respectively, [r + h(D̄)]D̄ = 1 and

[r + (η − 1)g + h(d̄)]d̄ = 1, giving D̄ = 2.90 > d̄ = 2.64 and ψ(D̄) = 0.59 >

ψ(d̄) = 0.54. A polity whose impatience ρ falls between r+ψ(d̄) and r+ψ(D̄), i.e.,

0.59 < ρ < 0.64, would drive the growing economy to insolvency at a finite time but

retain the stationary economy perfectly solvent.

contested) issue (see Stern 2008, and references cited therein); empirical evi-

dence suggests η > 1 (Hall 1988).

5 Discussion and conclusion

The tendency of advanced democracies to accumulate excessive debt is at-

tributed (at least partly) to the high impatient rate of politicians. This feature

implies that the politicians’ (budget decision makers’) time rate of discount
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exceeds the interest rate at which the government borrows and this discrep-

ancy, it is shown, induces public debt swelling and gives rise to insolvency

when it exceeds a certain threshold. Moreover, often economic growth exac-

erbates the debt swelling problem and makes insolvency more pervasive. Far

from being coincidental, a discrepancy between politicians’ discount rates and

market interest rates is an inherent attribute of democracy, where the former

is inversely related to the length of the period a government expects to remain

in office and these periods could be quite short.

A popular remedy entails rules (in the form of norms, laws, constitu-

tional amendments) to restrain deficits and debt buildup as discussed, e.g.,

in Buchanan and Wagner (1977, Chapters 10-12). Examples include the Sta-

bility and Growth Pact, specifying limits on deficits and public debts for the

27 member states of the European Union, or the ceiling on public debt in the

United States. The former has originally set deficit and debt limits at 3 per-

cent and 60 percent of GDP, respectively, and was latter updated; the latter

has recently been updated last Summer. This approach seems to work well

while the restraining rules are not binding. As soon as the limits begin to

bite, the current polity has a tendency to relax them (particularly if it is not

the one that imposed the rules in the first place). This is an example of the

“rules-rather-than-discretion” dilemma (Kydland and Prescott 1977), where

optimal policies are inconsistent and consistent policies are suboptimal. In

the present context, external ex-ante rules are constantly updated ex-post by

short-sighted politicians. An upper bound on deficits is particularly tempting

to update when the constraint is binding, since this occurs at the wrong time

– when the economy suffers (in a recession) and badly needs oxygen (budget

infusion). Perhaps a policy that sets a lower bound on the surplus when the
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economy thrives might be less challenging, as it is easier to restrict spending

during booms than during busts.

Given that the source of the problem is the short sightedness of politicians

induced by democracy’s “rules-of-the-game,” possible remedies could exploit

the advantages of democracy in transparency and information disclosure to

mitigate this shortcoming. Legislations with detrimental impacts on future

generations could be evaluated and disclosed to the general public by an inde-

pendent, unbiased agency, inducing lawmakers to reconsider before they cast

their vote.10

Finally, where the short-horizon feature is potentially lethal, more author-

ity should be delegated to independent, professional civil servants with longer

time perspectives. A prime example is the delegation of the authority to set

monetary policy to an a-political, professional agency – the central bank. Of

course, fiscal policy is arguably the most pronounced manifestation of politi-

cal priorities and should be determined by elected politicians, but professional

civil servants should have the authority to impose external limits in certain,

pre-specified circumstances.

10In 2001, Israel’s Knesset (parliament) formed such an agency, called the Posterity’s
Commission (‘Netzivut Ha’dorot Ha’baim’), whose role was to monitor impacts on future
generations of legislative processes. Regretfully, the commission was abolished in 2010.
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Appendix

A A useful property

The proofs of the propositions will make use of the following (useful) prop-

erty. Consider the infinite-horizon, autonomous problem

max
q(t)∈A⊂IR

∫ ∞

0

f(Q(t), q(t))e−ρtdt

subject to

Q̇(t) = g(Q(t), q(t))

and Q ≤ Q(t) ≤ Q̄, given Q(0) ∈ (Q, Q̄). It is assumed that an opti-

mal solution (not necessarily unique) exists. Suppose there exists a function

M : [Q, Q̄] 7→ A, satisfying

g(Q,M(Q)) = 0 ∀Q ∈ [Q, Q̄].

Let V (Q) ≡ f(Q,M(Q))/ρ and define L : [Q, Q̄] 7→ IR by

L(Q) =
fq(Q,M(Q))

gq(Q,M(Q))
+ V ′(Q), (A.1)

where subscript q indicates partial derivative with respect to q. Then:

Property 1. (i) The optimal Q(t) process converges monotonically to a steady

state Q̂ ∈ [Q, Q̄] from any initial Q(0) ∈ (Q, Q̄). (ii) When L(·) is non-
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increasing:

Q̂ =


Q̄ if L(Q̄) > 0

L−1(0) if Q ≤ L−1(0) ≤ Q̄ and L(·) is decreasing

Q if L(Q) < 0

. (A.2)

Proof. The proof is based on the observation that optimal state trajectories of

(a single state) infinite-horizon, autonomous problems are monotonic. Thus,

if the state is bounded, the optimal path must converge to a steady state (see

details in Tsur and Zemel 2001, pp. 484-485).

B Proof of Proposition 1

Proof. (i): Equations (2.1), (2.2) and (2.5) give

Ẇ (t) = rW (t)− b(t) (B.1)

and the budget problem can be reformulated as

max
b(t)≥0

∫ ∞

0

u(b(t))e−ρtdt (B.2)

subject to (B.1) and W (t) ∈ [0, W̄ ], given W (0) > 0. This is an infinite-

horizon, autonomous problem with a bounded state, thus, according to Prop-

erty 1, W ∗(t) converges to a steady state. To show that W ∗(t) converges to

Ŵ , defined in (2.10), note that (A.1) specializes in this case to

L(W ) = u′(rW )
r − ρ

ρ
. (B.3)
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Thus, noting (A.2), the optimal steady state is W̄ or 0 as ρ − r < 0 or

ρ − r > 0, respectively. The case ρ = r requires some care, since L(W ) = 0

and equation (A.2) does not identify the steady state. It is verified in (iii)

below that Ŵ =W (0).

The proofs of (ii)− (iv) will benefit from the following reformulation of the

budget problem. Given that W ∗(t) converges to a steady state, the budget

problem can be reformulated as

max
{T,b(t)≥0}

∫ T

0

u(b(t))e−ρt + e−ρTu(b̂)/ρ

subject to (B.1) and W (t) ∈ [0, W̄ ], given W (0) ∈ (0, W̄ ], where T is the

steady state entrance time and

b̂ = rW (T ) (B.4)

is the steady state budget. The current-value Hamiltonian for this problem is

H(t) = u(b(t)) + µ(t)(rW (t)− b(t)),

where µ(t) is the current-value costate variable, and necessary conditions for

(interior) optimum include

u′(b(t)) = µ(t), (B.5)

µ̇(t)− ρµ(t) = −rµ(t), giving

µ(t) = µ0e
(ρ−r)t, (B.6)
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and the transversality condition

e−ρT [H(T )− u(b̂)] = 0. (B.7)

(ii) Suppose ρ < r. Then, according to part (i), the optimal W (t) process

converges monotonically to W̄ . To show that W̄ must be reached at a finite

time, suppose otherwise (that it will be approached asymptotically as t→ ∞).

Then, (2.3) and (B.5)-(B.6) imply that b(t) → ∞ and there exists some finite

time t such that b(t+ τ) > rW̄ ≥ rW (t+ τ) for all τ ≥ 0. Thus, noting (B.1),

from time t onward, W (t) decreases, violating part (i). It is concluded that

the steady state W̄ must be reached at a finite time.

With a finite T , the transversality condition (B.7) requires b(T ) = b̂ = rW̄ ,

implying, noting (B.5)-(B.6), u′(rW̄ ) = µ0e
(ρ−r)T or

rW̄ = u′−1
(
µ0e

(ρ−r)T
)
. (B.8)

Integrating (B.1) from 0 to T , using (B.5)-(B.6) and W (T ) = W̄ , gives

W̄e−rT =W (0)−
∫ T

0

u′−1
(
µ0e

(ρ−r)t
)
e−rtdt. (B.9)

The parameters T and µ0 are obtained from conditions (B.8)-(B.9).

(iii) When ρ = r, conditions (B.5)-(B.6) imply that µ(t) = µ0 and b∗(t) =

b∗, t ∈ [0, T ], where b∗ is constant. Suppose b∗ ̸= rW (0). Setting b∗ < rW (0)

implies, noting (B.1), that W ∗(t) = ert(rW (0) − b∗)/r + b∗/r increases and

will reach W̄ at a finite time. Likewise, when b∗ > rW (0), W ∗(t) decreases

and will reach zero at a finite time. In either case, condition (B.7) implies
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H(T )− u(b̂) = 0 or

u(b∗) + u′(b∗)[rW (T )− b∗]− u(b̂) = 0, (B.10)

where

b̂ =


0 if W (T ) = 0

rW̄ if W (T ) = W̄

. (B.11)

Now, when b∗ > rW (0), W (T ) = 0 and b∗ > b̂ = 0; when b∗ < rW (0),

W (T ) = W̄ and b∗ < b̂ = rW̄ . In both cases (B.10) is violated due to the

strict concavity of u(·). Thus, b∗ ̸= rW (0) cannot be optimal, implying that

b∗ = rW (0) is the optimal policy, i.e., the steady state is entered instantly as

claimed.

(iv) Suppose ρ > r. Noting (B.3), L(W ) < 0 for all W ∈ [0, W̄ ] and

Property 1 implies that the optimal W (t) process converges monotonically

to the insolvent state W = 0. Conditions (B.5)-(B.6) imply then that the

insolvent steady state will be reached at a finite time or asymptotically (as

t→ ∞) depending on whether u′(0) is finite or infinite, respectively. If u′(0)

is finite, T and µ0 are determined by the conditions

∫ T

0

u′−1
(
µ0e

(ρ−r)t
)
e−rtdt =W (0) (B.12)

and

u′−1
(
µ0e

(ρ−r)T
)
= 0. (B.13)

If u′(0) is infinite, T = ∞ and µ0 is determined by condition (B.12).
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C Proof of Proposition 2

Proof. (i) The budget Problem (3.7) is an infinite-horizon, autonomous prob-

lem with a bounded state, thus the optimal state trajectory D∗(t), according

to Property 1(i), converges to a steady state in [D, D̄]. I show that this steady

state equals D̂, defined in (3.8). With D and x corresponding, respectively, to

Q and q of Property 1, and the functions u(1− x) and [r+ h(D)]D− x corre-

sponding, respectively, to f(Q, q) and g(Q, q) of Property 1, the L(·) function

corresponding to problem (3.7) is

u′(1− [r + h(D)]D)[ρ− r − ψ(D)].

Since u′(1 − [r + h(D)]D) > 0 for all D ∈ [D, D̄], Property 1 can be applied

with

L(D) = ρ− r − ψ(D).

Suppose ρ < r. Then, L(D) < 0 for all D ∈ [D, D̄] and equation (A.2)

implies that the optimal steady state is D̂ = D , in agreement with (3.8).

Suppose ρ = r. Then, since L(·) is decreasing and negative over (0, D̄], the

steady state cannot fall in this interval (otherwise (A.2) is violated), implying

that [D, 0] is the interval of feasible steady states. Thus, if D(0) ≤ 0, it is

known from the outset that D∗(t) will remain in the interval [D, 0], over which

h(D) vanishes. The problem, then, reduces to a riskless problem (with a zero

risk premium) and the proof of Proposition 1(iii) can be repeated (with the

obvious modifications) to show that D̂ = D(0) and the steady state is entered

instantly. If D(0) > 0, then D∗(t) must decrease monotonically in order

to exit the interval (0, D̄] (which does contain the steady state), eventually
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reaching zero. As soon as as debt equals zero, the above argument implies

that the steady state has been entered.

Suppose r < ρ ≤ r + ψ(D̄). Since L(D) = ρ − r − ψ(D) > 0 for D ∈

[D, 0], Property 1(ii) rules out the possibility that the optimal steady state

falls in (D, 0]. Thus, the monotonicity property ensures that D∗(t) enters

(0, D̄] (which happens instantly if D(0) > 0) and remains in this interval.

Applying Property 1 to Problem (3.7) with the state D restricted to lie in

[0, D̄] gives D̂ = L−1(0) = ψ−1(ρ − r). Notice that ψ−1(ρ − r) ∈ (0, D̄] when

0 < ρ− r ≤ ψ(D̄).

When ρ > r + ψ(D̄), equation (A.2) implies that the optimal steady state

falls at the upper bound: D̂ = D̄. This completes the proof of part (i).

The proof of parts (ii) − (v) will make use of the following reformulation

of the budget problem. Given (i), the budget problem (3.7) can be rendered

as

max
{T, x(t)≤1}

∫ T

0

u(1− x(t))e−ρtdt+ e−ρTu(1− x̂)/ρ (C.1)

subject to (3.2), given D(0) = D ∈ [D, D̄), where

x̂ ≡ (r + h(D̂))D̂ ≤ 1, (C.2)

the strict inequality holding when D̂ < D̄ or, noting part (i), when ρ− r < ψ(D̄).

The current-value Hamiltonian (dropping the time argument for convenience)

is

H = u(1− x) + λ[(r + h(D))D − x]
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and necessary conditions for optimum include

u′(1− x) = −λ (C.3)

λ̇− ρλ = −λ[r + h(D) + h′(D)D] (C.4)

and the tranversality condition (associated with the choice of T )

e−ρT [H(T )− u(1− x̂)] = 0. (C.5)

When λ < 0, Condition (C.4) can be expressed as

λ̇/λ = ρ− r − ψ(D). (C.6)

(λ = 0 implies, noting (C.3) and (2.3), x = −∞ and is ruled out in all cases

of interest.)

(ii) Suppose ρ < r. I show that T is finite. Recall that in this case D̂ = D

and ρ − r − ψ(D) ≤ ρ − r < 0 for all D ≥ D. Suppose that T is infinite.

Then, from part (i), D(t) decreases monotonically toward D̂ = D while (C.6)

implies

λ̇(t)/λ(t) = ρ− r − ψ(D(t)) ≤ ρ− r < 0 ∀ t ≥ 0.

Thus, λ(t) approaches zero at a rate faster or equal to that of e(ρ−r)t. Condition

(C.3) then implies, noting (2.3), that x(t) → −∞. Thus, there exists some

finite τ such that x(t) < −[r + h(D)]D for all t > τ , implying (noting (3.2))

that D(t) increases from time τ onward, contradicting part (i). It is concluded

that T is finite.

(iii) Suppose ρ = r. The claim trivially holds when D(0) ≤ 0, in which
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case, according to part (i), the steady state is entered instantly. When D(0) >

0, the proof that the approach to the steady state D̂ = 0 is asymptotic is the

same as the proof of (iv), since the latter proof holds also for r = ρ when

D(0) > 0.

(iv) Suppose r ≤ ρ ≤ r + ψ(D̄). I show that T cannot be finite when

D(0) ̸= D̂. Suppose otherwise, that T is finite. The transversality condition

(C.5) then requires

u(1− x(T )) + u′(1− x(T ))[x(T )− x̂]− u(1− x̂) = 0,

implying, in light of the strict concavity of u(·), that (see (C.2))

x(T ) = x̂ ≡ (r + h(D̂))D̂ ≤ 1,

equality holding only if D̂ = D̄, which according to part (i) occurs when

ρ− r = ψ(D̄).

For the present (infinite-horizon, autonomous) problem, one can express

the optimal x policy as a function of the state, say x̃(D), and the time trajec-

tory of D(t) is given by the solution of (3.2):

T − t =

∫ D̂

D(t)

dk

(r + h(k))k − x̃(k)
(C.7)

for any 0 ≤ t < T (note that D(T ) = D̂). Expanding (r + h(k))k − x̃(k)

around k = D̂, using (r + h(D̂))D̂ = x̂ = x̃(D̂), gives

(r + h(k))k − x̃(k) = [r + h(D̂) + h′(D̂)D̂ − x̃′(D̂)](k − D̂) + o(k − D̂)

= (ρ− x̃′(D̂))(k − D̂) + o(k − D̂), (C.8)
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where use has been made of r+h(D̂)+h′(D̂)D̂ = r+ψ(D̂) = ρ, and o(·) repre-

sents a term that goes to zero faster than its argument (i.e., o(k − D̂)/(k − D̂) → 0

as k − D̂ → 0). It is verified below that:

Lemma 1. Suppose ρ− r ∈ [0, ψ(D̄)]. Then, x̃′(D̂) is finite and satisfies

x̃′(D̂) ≥ ρ,

equality holding only if D̂ = D̄.

Suppose D̂ < D̄, so x̃′(D̂) − ρ > 0, and consider the case D(0) < D̂ (so

D∗(t) increases toward D̂). If T is finite, then for every (small) ε > 0 there

exists some time tε < T such that D(tε) = D̂ − ε and D̂ − D∗(t) < ε for all

t > tε. From (C.7) and (C.8) I obtain

T − tε =
1

x̃′(D̂)− ρ

∫ D̂

D̂−ε

dk(
1 + o(D̂−k)

D̂−k

)
(D̂ − k)

(C.9)

Now, there exists small enough ε > 0 satisfying |o(ε)/ε| ≤ 1, such that

|o(D̂−k)

D̂−k
| ≤ 1 for all k ∈ [D̂ − ε, D̂]. Thus, from (C.9),

T − tε ≥
1

2(x̃′(D̂)− ρ)

∫ D̂

D̂−ε

dk

D̂ − k

and the integral on the right diverges for every positive ε, contradicting the

assumption that T is finite. The case D(0) > D̂ (where D∗(t) decreases

toward D̂) is similarly verified.

If ρ− r = ψ(D̄), then D̂ = D̄, x̃′(D̂) = ρ (Lemma 1) and (C.9) specializes
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to

T − tε =

∫ D̂

D̂−ε

dk
o(D̂−k)

D̂−k
(D̂ − k)

As above, for small enough ε > 0, |o(D̂−k)/(D̂−k)| ≤ 1 for all k ∈ [D̂−ε, D̂]

and the above integral diverges, contradicting the assumption that T is finite.

(v) When ρ > r+ψ(D̄), part (i) implies thatD(t) approaches a steady state

at D̂ = D̄, during which ρ− r − ψ(D) ≥ ρ− r − ψ(D̄) > 0. Condition (C.6)

then implies that −λ increases at a rate equal to or larger than ρ−r−ψ(D̄) > 0

and (C.3) implies that u′(1− x) increases at the same rate and, noting (2.3),

x(t) → 1. Thus, the insolvent state D̄ will be reached at a finite time or

asymptotically as u′(0) <∞ or u′(0) = ∞, respectively.

Proof of Lemma 1. Differentiating (C.3) with respect to time, using (C.6),

gives

ẋ = σ(x)(1− x)[ρ− r − ψ(D)], (C.10)

where

σ(x) ≡ u′(1− x)

−u′′(1− x)(1− x)
(C.11)

is the inverse of the elasticity of marginal utility (or the intertemporal elasticity

of substitution). Combining ẋ = x̃′(D)Ḋ = x̃′(D)[(r + h(D))D − x̃(D)] and

(C.10) gives

x̃′(D) = σ(x̃(D))(1− x̃(D))
ρ− r − ψ(D)

(r + h(D))D − x̃(D)
. (C.12)

Note that ẋ = x̃′(D)Ḋ and (C.10) imply that the sign of x̃′(D) equals the sign

of [ρ− r−ψ(D)]/Ḋ. When D(0) < D̂, both ρ− r−ψ(D) and Ḋ are positive,
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and when D(0) > D̂ they are both negative. Thus, x̃′(D) > 0 at D values

near D̂ and (using the continuity of x̃′(D)) x′(D̂) ≥ 0.

To obtain x̃′(D̂), l’Hôpital’s rule is applied to express (C.12) as

x̃′(D̂) = σ(x̂)(1− x̂)
ψ′(D̂)

x̃′(D̂)− ρ

or

x̃′(D̂)[x̃′(D̂)− ρ] = σ(x̂)(1− x̂)ψ′(D̂) , (C.13)

where use has been made of r + h(D̂) + h′(D̂)D̂ = r + ψ(D̂) = ρ and x̃(D̂) =

x̂ = (r + h(D̂))D̂. When D̂ < D̄, the right-hand side of (C.13) is positive

(since 1− x̂ > 0), implying that x̃′(D̂)− ρ > 0. When D̂ = D̄, the right-hand

side of (C.13) vanishes (since 1 − x̂ = 0), implying that either x̃′(D̂) = 0 or

x̃′(D̂)− ρ = 0. The former case is ruled out since it implies (by continuity of

x̃′(D)) that X̃ ′(D)− ρ is negative at D values near D̂, which in turn (noting

(C.13)) implies that X̃ ′(D) is negative at D values near D̂, contradicting

x′(D̂) ≥ 0 (found above). I conclude that x̃′(D̂)− ρ = 0 when D̂ = D̄.

D Proof of Proposition 3

Proof. (i) The budget problem entails finding {x(t) ≤ 1, t ≥ 0} that maxi-

mizes (4.10) subject to (4.5) and d(t) ∈ [d, d̄), given d(0) ∈ [d, d̄). This is an

infinite-horizon, autonomous problem with a bounded state, thus, according

to Property 1(i), the optimal state trajectory d∗(t) converges monotonically

to a steady state in [d, d̄]. I show that this steady state equals d̂, defined in

(4.12). With d and x corresponding, respectively, to Q and q of Property 1,

the functions u(1− x) and [rg − g + h(d)]d− x corresponding, respectively, to
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f(Q, q) and g(Q, q) of Property 1, and the discount rate ρ+ (η− 1)g, the L(·)

function corresponding to the budget problem is

u′(1− (rg − g + h(d))d)(ρ+ ηg − rg − ψ(d)).

Since u′(1− (rg − g + h(d))d) > 0 for all d ∈ [d, d̄], Property 1 can be applied

with

L(d) = ρ+ ηg − rg − ψ(d).

Suppose ρ < rg − ηg. Then, L(d) < 0 for all d ∈ [d, d̄] and equation (A.2)

implies that the optimal steady state is d̂ = d , in agreement with (4.12).

Suppose ρ = rg − ηg. Then, since L(·) is decreasing and negative over

(0, d̄], the steady state cannot fall in this interval (otherwise (A.2) is violated),

leaving [d, 0] as the interval of feasible steady states. Thus, if d(0) ≤ 0, it is

known from the outset that d∗(t) will remain in the interval [d, 0], over which

h(d) vanishes. The problem, then, reduces to a riskless problem (with a zero

risk premium) and the proof of Proposition 1(iii) can be repeated (with the

obvious modifications) to show that d̂ = d(0) and the steady state is entered

instantly. If d(0) > 0, then d∗(t) must decrease monotonically in order to

exit the interval (0, d̄] (which does not contain the steady state), eventually

reaching zero. As soon as a zero debt is reached, the above argument implies

that the steady state has been entered.

Suppose rg − ηg < ρ ≤ rg − ηg + ψ(d̄). Since L(d) = ρ− (rg − ηg) > 0 for

d ∈ [d, 0], Property 1(ii) rules out the possibility that the optimal steady state

falls in [d, 0]. Thus, the monotonicity property ensures that d∗(t) enters [0, d̄]

(which happens instantly if d(0) > 0) and remains in this interval. Applying
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Property 1 to the budget Problem with the state d restricted to lie in [0, d̄]

gives d̂ = L−1(0) = ψ−1(ρ − rg + ηg) . (Notice that ψ−1(ρ − rg + ηg) ∈ (0, d̄]

when 0 < ρ− rg + ηg ≤ ψ(d̄).)

When ρ > r − ηg + ψ(d̄), L(d) > 0 for all feasible d values and equation

(A.2) implies that the optimal steady state falls at the upper bound, i.e., d̂ = d̄.

This completes the proof of (i).

With obvious modifications, the proofs of (ii)−(v) proceed along the same

steps as the proofs of Proposition 2(ii)− (v) and are therefore omitted.
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