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The Stochastic Coefficients Approach to Econometric Modeling, 
Part III: Estimation, Stability Testing, and Prediction 

P.A.V.B. Swamy, Roger K. Conway, and Michael R. LeBlanc 

Abstract In th<s final artICle of our three-part senes, 
we demonstrate why stochastIC coeffiCients models are 
well suited to predict future vanables We analyze the 
forecasting problem and conSider varIOus crltena of 
predictIOn If a forecaster must choose one from among 
several coherent predictors, then the choice should be 
the one with the best track record Decomposing the 
forecast error shows that stochastic coeffiCients models 
can cover more posslble sources ofpred"ctwn error and 
correct for them The empirical record shows that 
stochastic coeffiCients models can substantially reduce 
out-of-sample forecast errors more than fIXed coeffi
cients models Our assessment of coefficient stability 
tests lS they are contradtctory, mtslead"ng, and 
wlthout empzncal value 

Keywords. Stochastic coeffiCients, fixed coeffiCients, 
conditIOnal expectatIOn, BayeSian Inference, coherence, 
estimatIOn, predictIOn, stability tests 

Editor's note Part I A Critique of FIXed Coeffi
Cients Models appeared m Vol 40,'No 2, Sprmg 
1988 Part Il DescnptlOn and MotwatlOn appeared 
In Vol 40, No 3, Summer 1988 

StochastIC coeffiCIents models are Ideally swted to the 
problem of predicting future values of varIables We 
say Ideally because such models cover almost all 
pOSSIble sources of predIction errors and Introduce 
SUItable correctIOns for each error We also show that 
eIther parameter estimatIOn or testing of hypotheses 
about parameters IS a "halfway house" on the road to 
predicting future observatIOns 

If the objective of estImatIOn IS forecast accuracy, 
then one should attempt to find an estimatIOn pro
ced ure that YIelds predictIOns as close to actual 
realIzatIOns as pOSSIble One should select the predIC
tor that has the highest probabilIty of taking values 

Swamy IS a senior economist With the Board of Governors, Federal 
Reserve System, and adjunct professor of economics at The George 
Washwgton UnIversity (Washington, DC), and Conway and 
LeBlanc are agrIcultural economists With the Resources and 
Technology DIVISion, ERS The authors received valuable com
ments and help from James Barth, Charlie Hallahan, Arthur 
Havenner, Torn Lutton, Ron Mlttelhammer, Peter von zur 
Muehlen, Nadine Loften, and Douglas McManus 

close to actual realIzatIOns 1 It IS ImpOSSible to denve 
predIctors based on th!s general crtterlOn A neces
sary condItIOn, however, for a predictor to take values 
close to actual reaitzatIOns WIth the hIghest probablhty 
IS that the mean square error (that IS, the predictor's 
expected squared deVIatIOn from the actual realIza
tIon) IS a minImum 

Pred,ctors With Uniformly minimum mean square 
error typically do not eXist, a dIfficulty that can be 
aVOIded by replaCing the criterion of minimum mean 
square error With the cntenon of mInimum average 
mean square error 

The latter crltenon selects a predictor If Its expected 
squared deViatIOn from a vanable IS a minimum 
MInImum ave.rage mean square error predictors take 
the form of condItIOnal expectatIOns, which can be 
evaluated exactly If theIT true functIOnal forms are 
known and If they do not depend on unknown param 
eters SurfaCing are problems In whIch the functIOnal 
forms assumed for condl tlOnal expectatIOns may not 
COinCide With their true functIOnal forms, and the 
errors of the esttmates of the unknown parameters 
appearing In the assumed fWlctIOnal forms substan
tIally affect the accuracy With which the desITed 
val ues can be predIcted 

Our approach, then, IS to use stochastic coeffiCIents 
models to speCify conditIOnal expectatIOns The 
motl ve for Introducnig stochastic coeffiCients models 
IS the hope that such models can approximate true 
models better than fixed coeffiCIents models Th,s 
hope IS not Without a methodolOgIcal baSIS If a func
tional form assumed for a condlttonal expectatIOn IS 
true, then It IS approprtate to adopt the crIterIOn of 
mInImum vanance unblasedness for parameter estI
matton Th,S cnteflon can sattsfy a necessary condI
tIOn for maximizing the' probabIlIty that a predictor 
can generate predictIOns that are close to the true 
condItIOnal expectatIOn However, there sttll remains 
the problem of recognlzmg an operatIOnal unbIased 
predIctor With mlfll'mUm average mean square error 

lHere, we use the term "predJctors" to refer to a random variable's 
real valued measurable functIOns that are used to predJct the future 
values of the random vanable The term "predIctlOns" refers to the 
values taken by these predIctors We use the term "estimatOrs" to refer 
to the real-valued measurable functIOns of random vanables which are 
used to guess the unknown true value of a flxed parameter 
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(51)' Consequently, we may follow de Fmettl's sugges
tlOn,that the comiItJon of,coherence IS the only mlJUmum 
reqwred condItIOn one should Impose on predIctors 

The denvatlOn of coherent predIctIOns IS no easy task 
For example, Lane and Sudderth's method of derlvmg 
coherent predIctIOns IS dIfficult to use because we must 
specIfy a finitely additive probabilIty dIstributIOn (32) 
We may find a Bayesian procedure which gives coher
ent predlctlOna, however, to approximate our opmlOna 
via a probablhty denSity function (pdf) Even this pro
cedure may be complIcated because the specificatIOn of 
a consistent set of pnor probabilIties of models and the 
prIOr pdfs for theIr parameters reqUIre a demandIng 
exerCise m self-mterrogatlOn A Bayes procedure based 
on prIOr probabilIties and prIOr pdfs can produce bet
ter forecasts than a non-Bayesian procedure m some 
cases But, expressmg our opmlOns about models and 
theIr parameters In the fonn of pnor probabilIties and 
pdfs, respectively, and checkmg theIr conalstency, 
are very dllficult tasks The difficulty of checkmg the 
logical valIdity of models IS, of course, common to 
both BayeSian and non-Bayesian methods 

We can apply exact or approximate BayeSian and 
non-Bayesian methods to generate predICtIOns under 
some assumptIOns about the data-generatmg process 
By dlvldmg avaIlable data mto fittmg and forecast 
samples, we can use part of the data to generate 
predictions for the rest of the data, comparmg these 
predIctIOns With the realIzed values The result of 
these comparIsons can gwde the chOIce of models m 
other SituatIOns that share common features With the 
envIronment, resultmg In the data used In the com
parisons Our experience With such comparisons sug
gests that tIme-varymg and stochastiC modelmg of 
regreSSIOn slopes may contribute to lIDproved fore
casts These forecasts become useful m analyzmg 
Sources of so-called coeffiCient mstab,lIty, predlctmg 
uncertamty that may arise m conventIOnal models 

The Forecasting Problem' 

We are concerned WIth the followmg predIctIOn prob
lem we want to predIct the value YT+, that would be •taken by a varIable y, m SOme future perIod s after T, 
where T IS the termmal perIod of the currently

•available sample observations on y, We WIll make 
thiS predictIOn havmg T+s observatIOns up to time 
T+s on a vector "t•of K variables that are related to 
another variable Y,• and also havmg T observatIOns 
on y,•up to time T' 

2Itahclzed numbers In parentheses cite sources hsted In the 
References at the end of thiS article 

3Several sections In thiS article are based on (51) 
4We distinguish a random variable from Its value by an asterIsk 

For example, Yt 18 the value taken by the random vanable Y; In 

penod t 

FormalIzmg thIS pomt predIction problem mvol ves a 
•random vanable Yt takIng on values In a sample 

space, accordmg to a distrIbutIOn which IS assumed to 
belong to a famIly The currently available sample 
observations y = (y I' Y2, ,YT)' on y' = (y,~,
•• WY2, , yTl' constitute the data e may also• have

•observatIOns on varIables WIth the symbol x, = (Xll' 
X;tl ,X~t)1 The observatIons XLI t = 1,2, ,T+s, 
on these varIables are also part of the data when the 
d,strIbut,on of y,•IS determmed by ItS own past values 
and by current and past values of x,• 

The problem IS the determinatIOn of a SUItable predIc-
A ' 

tor, that IS, a real-valued functIOn YT+, defined over 
the sample space, of whIch It IS hoped that YTH(YA .',.' x ) WIll tend to be close to the unknown value YT+, 
The value 9T+s(Y', x') taken on by 9T+s(Y* I, x·') for the 
observed value (y', x')' of(y*', x* ')' 18 then the forecast 
of YT+" which Will be our educated guess for the 
unknown value We say that a predIctor IS operatIOnal 
If It does not Illvolve any unobservable quantItIes 

A best predictor PT+. should be suffiCiently close to 
the actual realIzatIOn YT+. and because ~T+. IS a ran
dom variable, the value YT+. IS covered by an mterval 

A
of values WhICh YT+. takes With a hIgh probabilIty To 
make th,S reqUIrement preCIse, we specify four meas
ures of closeness of (or dIstance from) a predIctor to YT+, 

Criteria of Prediction 
Swamy and Schmasl extend well-known CrIterIa used 
m pomt estImatIOn to the problem of POlllt predictIOn 
as follows (51) 

(a) CnterlOn of h'ghest concentrat'on A predIctor 
PT+. of the actual value YTH IS better than any other 
predIctor YT+, when 

A 
pr(yT+, - Al < YT+, < YT+. + A2) '" 

pr(yT+. - Al <Y T+. < YT.. + A2), (1) 


for all pOSSible values of Al and A2 m a chosen mterval 
(0, A) and for all pOSSible realIzatIOns YTH Here, pr 
denotes "probabilIty" 

(b) Mw'mum mean square error Swamy and 
Sehmasl show that a necessary conditIOn to satIsfy 
CrIterIOn 1 for all A and for all YT+. IS 

E<PTH - YT+,)' :5 EcY T+. - YT+,)', (2) 

With the InequalIty belllg stnct on a set of a positive 
Lebesgue measure, that IS, the mean square error of 
9T+s about the actual reahzatIOn YT+s 18 a mInImum 

(c) PUman's nearness (PN) A predIctor PTHIS nearer 
to the value YT+, than another predIctor YT+, when 

5 



where the loss functIOn, L<.9T+" YT+o)' represents the 
consequences of predlctIng YT+s by a value of 9T+s 

Swamy and Schmasl state two sets of suffiCIent condI
tIons for a predIctor to be nearer to YT+s than another 
predIctor m the PN sense 

~d) MinImum average mean square error A predIctor 
YT+, IS called the mmlmum "average mean square 
error" predIctor If It mInImIzes 

(4) 

Ifwe WIsh to preruct YT+o from a Borel measurable func
tIOn tty», say, ofy>, then among all such functIOns ofy> 
wIth fillite second moment, that wruch lTIlrumIZes the 

A average mean square ~r 4 WIth YT+, = tty» IS the con
rutIOnal expectatIon of YT+" gwen y> = y, denoted by 5 

f\y) = *E(YT+, Iy) (5) 

When ~T+o = E(y;+s Iy), the average mean square 
error 4 reduces to the average condItIOnal varIance of 
* YT+SJ gIven Y 

Criteria (a), (b), and (c) are based on dIstances from 
predIctors to actual reahzatlOns, whIle crIterion (d) IS 
based on dIstances from predIctors to y;+, , whIch IS a 
random variable In the defirutton of criteria (b) and 
(d), attentIOn has been Imphcltiy restrIcted to predIc
tors wIth fimte varIance, because otherwIse the prob
lem of mmlmlzmg the (average) mean square errOl 
does not arIse PredIctors with Infimte variance 
VIOlate the necessary condItIOn 21and so they cannot 
satIsfy the CrItenon of hIghest concentratIOn 
(criterIOn 1) In fact, predIctors satlsfymg eIther the 
crIterIOn of hIghest concentratIOn or the CrIterion of 
mmlmum mean square error (crIterion 2) do not gen
erally eXIst For thIS reason, the mmlmum average 
mean square error crIteriOn 4 IS the one used exten
SIvely In the econometrIc hterature However, minI
mum average mean square error predIctors some
tImes have mflmte mean square error For example, 
the forecast YT+B-1 18 a mInImum average mean 

> square error forecast If y t follows a random walk 
'" * * *'Yt =Yt-I + at, t = 0, ± 1, ± 2, , where at IS a whIte 

nOIse error term WIth zero mean For thIS orocess* ~ ,
E(YT+, IYT+,-tl = YT+s-I, and E(YT+'-I - YT+,)' IS 
fimte when VIewed as the average condItIonal varl

> ance OfYT+al gIven YT+s-I, and IS Infirute when VIewed 
as an unconditIonal mean square error of Y;+s about 
YT+,-I The rustmctlOn between crltena (b) and (d) IS 
not clearly explaIned m the econometric hterature 

6See (36, P 264) for B proof of thIS statement 

CriterIOn (c) IS dtfIerent from criterIa (b) and (d) m 
that attentIOn IS also gIVen to predIctors With Infimte 
variance Keatmg and Mason give examples of 
predIctors that are good In the PN sense (27, 28) 

The result expressed In equatIOn 5 IS theoretICally Im
portant but has httie practical use unless one knows 
the ~rue functIOnal form of the conditIOnal expectation 
of YTH' given Y A conditIOnal expectatIOn that does 
not eXIst, however, could not have generated our 
data Conditions for the eXIstence of, varIOUS forms of 
condItional expectatIOns are dtfIerent (52) One usually 
cannot verIfy the truth of these conditions, and the 
best one can do IS to argue (from coherent economic 
theOrIes, for example) that m many cases one would'" *, ,. ,
expect (YT+" Y ) to follow a distrIbutIOn wnlch 
Imphes the eXIstence of the conditIOnal expectatIOn 
(equatIOn 5) of partICular form (49)' The first step m 
any statIstIcal method of generatmg predIctIOns IS to 
formulate a statIstICal model about the data-generatmg 
process The distributIOn Imphed by thiS model IS the'" "', ,one assumed for (YT+9. Y ) 

'" *, IIf the vector (YT+" Y ) 19 Jomtly normal, then the 
condItIonal expectation In equatIOn 5 can be ex
pressed as 

E(y* I * * *' *T+, y) = EYT+, +COv(yTH' Y ) [var(y )]
(y - Ey*), (6) 

h '" Y ) ~E(YTH'" - EYT+,)(Y'" '" - Ey* ),' were COV(YT+" *, 
and [var(y*)]- IS any generahzed mverse of the 
covarIance matrIX of Y • (36, p 522) These varIances 
and covarIances may be time dependent If the variable

'" *, I(YT+s, y ) IS nonstatlOnary 

ConditIons other than normahty may also be used to 
derIve the predictor, equatIon 6, With the mmlmum 
average mean square error property SpeCifically, 
ChIpman (6, pp 603-5) proved that the predIctor 
(equatIOn 6) has the mintmum average mean· square 
error WithIn the class of lmear (affine) predictors of 

'" *, ,YT+, whenever (YT+" Y ) IS not normal but possesses 
fillite second-order moments So, one may be tempted 
to cOnJecture that only normal distrIbutIOns give 
hnear predIctors WIth the mmlmum average mean 
square error property m lmear regreSSIOn While thiS 
conjecture IS not true Without further conditIOns, It IS 
true for most practical purposes, as rIgorously proved 
by Gael and DeGroot (I9, p 899) and Rao (38) 

6Unhke Incoherent theones, coherent theOries whose premises 
are not contradiCtory can be true The mtwtlvely appealmg con
cept of eVIdence statmg that under no hypotheSIS, H. shall there be 
a high probablhty of outcomes bemg Interpreted as strong eVidence 
agathst H IS useless unless our hypotheses are grounded In 

coherent economic theOries 
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* *' ,Where the mean vector, E(YTH' Y ), IS unknown 
(whIch seems usual) and the covarIance matrIX of

'" *, ,(YTh' Y ) IS known (whIch seems unusual), 
Goldberger, Swamy and Mehta, and HarvIlle have 
mInImIzed cntenon 4, subject to the restnctlOn that 
the predIctor "YT", IS equal to the homogeneous lInear , . 
functIon, c y , where c IS a Tx 1 vector of constants, 
and to the unbIased ness restnctlOn that EhH IS

•equal to the mean assumed for YT+, (20, 23,.47) 7 The 
predIctor that comes out of th,s constraIned mIn
ImIZatIOn procedure IS called the minImum VarIance 
hnear (homogeneous) ffunblased" predictor, and It.IS 
the same as the predIctor expressed In equatIOn 6 
wIth EYT", and Ey replaced by theIr respectIve 
mInImum varIance lInear (homogeneous) unbIased 
estImators The mInImum varIance lInear 
",unbIased" pred,ctor of YTH WIll cOIncIde WIth the 
minImum varIance "unbIased" predIctor of YT+s In 
the normal case but not WIth the condltlOnaJ expecta
tIOn In equatIOn 5, even In thiS case 

Swamy and SchInasl show that the cntenon of 
minImum vanance unblasedness satisfies a neces 
sary condItIon for maxImIzIng the probabIlIty that a 
predIctor generates predICtIOns close to ItS expected 
value (51) No guarantee provIdes that actual realIza
tIOns wIll be close to th,s expected value The expected 
value of the mInImUm Vallance hnear "unbiased" 
predIctor of YTH WIll not cOIncIde WIth the true ex

•pected value of YT" If the unblasedness restnctlOn IS 
erroneous 8 ImpOSing erroneous unblasedness restrIC
tIOns may have the undeSIrable consequence of 
YIeldIng hIghly Inaccurate forecasts 

Cond,tIOns 1 and 2 logICally lead to the cntenon of 
minImum mean square error In satisfYIng a neces
sary condItIon fOl maXImIZIng the probabIlIty WIth 
whICh a predIctor takes values close to actual realIza
tIons If cond,tIOn 2 IS true, then It follows that for at

•least one value ofYT+, the InequalIty l,s true but not•necessanly for all possIble values of YT+~ (36, p 96) 
Th,s result shows that a predIctor,

-
YT+" whIch,

mInImIZes the mean square error, E<YT+s - YT+sf, for 
*all values of YTH IS useful If It satIsfies the InequalIty

•1 for those values of YTH whIch actually occur U n
fortunately, such a predIctor does not eXIst, as shown 
In the statIstIcs lIterature (34, p 5) Nevertheless, 
comparIng 2 WIth 4 shows that the condItIonal expec
tatIon of YT+" gIven a realIzatIOn of Y , nearly 

7IhiS unbl8sedness restrictIon ensures th8~ both the distributIOn 
of YT+.s and the distribution assumed for YT+& are loc8te~ at the 
same value so that their Varl8nCxS are comparable It dIffers from 
the unbl8sedness defimtlOn E,,(O) = 0 for all Ote, where 8 IS an 
estImator of the fixed parameter 0 and a IS ~he parameter space 

8The unbl8sedness restrictIOn, EYT+B = E1T+B' IS erroneous If the 
assumed functional form for the mean of YT-'-B IS dIfferent from the 
true form 

satIsfies cond,tIOn 2 If the true cond,tIOnal dlstnbu
•tlOn OfYTH' gIVen Y • = y, IS suffiCIently tIght around 

ItS mean value Therefore, a necessary cond,tIOn for 
obtaInIng accurate forecasts IS that we speCIfy and 
evaluate accurately the true condItIonal expectatIOn •of YT+" gIven Y • = Y Perhaps, we can better satIsfy 
th,s necessary cond,tIOn If we work WIth stochastIC 
coeffiCIents models rather than fixed coeffiCIents 
models AgaIn, any rIgorous denvatlOn of an 
econometr:c model USIng probabIlIty calculus 
naturally leads to a stochastIC coeffiCIents model 
unless severe restnctIOns are Imposed on derIvatIOn 
True models are better approxImated by stochastIC 
coeffiCIents models than by fixed coeffiCIents models, 
partIcularly when the premIses of the latter are 
contradIctory 

If we are Interested In satIsfYIng cond,tIOn 2, why do 
we need cond,tIOn 3' Our Interest In the CrItenon of 
PN IS JustIfied by the follOWIng observatIOns 

• 	 PN IS an IntrInSIC measure of acceptabIlIty (27) 

• 	 SuffiCIent cond,tIOns can be found for satIsfYIng 
the CrIterIon of PN, whereas only a necessary 
cond,tIOn can be found for satIsfYIng the 
cntenon of hIghest concentratIOn 1 

• 	 KeatIng and Mason's results demonstrate that 
neIther mean square error nor PN should reIgn 
exclUSIvely In the comparIson of estImators (27) 

Fixed and Time-Varying 
Coefficients Approaches 

The true functIOnal form of equatIon 5 IS unknown, so 
a functIonal form for equabon 5 must be assumed 
The usual practIce among econometnclans IS to 
presume that for every t, yi follows the reduced-form 
model -, 

), (7) 

WIth fixed coeffiCIents so that the mInImum average 
mean square error lInear predIctor of YTH IS 

XT+s1r + W'V-l(y - X1r), (8) 
<1' 

'" '" * '" I 'where EYT+s = XT+s1r, Ey = X1r, COV(YT+s, Y ) = w'. " ' and var(y ) = <1'V are ImplIed by the assumptIOns 
underlYIng model (7) WIth fixed Xl Th,s pred!ctor has 
the mInImum varIance WIthIn the class of lInear "un
bIased" predIctors ofYT+" If" In both the terms of the 
predIctor 8 IS replaced by 71 = (X'V-'X)-l X'V-'y' 
Several forms ofw and V are gIven In (25, chaps 8 and 
11) For SUItable defimtlOns ofx'h, and X, the predICtor 
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8 also represents the mInImum average mean square 
error hnear predIctor of an element of a vector 
vanable folloWIng a vector autoregressIve (VAR) 
model If equatIOn 7 represents a UnIvanate auto
regressIve model, then X conSIsts of lagged y's, and W 
can be equal to 0 The vector W can be zero If equatIOn 
7 represents a regressIOn-model wIth a serIally unCQl
related error term 

The predIctor 8 WIll not gIVe accurate forecasts In the 
case where the slopes of th~ functIOn 7 change over 
tIme The follOWIng model, developed In (48) may be 
approprIate 

y; = xtnZt + XtJ~t (t = 0, ±1, ±2, (9) 

(For an explanatIOn of these symbols, see (54, part II» 

When thIS model IS approprIate, the mInimUm 
average,mean square error lInear predIctor OfYT+s IS 

xh.(zh.®!) vec(n) + 
x++.J4>"L:h{I®·J?n,;~(y - D,Z.vec(n», (10) 

where the first term equals Ey;+, , Ey' = D,Z.vec (n» 
* *, , B *' cov (YT+" Y ) = XT+,J4> L:h{I® J')D~, and var(y ) 

= L:y are Imphed by the assumptIOns underlYIng model 
9 WIth "fixed" Xt and Zt (54, p 27) Tlus predIctor be 
comes the ffilnIffiUm varIance lmear ~'unblased" predlc
tor ofYT+, Ifvec(fI) 11)..both the terms of the predictor 10 
IS replaced by vec(m = (Z~D~L:y'D,Z.)-t Z~D~L:y-ly' 
whenever Ey IS nonslngular 

The model In 9 plovldes a useful approach for the 

decomposItIOn of forecast error sources PartItIOn 

several of the vectors of 9 as follows 


Model 9 may then be expressed as the sum of terms 
SImIlar to model 7 and add,tIOnal terms Involvmg X2t 
and Z2t. 

(12) 

An estImated versIOn of the fixed coeffiCients, model 7 
Imphes a forecast of y m some future perIOd s after T, 
gIven by YT+e, 

(13) 

A, A dAdh ET+s are some estImators or pre ICwere xT+s7r an 
tors of the fzrst and second terms on the nght-hand 
SIde of the predIctor 8 

The forecast error (the dIfference between the predlc
,\ dtor, YT+s' an the future reahzBtlOn, YT+s) that arises 

from usmg a fixed coeffiCIents model when model 12 
IS true, may he decomposed as 

9T+s - YT+s = ~T+S<~ - 11"1) 

+ (~T+s - XT+s)7rI + (~T+s - Ji~T+s) 
- XT+sn2Z2T+s - X2T+sJ 2ET+s, (14) 

whIch, m order 0'( appearance, IS the sum of (1) a 
Imear combInation of the samphng errors of the coef
fiCIent estImates, (2) a hnear combmatIOn of the 
errors m predlctmg future values of the Independent 
varIables, (3) the error In predlctmg stochastIC shIfts 
In the mtercept, (4) the faIlure to predIct deter
mInIstic shIfts m regreSSIOn Intercept and slopes, and 
(5) the faIlure to predIct stochastIC shIfts m regreSSIOn 
slopes Except for (2), all these forecast error sources 
are accounted for when equatIOn 9 IS used Observe 
that an accountIng of forecast error sources based on 
an estImate of equatIOn 7 IS hm)ted to (1) and (3) The 
remaInIng error sources cannot be dIagnosed usmg 
fixed CoeffiCIents models The error resultmg from (2) 
IS, of course, beyond the reach of any of the equatIOns 
7 and 9, because It orIginates from errors In fore
castmg exogenous events and/or comes from observa
tIon, samphng, and measurement defiCIenCIes 

One persIstent problem In apphed economIC forecast
Ing has been the recurrence of forecast drIfts causmg 
selected model equatIons to drIft away from later hIS
tOrIcal reahzatlons The conventIOnal add-factorIng of 
Intercepts has not always proved satisfactory, espe
CIally m cases of suspected nonstatIOn.ry regreSSIOn 
slopes We have shown that one role of the Z2 
varIables In equatIon 12 IS to account for sources of 
coeffiCIent nonstatIonarItIes Equation 12 accounts 
for movements In coeffiCIents that are caused by 
movements m certain observable varIables suggested 
by theoretIcal consIderatIons but neglected In equa 
tIon 7 In d18gnostIc terms, If the Z2 varIables are 
ehmInated, then forecast error interpretatIOns are 
hmlted because forecast errors cannot be based on 
errors In predlctmg determInIstic shIfts In regreSSIOn 
slopes (see equatIOn 14) EquatIOn 12 IS useful for 
dlstmgJIlshlng between errors arl~Ing from mtercept 
Instablhty, amenable to add-factor solutIOns, and 
errors arlsmg from other sources 

The hst of potential sources of errors m equatIOn 141s 
exhaustIve Although add-factormg (the JudgJnental 
adjustment of Intercepts to reahgn errant equatIOns 
to fit current data) has been useful, the exclUSIve 
focus on Intercept Instablhty, that IS <h+, - J{h+,), 
by add-factorIng may mean that Important sources of 
forecast error remaIn unaccounted for An econometrIC 
methodology WIth billlt-m features for measurmg all 
coeffiCIents varIatIOn, as In equatIOn 9, however, 
could feaSIbly lend Itself to bemg used as a dIagnostIc 
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tool for ascertammg all sources of equatIOn mstablhty, 
xh, (I1zz2T+, + Jh.,) An estImate of equatIOn 9 
would YIeld an allocatIOn ofthe total uncertamty over 
all components of an equatIOn, as shown m equatIOn 
12, permlttmg qwck mvestlgatIOn of the hkely 
sources of future equatIOn volatlhty 

If alternatIve pohcy regImes have parametnc Imphca
tlOns for the'behavlOr of the economy, as suggested by 
the so-called Lucas crItIque, a tlme-varymg stochastIc 
coefficIents approach may provIde a means for an 
tlclpatlng consequences XT+sn2~T+'> of alternatIve 
conjectured pohcy assumptIOns, not avaIlable WIth 
conventIOnal fLXed coeffiCIents technIques, whenever 
the ZZt elements mclude observable polIcy vanables 

WIthout a doubt, equatIon 7 IS sImpler to work WIth 
than model 9 because the second and fourth terms ap
pearmg on the nght-hand SIde of equatIOn 12 are 
Ignored m equatIOn 7 Even though mcludmg these 
terms comphcates our models and possIbly makes our 
parameter estImates ImprecIse and nonunIque, we 
have no chOIce except to mclude them If mociel 7 does 
not gIve useful forecasts No logIcal pnnclple war
rants excludmg these terms because no one knows for 
sure that these terms are absent from the true model 
We later show why the predIctIOn prmclple advocated 
by Zellner (61, p 32) and others cannot conclUSIvely 
reject equatIOn 9 m favor of equatIOn 7 

Estimation Procedures 

The predIctors 8 and 10 are not operatIOnal because 
they Involve unknown parameters To obtaIn comput
able forecasts, we need the estImates of these param 
eters The vector". or vec(TI), If fixed, can be estImated 
by one 01 more of the follOWIng procedures 

• 	 The least squares procedure, 

• 	 The generahzed least squares procedure based 
on an estimated error covanance matnx,9 

• 	 A fully or partIally restrIcted reduced-form pro
cedure that fully or partIally accounts for the 
connectIOn between ". and the coeffiCIents of a 
structural model, 

• 	 A Bayes procedure, 

• 	 ShrInkage estImators, and 

• 	 Robust procedures 

9Swamy and Tinsley's estImate of the error covariance matrIX fOl 
model 9 may be smgular (48), In which case Paige's numerically 
stable and effiCient algOrithm based on matrIX decompoSitions 
should be used for estImatmg model 9 (31) 

The correspondIng methods of estlmatmg w, V,u', and 
the variances and Cov8rtanCes In equatIOn 10 are also 
avaIlable Several methods of estImatIng w, V, andu' 
are swnmanzed In (25) and a method of estImatIng van
ances and covarlances m equatIOn 10 appears III (48) 10 

Swamy and SchInasl show that, If all the unknown 
parameters In equatIOns 8 and 10 are replaced by 
theIr respectIve sample estImates, then we cannot In 
pi acbce recognize an operatIOnal "unbiased" prediC
tor WIth minimum variance In small sam'ples (51) 
They also show that a unIversally preferred chOIce 
among dIfferent estImatIOn procedures for equatIOns 
7 and 9 IS not pOSSIble based on eIther the exact finIte 
sample dlstnbutIOn theory or the asymptotIc theory 

Akaike's Information Criterion 

Akalke has dellved flom mformatIOn-theoretlcal con
sIderatIOns a probablhty denSIty functIon (pdD whIch 
may be expected to approxImate the true pdf for a 
vanable (1, 2) The cntenon he has used to find thiS 
apprOXImatIOn IS 

r pry) [ p(y) J (15)B(p, g) = - J -- log -- g(y)dy,
g(y) g(y) 

where pry) IS the true pdf for a varIable y*,g(y) IS an 
approxImatIOn to pry), and the IntegratIOn IS over the 
entue range of y * Clearly, thIS CrItenon can be Wllt
ten as 

B(p, g) = Elogg(y) - Elogp(y) ,; 0, (16) 

where the expectatIOn IS WIth respect to the tl ue 
dIstrIbutIOn of y* 

Because the quantIty on the rIght-hand SIde of equa
tIon 16 IS nonposltIve, when l-~ [pry) - g(y)]dy ;,: 0, as 
shown by Rao (36, p 59), the greater the value of 
Elogg(y) IS, the closer the pdfg(y) IS to the true pd(p(y) 
In the sense of B(p, g) However, the statement that 
the unknown true pdf, pry), can be well approxImated 
by g(y) If and only If g(y) maxImIzes Elogg(y) IS useless 
as It stands DeCIdIng whether the condItIon IS 01 IS 
not satIsfIed or takIng the expectatIOn of logg(y) WIth 
respect to pry) IS ImpOSSIble WIthout knowInj the 
famIly of pdfs whIch covers the true pdf for y as a 
speCIal case The maxImum hkehlIOod method IS ap 
phed to a famIly of pdfs for thIS reason, whIch 

IOSwamy and TInsley's (48) met.hod of estImating variances and 
covarlances extends Swamy's earlier work (45,46),' which does can 
slderably more than Chow's (7, P 340, 8, P 1,237) perfunctory 
descriptIOn of It. as a "survey" Reinsel (1982, 1984) also presents 
estimators and predlctm - (39, 40) He, however, baSically repeats 
the results recorded earlier In the above papers (47) 
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presumably covers the true pdf as a special case The 
stnct mequallty m equatIOn 16 IS an Important step 
m provmg the consistency of maximum lIkelIhood 
estimators (29, p 891) The only explIcit statements 
about the mterpretatlOn of a pdf lIke pry) m crltenon 
15 that we have found are m the applIcatIOns of 
cntenon 15, where pry) IS thought of as the pdf of the 
unknown true dlstnbutlOn Does thiS mean that dls
tnbutlOns which do not possess pdfs cannot be true? 
A smgular normal dlstnbutlOn does not possess a pdf 
except on a subspace Pnor dlstnbutlOns satlsfymg 
Shiller's smoothness restnctlOns do not possess pdfs 
on the entue parameter space (26, 57) 11 Even though 
stable distributIOns have pdfs, these pdfs are 
generally explessed only as mfimte senes, which are 
not easy to work with Any of these distributIOns can 
be true We should not say, then, that pry) m criterion 
15 IS the pdf of the unknown true distributIOn If pry) 
IS restncted a prlOn to belong to a partICular family of 
pdfs, then CrIterion 15 may have the same defects as 
the maximum likelIhood cntenon (53, p 8) For ex
ample, If we assume that pry) belongs to the family of 
pdfs Implied by a mixed autoregressive, movmg 
avelage model of fimte but unknown order, then 
cntenon 15 does not lead to consistent estimates of 
the order unless It IS modified, as m (22) (See (43)) 

Swamy and von zur Muehlen have developed some 
sufficient conditIOns for the exu,tence of different 
familIes of dlstnbutlOns (52) LOgic permits us to say 
only that these families are true If their suffiCient 
conditIOns are true But, no one can determme the 
truth of these suffiCient conditIOns, assummg they 
are coherent Our belIefs about these suffiCient condi
tions may be expressed as subjective probabilIties, 
which may then be transformed consistently mto sub 
Jectlve probablhtles on mdlvldual dlstnbutions (52) 
The defect of criterion 15 IS that It IS unable to take 
l'ntO account'such probablhtles 

A JustificatIOn of criterion 15 rests on the behef that 
the entropy of a distributIOn IS a good measure of 
uncertamty Copas shows thiS behef IS not correct m 
nonnOl mal cases by way of an example where d com
pany IS operatmg under much greater uncertamty m 
one of the two cases, though the entropies of dlstnbu
tlOns m the two cases are exactly the same (15) Copas 
wrote that thiS result anses as a direct consequence 
of the fact that the entropy of a dlstnbutlOn depends 
only on the dlstnbutlOn of the different heights of ItS 
pdf, paYllig no attentIOn to the values of the vanable 
at which these vanous heights are attamed Entropy 
can be, therefore, a very Imperfect measure of statis
tical uncel tamty B(p, g) should not be used as a 

IlThere are appilcatlOns of equatIOn 15, where there IS no men 
lIOn of these pomt 'J 

measure of the distance between g(y) and pry) for thiS 
reason, regal dless of any knowledge of the context 
and restnctlOns It puts on the shape of dlstnbutlOn 
one finds attractive 

A pOSSible alternative reactIOn IS to note that, when 
some conditIOns are satisfied, equ_atlOn 15 prOVides 
useful forecasts A set of such conditIOns IS prOVided 
by Shibata (44) He has proved that If pry) IS deter, 
mmed by an autoregressive process of mfimte order 
and If g(y) IS determmed by an autoregres~lve process 
of fimte order K( <T)(AR(K)), where the order K IS 
selected so as to maximize Elogg(y), or some other 
modificatIOn of Elogg(y), then an asymptotIc lower 
bound IS attamed m the hmlt for the average mean 
square error of an estimated condltlOnal mean of 
AR(K) ThiS result IS a large sample'analog of the e~' 
act fimte sample result that the conditIOnal mean of 
AR(K) IS a mInImum average mean square error 
predictor If AR(K) IS the true model The key assump
tion used by Shibata IS that the order of the auto
regressIOn determmmg the true pdf IS mfimte 
Statisticians who belIeve m the prmclple of par
simony or SimplICity assign to such an a,sumptlOn 
the zero probabilIty of bemg true (See (43)) 

It IS difficult to determme whether or not Shibata's 
demonstratIOn constitutes ,an argument agamst the 
mformatlOn cnterlOn 15, or agamst the prmclple of 
parsimony or SimplICity, or agamst de Fmettl's (16) 
conditIOn offimte additiVity In any case, autoregres
sive models of finite or mfimte order clearly Ignore 
sources (4) and (5) of forecast errors descnbed m equa
tIOn 14 One cannot be sure that these sources are 
absent In any forecastIng sltuatlOn Garcla·Ferrel, 
Highfield, Palm, and Zellner's results showed that 
autoregressive models of order 3 fm annual real out
put growth rates of mne counb les did not generally 
result In lower root mean square forecast errors rela
bve to naive models, so relymg solely on Shibata's 
theoretICal result IS difficult (17) 

Importance of Comparing Different 
Predictors 

Oakes has proved that no umversal algonthm gual
antees accurate forecasts fore vel , so any attempt to 
prescnbe a smgle forecastmg procedure, applIcable to 
all empmcal SituatIOns, must be unsatisfactory (35) 
No agreement of the values taken by a predictor 
(based solely on the data known up to the current 
penod) With the actuals for a fimte past bme perIOd 
could pOSSibly Imply that the values of the predlctol 
would agree With the actuals m the future Past, suc
cess does not guarantee future success Ifwe knew only 
that a predictor had produced accurate forecasts m a 
past penod, we could not guarantee that any futUl e 
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forecasts generated by the' predICtor would be suffi
ciently accurate, because some predictors eXist for 
which the Initial values do not control the future 
values 

For this reason, de Fmettl set up minimal crltena 
that forecasts should be coherent based on data cur
rently available (16) One predictor IS as valid as any 
other, If they all satisfy the ,reqUirements for 
coherence based on what knowleage IS avallable A 
predictor that conforms to probability calculus or does 
not VIOlate any of the probability laws IS coherent 
This means only that de Fmettl's concept of 
coherence prohibits the use of any contradictory 
restrictions or premise that IS mconslstent relative to 
the axioms of probability theory For example, If the 
premises of equatIOn 7 are contradictory, then we can
not obtam coherent forecasts by usmg that model 

If a forecaster must choose one predictor from among 
several coherent ones, a likely chOice would be the 
one With the best track record The forecast can repre
sent, at ';ost, a measure of the confidence with which 
one ,expects that predictor to forecast an event based 
on currently available eVidence, and not based on 
mformatlOn yet to be observed Obtammg useful 
codification of StatiStiCS that Yields a satisfactory 
predictor selector for all people m all settmgs IS 
Impossible Each experimenter must choose among 
variOus coherent predictors by comparmg their past 
forecastmg performance 

A Coherent Approach to Prediction 

We consider a,Bayeslan solutIOn to the problem of find
mg the entire predictive distnbutlOn Jeffreys' book 
(24) IS mamly responsible for the followmg BayeSian 
approach m Zellner's (60, pp 306-17) and Geisel'S (18) 
semmal work on comparmg models Given our behefs 
m the form of a finite set of exhaustive and mutually 
exclUSIve models, M1, M2, , Mn , about the process . 	 * that has generated the values of the variable y ,we 
can compute the marginal probablhty denSity func 
tlOn (pdf) for y * Imphed by the Ith model by 

P(YIM,) = 	 IP(Yl9"M,)p(9,IM,)d9" (17) 

R,, 

where 9, IS the vector of parameters appearing m M" 
p(y 19" M,) IS the conditional pdf for Y,'glven 9, and 
M" p(9, I M,) IS the pnor pdf for 9" and Re, IS the range 
of 9, Let pr(M,) denote the pnor probablhty of M, be
mg true When a particular value of the random 
variable y*, say y, IS observed, we may employ Bayes' 
theorem to revise the prIOr probablhty pr(M,) to 
become the posterIOr probablhty, that IS 

pr(M,)P(y I M,) 

pr(M, I y) ="n----


E pr(M,)p(y 1M,) 

1=1 

pr(M,)P(Y I M,) (I = 1,2, ,n) (18) 
=--- 

ply) 

We may denve the predictive pdf by 

P(YT+. I y) = ~ pr(M, I y)P(YT+, IM" y), (19) 
,~I 

where 

p(n.. IM" y) = I p(YT.. I 9" M,)p(9, I M" y)d9, 

R" 

The denominator of the ratio on the nght-hand Side of 
e~uatlOn 18 IS not equal to the unconditional pdf for 
y unless M I, M2 , , Mn are mutually exclUSive and 
exhaustive We did not VIOlate any probablhty laws 
m derlvmg equatIOn 19 In thiS sense, the predictive 
pdf, equatIOn 19, IS coherent More Important, equa 
tlon 19 glves,a coherent method of pooling the predic
tive pdfs given by different competmg models of the 
same data-generating process, as long as the premises 
of any of these models are not contradictory 

If we use only one model, say M and do not use all 
" *other models to generate the preqlctlve pdf for YTH' 

then we set pr(M, ) = 1 and pr(M,) = 0 for I * 1 For 
these values of pr(M,'), It IS obvIOUS from 19 that 
P(YT.. Iy) = P(YT+. I M y) Formulas 8 and 10 are 

" based on the assumptIOns that, pr(model 7) = 1 and 
pr(model 9) = 1, respectively These assumptIOns are 
false If we view models 7 and 9 as apprOXimatIOns to 
the true model because any approximately true model 
IS neither absolutely true nor absolutely false 
Because we do not know of any models that are 
hterally true, down to the last deCimal POint, some 
analysts feel that all models are false Boland says 
thiS opinIOn IS a self-contradictIOn (5, p 179) We do 
not beheve that self-contradictIOn IS consistent With 
BayeSian coherent behaVIOr If we truly believe that 
all the models M M2 , ,Mn conSidered In e.quatlOn 

"18 are mdeed false, then as coherent Bayeslans, we 
should be saymg that pr(M,) = 0 for I = 1, 2, , n 
OtherWise, we would be contradlctmg ourselves If 
pr(M,) = 0 for I = 1, 2, , n, then formula 18 IS In

determl nate Our models can be true If we satisfy the 
necessary condition of logical vahdlty, although we 
cannot estabhsh their truth status 
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Swamy and von zur Muehlen dIscussed probabIlIstIc 
logIc as a valId tool for sCIentIfic analysIs and mter· 
pretatlOn of causal relatIOnshIps (52) ThIs logIc can 
be used to merely bound (rather than specIfy) priM,), 
If we have some belIefs about the sufficIent condItIOns 
under whIch M, IS true Thus, sCIentIfic belIefs are 
useful m quantlfymg priM,) The pnor pdfs for 0, 
must also be consIstent wIth these belIefs In thIs 
sense, priM,) IS related to !XO, IM,) Because we do not 
know of any model that IS lIterally true, we should 
assIgn posItIve probabIlItIes to more than one lOgIcally 
valId model ThIs assIgnment IS warranted by the fre· 
quent dIsagreement among economIsts as to whIch 
model IS superIOr to address a gIven Issue If any con· 
sensus that Ignores all but one of the opmlOns ex· 
pressed IS not satIsfactory, then It IS reasonable to 
have more than one model WIth a POSItIve probabIlIty 
of bemg true The problem WIth the predIctIve pdf 19 
IS that commg up WIth an exbaustlve and mutually ex· 
cluSlve set of models IS dIfficult The pnor pdrs 
p(O, 1M,), 1 = 1,2, ,n, whIch were selected based on 
conSIderatIOns of mathematIcal convenIence, may not 
be consIstent WIth the values aSSIgned to priM,), 
I = 1,2, ,n, and may not represent anybody's 
behefs If we prefer model 7 to model 9 because the 
BayeSIan analYSIS of model 7 IS SImpler than the 
BayeSIan analYSIS of model 9, then our mferences 
are mcoherent If the premIses of model 7 are 
contradIctory 

Linkage 

Suppose that we have two dIfferent econometnc 
models glvmg two dIfferent predIctIOns of an 
unknown value YT+. We do not know whIch one to 
choose because we do not know wh,ch one of these two 
premctlOns WIll be closer to the actual value YT+o 
Th,s IS not unusual m economIcs We WIll have more 
than two models gIVIng us more than two predICtIOns 
about the same value If these models are not mutually 
exclUSIve and exbaustIve, then we cannot use the 
prevIOusly dIscussed BayeSIan approach However, 
we can use the followmg non·Bayes18n approach 
under certaIn condItions 

Let ~l,T+:p '~m,T+s be the Hunblased" predIctors of 
YT+, gIven by m mfferent econometnc models, and 
assume that we have reason to beheve that the ex· 

A * pected squared devlatI~n OfYI,T+, from Yr+, IS smaller 
than that of any YJ T+, for J = 2, ,m Let 
- (A ~ A d
YTts=Y2,Tf-B,Y3T+sI .YmTts)' an let 
,= (1,1, ,1)' be an (m-1)x1 vector of UnIt 
elements Suppose that PI T+, IS correlated WIth the 
premctor (Y T+o - ,91,T+o) WIth zero expectatIOn· Then 
there eXIsts an (m+1)th predictor whose expected 

*squared dev18tlOn from YT+, IS smaller than that of 
A 
Yl Tts 
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Th,s (m + l)th predictor IS 

J\ ..... ,,_ '" 
Ym+l T+s =Yl,T+s -COV<Yl,Tts. (Y T-t-s - LYI Tts)') 

[var(f T+s - lYl,:r +8 )]-(j T+s - LYI ,Tts), (20) 

where all the vanances and covanances are about 
*YT+o,and for any matrIX A, A-denotes a generalized 

Inverse of A The predIctor 20 results from making 
covarIance adjustment In Yl,T+s WIth respect to the 
concomItant variable ('y T-'-s - tYl Tt-s) WIth zero expec 
tatlOn (37, p 359) 

Howevel, It IS doubtful that. the predictors PI,T+, and 
YT+o given by dIfferent models suffermg from dlf· 
ferer;.,t types of speCificatIOn errors WIll be "unbiased" 
If EYI,T+s *" EYJ,T+s for J = 2, ,m, whIch seems 
lIkely, then the expected squared deViatIOn of (20) 

* ~f10m YTH Will not be smaller ,..than that of y I,T+, 
because the predIctor ('1 T+s - lYl,T+s) WIth nonzelo 
expectatIOn IS not a concomitant variable SUItable fOI 
makIng covanance adjustment In 9\ T+-s. even when
91 T+s 18 !lu:Q-biased" Ifwe use sample estImates of the 
varianceS and covarIances In place of their known 
values used In equatIOn 20, then we are no longer In a 
pOSitIOn to claim that the expected squared devtatlOn. .
of 20 from YT+, IS always smaller than that of any 
AYJTH (37, P 360) The predictor 20, based on estl' 
mated variances and covanances wIll be lllcoherent If 
the estimates VIOlate any of the assumptIOns undel 

Awhich the constituent predIctors, YJ T+s/S, are derived 

The difficultIes presented by equatIOn 20 are not en· 
countered If we use equatIOn 9 alone Because equatIOn 
9 IS a general model covermg vanous fixed coeffi· 
clents models as speCial cases (54) we canJustify usmg 
thIS general model for predlctmg and abandomng the 
method of poohng the predictIOns of dIfferent fixed 
coeffiCients models, particularly when the pI emlses of 
the fixed coefflClents models are contradictory 

Stability Tests 

Some econometriCIanS would hke to see some eVIdence 
agamst the stabIlIty of the coeffiCients of equatIOn 7 
before they admIt that a versIOn of equatIOn 9 
deserves their consideratIOn Stablhty tests are sup· 
posed to gIve such eVidence A bnef descnptlOn of 
these tests appears m (30, pp 575·8) Based on our 
d,SCUSSIOn of BIrnbaum's confidence concept m Part I 
(4, 53), a full dIsclosure of statistical eVIdence takes

•the form d l = (reject Ho m favor of HI, ai, flu) or 
d2* = (reject HI m favor of Ho, "I, flu), where Ho = a 
null hypotheSIS, H t = an alternatIve hypotheSIS, 
aI = the probability of type I error, and flu = the prob 
abthty of type II error Can we come up With such 
disclosures about coeffiCIents' stablhty? 



• • 

We mVlde the available time series of length T on 
variables In equatIOn 7 Into G mutually exclusIVe 
subperlOds, with ml observatIOns In the first sub
period, and m2 observations In the second subperlod, 
so that mln(ml,m2' ,mG) > K Note that 1:?=1 
m, ~ T Assuming that the coeffiCient vector r varies 
between subperlOds but not within each subperlOd, 
we can depict,the observatIOns as 

YI XI 0 0 "I 'I 
Y2• 0 X2 0 "2 '2• 

(21)+ 

YG• 0 0 XG "G 'G
• 

or more compactly 88 

y·=X1f+e"', (22) 

•where for I ~ 1,2,. ,G, y, IS a m,xl vectorofobser· 
vatlons on the dependent variable, X, IS a m, x K 
matrix of rank K of observatIOns on K Independent 
nonstochastlc variables, ", IS a K x 1 vector of 
regressIOn coefficlents, E~ IS a m,};: x 1 vector of 
stochastic dlsturbances, y" :; (Yl/ yi,'... ,yO']', 

" l.j" [.,., • 'j' d X1r =: [ 11"1,11"2, ',1ru ,E -=3 £:1,E2, ,EG, an 
represents the block·,ilagonal matrIX on the rIght
hand Side of equation 21 The vector " 18 assumed to 
have a normal distributIOn With meao·zero and the 
covariance matrIX E 

The null hypotheSIS of coeffiCient stability can be 
stated 88 

(23) 

wluch can be expressed 88 

I -I 0 o 0 o 
0 I -I o 0 o 

Rr ~ (24) 

0 0 0 I -I 0 'II'G_I 0 
0 0 0 o I -I 'II' G 0 

The statl8tl~s literature states that under the null 
hypotheSIS (23), the statistic, (T-GK)/(G-l)K times 

y' '!;-'x(x 'l:-'X)"R'[R(X 'l:-'X)"R ')-'R(X 'l:-'X)-' X 'l:-'y~ (25) 

y. '1:-ly. -y. ']:-1 X(X 'I:;-l X)-lX '1:-1y. 

IS distributed as F With (G - I)K and T - GK degrees 
of freedom (59) 

Suppose that we use statistiC 25 to test the hypoth
eSIs 23 against the-alternative hypotheSIS, 

(26) 

and come up With the deCISIOn, 

(reject Ho m favor of HI , "'I, /lu) (27) 

If the values of "'I and /lum the statement 27 are suffi
ciently small, then the statement 27 prOVides strong 
but mconciuslve eVidence agamst coeffiCients' stability 
The values of "'1 and /l" m the statement 27, however, 
depend on the values ofR and E used Ifwe use an 10

correct value of either R or 1:, then the values of "I 
and /lu Will be Incorrect:and the eVidence of the state
ment 27 Will be mlsleamng Even If our assumptIOns 
about the forms of Rand E are correct, and If we use a 
sample estimate of Emplace of ItS known value used 
In the statistic 25, then we may not know the exact 
distributIOn of the· statiStiC 25 If we use an asymp
totic distributIOn of the statistic 25 to evaluate "1 and 
/lu, then due to the approximate nature of the values 
of "I and /lu, the eVidence In the statement 27 may be 
mlsleamng It IS also pOSSible that for some sample 
estimates (or a prwn values) of E, "I ;:: 05 and 
(3n ;" 0 5 In that case, the eVidence In the statement 
27 IS worthless 

Other difficulties arise because 26 IS not the only 
alternative hypotheSIS of Interest There IS no 
guarantee that the coeffiCients of model 7 do not 
change m periOds other than those speCified by the 
hypotheSIS 26 Model 9 IS approprIate If the alter
native hypotheSIS that" changes at any or every· t IS 
true Under thiS realistic alternative, the statistic 25 
IS not defined LIttle reason eXists to use the test 
statistic 25 If we want to test the null hypotheSIS 23 
agamst thiS realistic alternative hypotheSIS To' 
diVide a time series Into eve'\t-conmtlOned subperIods 
as In equatIOn 21, econometncians must have consld
erable knowledge oftheIr data One cannot be content 
With casualmspectlOn of a few stereotyped measures, 
such as F values, as 18 common practice !n much ap
plied econometrIC work 

An alternative to the statistic 25 IS the CUSUM or 
CUSUM-square statistic of Brown, DurbIn, and 
Evans (30, pp 576-8) These alternative statistiCS are 
based on recursive reSiduals which are not umque 
We can get T - K nonzero and K zero recursive 
reSiduals for model 7 (where T IS the number of obser
vatIOns and K IS the number of Independent vari
ables) We get different T - K recursive reSiduals 
dependmg on which K of the T reSiduals are set equal 
to zero Computmg these reSiduals usually means E 
IS arbitrarily set equal too"l Therefore, the values of 
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oq and 1311 for the test of the null hypothesIs In 23 
against the alternative hypothesIs that the coefficient 
vector of equatIOn 7 changes at some unknown 
penods based on the CUSUM (or CUSUM square) 
statistic depend on the value of 1: employed and also 
on which K of the T residuals are set equal to zero 
For this reason, two different econometnclans work 
mg with two different recursive reSiduals fOi the 
same model and data can come up with two different 
pairs of values of (aI , 13rr) for the CUSUM (or CUSUM
square) test These pairs of values may give contradic
tory conclusIOns It IS also clear that the CUSUM (or 
CUSUM-square) test cannot detect shifts In coeffi 
Clents In any penod If we set the reCursIve reSIduals 
of that penod equal to zero This discussIOn and the 
discussIOn m the prevIOus paragraphs show that the 
stability tests are not Infol matlve and can be mislead
Ing By contrast, we can conclude that the coeffiCients 
of equatIOn 7 are unstable If usmg equation 9 produces 
a noticeable and Important Improvement In forecast
Ing performance relative to that of equatIOn 7 12 

Even In large samples, the CUSUM (or CUSUM-square) 
test does not give correct conclUSIOns because, under 
the alternative hypotheSIS that " In 7 changes at 
BOrne unknown penods, In some unknown manner, 
the power, (1 - 1311), of this test does not tend to 1 as 
the sample Size tends to oc The baSIC difficulty IS that 
the time-varYing coeffiCients of equatIOn 9, Ilz, + J~ , 
are not consistently estimable (See the uncertamty 
principle formulated by Swamy and Tmsley (48, 
p 117) )The seductive danger of stablhty tests IS that 
they pretend to a lund of relevance which their logical 
machmery cannot Justify 

Some Applications 

The authors have employed stochastiC coeffiCients 
models before to forecast several economic variables 
for several time penods The stochastic coeffiCients 
model they employed can be represented by 

(28) 

•where the K x 1 vector f, IS assumed to follow a first
order autoregressive vector process EquatIOn 28 IS a 
restncted versIOn of equatIOn, 9 obtained by zeroing 
the vector z" and setting J~, equal to f, 

12It IS fair to POInt out that. hke recurSIve reSiduals, forecasts 
based on asymptotIcally effiCient estimators of the parameters of 
equatlOns 7 and 9 may also be arbitrary when the asymptotIc em 
clency IS defined as In Lehmann (34, p 415) For example, when the 
solutIOn of the likelihood equatIOns for the parameters of equatIOn 
7 or 9 IS not unique, asymptotically effiCient likelihood estimators 
such as the one step estimator suggested by Lehmann (34. p 435) 
depend on a somewhat arbitrary Initial esllmator and need no 
longer agree With the maximum hkehhood esllmator even for large 
samples However, the arbitrariness of asymptotically effiCient 
estlmatOis IS of a very different nature from those of recursIVe 
reSiduals 

The reasons for consldermg equatIOn 28 mclude 

• 	 Employmg model 28', though restnctlve, IS more 
general than model 7 

• 	 Estlmatmg model 28 does not need as much 
(magnetic) core on the computer as estlmatmg 
model 9 needs 

• 	 Companng the forecasts of models 7, 28, and 9 
shows whether proceedmg m order of Increasmg 
compleXity Increases the accuracy of forecasts 

• 	 Workmg With model 28 has computatIOnal 
benefits which produces fewer unknown param 
eters than model 9 

A natural approach to mvestlgatmg the advantages 
and disadvantages of equatIOn 28 IS to apply Zellnel 's 
predictIOn prinCiple (61, p 32) Spht the aVailable time 
senes mto two nonoverlappmg parts The penod of the 
first part IS called the estimatIOn (or fittmg) perIOd and 
the perIOd of the second, the forecast penod Let 
t = 1,2, , T be the fittmg penod and let t = T+ 1, 
T+2, ,T+n be the forecast penod Estimate model 
28 and ItS fixed coeffiCients counterpart by uSing the 
first part and then use these estimated models along 
With the values of the mdependent vanables for the 
forecast penod to predtct the values of the dependent 
variable for the fOlecast penod Without reVISIng the 
parameter estimates We call such forecasts nonse
quential or multt-steJrahead " 

The authors have used Swamy and Tmsley's (48) 
method descnbed In Part II of thiS article (54) to 
estimate equatIOn 28 The maximum likelihood esti
mates of the parameters of equatIOn 28 may not eXist, 
and Swamy and Tmsley's Iterative method of esti
mating these parametels IS not guaranteed to con
verge, so we do not Iterate on Swamy and Tmsley's 
method until convergence (48) Because equation 28 
fits the sample values perfectly whenevel an estimate 
of xi" IS added to the conespondlng pledlCtlOn of xi, i, 

13It IS obvIOUS that thiS procedure IS not operatlOnallfthe values 
of the Independent varIables for the perIod T+s are not available at 
the tIme offorecastlDg YT+B Since our purpose IS to obtam separate 
estimates of the terms on the right hand Side of equatIOn 14, we 
have to use these values of Independent varIables Without 
separatmg the second of these terms from the rest, It IS not pOSSible 
to evaluate forecast errors ariSing from coeffiCients' instability 
Forecasters are also mterested In knowmg the magnitudes of each 
term on the rIght hand Side of equatIOn 14 Thus, we are solvmg 
here a problem which IS more Important than a practical fore 
castmg problem 

If we estimate sequentially the fixed parameters USing all past 
data prior to each of the forecast penods. T+l. T+2, ,T+n. then 
WI! call the correspondmg forecasts sequential or one step ahead 
The primary purpose of Swamy and Schmasl's article (51) IS to 
demonstrate that the one step ahead forecasts Will not necessarily be 
closer to the realized values of the forecasted vanable than lhe 
multi step-ahead forecasts There IS no non-BayeSian theory which 
mandates prediction With sequentIal estimatIOn 
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measures ofwlthm-sample fits are useless to dlSCllffi
mate among the estimates obtamed at dIfferent Itera
tIOns of Swamy and Tmsley's procedwe To aVOid 
Dverfittlng, we choose estimates whIch mInImIze the 
root mean square forecast error 

where "-YT~, IS a forecast of YTH m some penod s aftel 
the termmal pellOd T of the fittmg penod The root 
mean square forecast error IS a generally good 
substitute for an averaged wlthm-sample residual 
sum of squares From L IteratIOns of the Swamy and 
TInsley procedure, we obtaIn L dlfferent estimates 
of the unknown parameters m model 28 Insel t
mg these estimates mto formula 10 furmshes L dif
ferent predIctIOns for each forecast perIOd We show 
these predIctions by ~TH", S ~ 1,2, ,n, 
I ~ 1,2, ,L These predIctIOns give L different 
values for the root mean square forecast errOl 
[~i: (YT+" I - YTHl'll>, I ~1,2, ,L We select the 

8=1 

estimates of the unknown parameters by mmlmlZlng 
these L values 14 We use these minImum root mean 
square forecast error estimates to forecast the values

•of y, beyond the perIOd T+n The sample beyond the 
penod T+n IS used to compare the forecastmg pel
formance of an estImated stochastic coeffIcIents 
model With those of other models 

To estImate the fixed coeffiCIents counterpart of equa
tion 28, Swamy and hIs co-authors consIdered both 
the classIcal least squares procedure and an approx
Imate generahzed least squares procedure based on a 
sample estImate of the error covanance matnx They 
also apphed approxImate Bayes and ndge-type 
shrmkage estimators to equatIOn 7 WIth and WIthout 
senal correlatIOn m the error term These estimates 
allow us to evaluate the correspondIng mInImum 
average mean square error predIctors for the forecast 
penod, T+ I, T+2, ,T+n, and the root mean 
square fm ecast errors of these predictions are com
puted We obtam one root mean square forecast errol 
for each fixed coeffiCients estImator We choose the 
estimates of the fixed coeffiCIents correspondmg to 
the smallest of these root mean square forecast errOl s 

Table 1 shows the results of the authors' computa
tions Use of tlme-varymg, stochastIC coeffiCIents 
modehng may substantially reduce out-of-sample 
forecast errors, SimIlar to reductIOns obtaIned In 

several earher empirical apphcatlOns of the stochastic 
coeffiCIents models hsted m table 1 

14The arbltranness of these estimates IS less harmful m terms of 
the accuracy of forecasts they lead to than the arbltrarmess of 
prIOr distrIbutIOns 

The results In table 1 generally turned out favorably 
to the stochastic coeffiCients models because the 
mInImum average mean square error predIctors COl
respondmg to these models are evaluated at then 
respectIve mInimum root mean square.forecast error 
estimates of unknown parameters These results can
not be reproduced usmg any arbitrary a pnon val')es 
of parameters ThIS statement not only elaborates 
upon footnote 14 but also explams why Alexander, 
and Thomas (3) and Wolff (58) find that the forecasts 
of exchange rates generated by the Kalman filtel 
WIth a prton values of parameters are poor relatlve,to 
the forecasts of random walk models !5 

We used equation 28 to estimate an agricultural m
vestment model (see 10 for a complete diSCUSSIOn of 
the model) Investment IS assumed to be generated by' 
a lmear versIOn of the fleXible accelerator where 

and W IS the ratIO of mput to output price, K IS the 
capItal stock, and U IS the ImpliCIt rental rate of capItal 

We compared the usefulness of the stochastIC coeffi
CIents specIficatlOn's forecast accuracy WIth SIX othel 
models m five-penod out-of-sample tests Although 
the SIX alternatIves do not exhaust all possible 
models, they help evaluate the predIctive capabIlIty 
of the stochastic coeffiCIents mvestment model . 

One of the SIX models IS the fixed coeffiCIent analogue 
of the stochastic coeffiCIents mvestment model Net 
mvestment IS regressed on a constant, an mput/output 
price ratIO, a rental rate, and lagged capItal stock 
Two other models are variants of the fixed coeffiCients 
model One model mcludes net farm mcome (mcome) 
as a regressor, the other mcludes a tIme trepd (time) 
The fourth model IS a fixed coeffiCIent, nonhnear flex
Ible accelerator, where the adjustment parameter IS a 
functIOn of the ratIO of mput to output prices and the 
rental rate The final two models are atheoretlCal In
vestment IS assumed to be a stochastic process follow
mg both a first-order autoregressIve AR(I) process 
and a second-order autoregressIve AR(2) process 

Table 2 shows that the stochastiC coeffiCIents model IS 
the supenor predictor However, an unambiguous mdl
cator of forecast accuracy does not eXIst Each mdtcator 
has Its own fisk functIOn For example, a mean absolute , 
error cnterlOn IS based on an absolute deVIatIOn. loss ' 
functIOn, while a mean square error cntenon IS based 
on a quadratIC loss functIOn Therefore, dIfferent 
analysts may prefer dJfTerent models, dependtng on 
theIr assumed loss functIOn Consldermg a WIde variety , 

15For examples of the use of stochastiC coeffiCIents models In a 
policy SImulatIon framework, see (9, 11, 14) 

, 
" , 
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Table l-Out-of.sample root mean square forecast errors of stocbasbc coefficients and fixed coefficients-eshmatorsl 

Dependent Flttmg Forecast ' Stochastic FIxed Random Improvement 
Source varIable peno<i2 perIOd coefficients coefficlents3 wall<' over best 

alternative 

Percent 

Conway, Hallahan, Beer reta II pnce 1968 Ql- 1980 Ql- 729 1400 - , 48 
Stillman, and Prentice (U S) 1979 Q4 1983 Q4 
(1987) 

Pork retaIl pnce 1968 Ql- 1980 Ql- 583 291 -100 
(U S) 19?HQ4 1983 Q4 

Broiler retaIl 1968 Q3 1980 Ql- 378 602 - 37 
pnce (U S) 1979 Q4 1983 Q4 

Conway and Gill Fixed w:.elght 1960 Ql 1981 Ql 
(1987) G~P InflatIon 1980 Q4 1984 Q4 200 395 49 

rate (U S) 

LeBlanc, Kitchel!, Exchange rate 19759- 19853- 036 048 0049 25 
and Conway (1988) U S $/Canada $ 19852 19857 

Swamy, Kenmckell, and Ml aggregate 1960 Ql- 1982 Q3- 4644 19804 77 
von zur Muehlen (1986) (U S) 1982 Q2 1985 Q2 

Swamy and "I:avlas Monetary base 1967 Ql- 1984 Q4- 562' 534 1.167 -5 
(1989) (Austraha) 1984 Q3 1985 Q4 

Swamyand"Tavlas Monetary base 1967 Ql- 1986 Ql- 883' 960 978 8 
(1989) (Australia) 1984 Q3 1987 Q2 

Swamy and Tavlas Ml aggregate 1967 Ql- 1984 Q4- 1922' 2109 2716 9 
(1989) (Australia) 1984 Q3 1985 Q4 

Swamy and Tavlas Ml aggregate '1967 Ql- 1986 Ql- 939' 1 159 1651 19 
(1989) (Australia) 1984 Q3 1987 Q2 

Swamy and Tavlas " M3 aggregate 1967 Ql- 1984 Q4- 659' 1173 2706 44 
(1989) (Australia) 1984 Q3 1985 Q4 

Swamy and Tav las M3 aggregate 1967 Ql- 1986 Ql- 774' 1555 1'137 32 
(198B) (Austraha) 1984 Q3 1987 Q2 

Swamy, Kollun, and Treasury bIll 1960 Ql- 1984 Ql- 411 585 658 " 30 
Slngamsettl (1988) rate (U S) 1983 Q4 1986 Q4 

Swamy and Schmasl Stock pnces 1900-73 1974-83 680 877' 1801 22 
(1986) , 

Schmasl and Swamy Exchange rate 
(1987) dolh,r/pound 1973 3- 19804- 2170 3540 3030 28 

19803 19816 
dollar/yen 19733- 19804- 3270 4030 3960 17 

19803 19816 
dolh'r/ 19733- 19804- 2170 2560 3690 15 
deutschmark 19803 19816 

Schmasl and Swamy G-IO weIghted 1975 1'- 19831- 2009 2181 2056 2 
(1988) average dollar 1982'12 1984 12 " 

SchmBsl and Swamy G-IO weIghted 1976 1- 1984 1- 2618 2715 2873 4 
(1988) average dollar 1983 12 198512 

Schmasl,and Swamy G-IO weIghted 1973 1- 1985 1- 2311 2315 2712 0 
(1988) average dollar 198412 198612 

ISquare root'of an average of sum of squared deViatIOns multlphed by 100 

2Numbers shown after years sIgmfy either quarters (Q) or specific months 

3Forecasts based on the best predIctmg estimates 

4Yt = Yt-I + whIte nOise 

5Forecasts of the same vanable for these two dIfferent forecast periods are based on Identical parameter estImates 

6SequentIai forecasts 
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Table 2-0ut-of-sample net Investment forecast, 1981-85 
StochastIc FIxed FlexIble 

Year Actual coefficients coefficients Income Time acceleratOi ARI AR2 

M,llIOn dollars (1972) 

1981 -993 -385 .354 
1982 -2,017 -1,169 321 
1983 -1',962 -1,369 343 
1984 -1,815 -1,359 449 
1985 -2,104 -1,845 33 

offorecast and other cntena, mcludmg goodness of fit 
and trackmg measures, IS preferable 

Table 2 presents each model's forecasts for 1981-85 
The forecast statIStICS, based on years WIth dramatIc 
declmes m agricultural mvestment, prOVIde an ex
cellent test of forecast accuracy The absolute error 
sho"';s that the stochastIC coeffiCIents model dommates 
the fixed coefficIents models each year Mter mlssmg 
the actual value by a relatIvely WIde margm m 1982 
($849 mIllIon), the stochastIC coeffiCIents' forecast Im
proves through 1985, where the absolute error IS $258 
millIon The evaluatIOn statIstIcs for each model al e 
mean absolute error (MAE), mean absolute percen
tage error (MAPE), root mea!, square error (RMSE), 
and TheIl's U2 coeffiCIent Table 3 shows that the 
stochastIC coeffiCIents model IS the most accurate out
of-sample forecaster The mean absolute error 
statIstIc (MAE) IS representatIve of the stochastIc 
coeffiCIents' dommance over ItS competItors The 
nearest competItor, the fleXIble accelerator model, IS 
more than three tImes greater, m MAE The stochas
tIC coeffiCIents model outperforms the other SIX 
models for nearly any senSIble risk functIOn 

Conclusions 

By acceptmg that the aIm of mference IS to generate 
preructlOns for future observables, we can see that the 
problem of comparmg alternatIve model specIficatIOns 
IS resolved by comparmg the accuracy of predIctIOns 
the models generate and choosmg the model that 
predIcts best ExperIence WIth such comparIsons sug
gests that allowmg all coeffiCIents m an economIc 
relatIOnshIp to vary over tIme may contribute to Im
proved forecasts The economIcs hterature has long 
recognIzed that slopes of economIC relatIOnshIps may 
not be constant through tIme because of aggregatIOn 
efTects and polIcy changes Therefore, the assumptIOn 
of tIme-varymg coeffiCIents cannot be so eaSIly dls
rrussed on the grounds that, when coeffiCIents valY, 
lithe concept of seasonal adJustment can become 
rather confused" (21, p 1,014), or that mcreasmg the 
compleXIty oUhe models used to generate predIctIOns 
does not necessarIly lead to better predIctIons 

623 602 308 610 566 
-359 987 120 543 500 
-818 1,349 135 502 472 

614 1,764 157 478 460 
198 1,580 169 463 460 

Table 3-Forecast evaluatIon statistics I 

Model MAE MAPE RMSE Th.ell's 
U2 

StochastIc coeffiCients 533 34 189 089 
FLXed coeffiCIents 2,297 133 217 103 
FIxed coeffiCients 

WIth Income 2,269 131 217 102 
Fixed coeffiCients 

WIth time 2,078 119 215 102 
FleXIble accelerator 1,829 109 213 100 
ARI 3,034 170 224 106 
AR2 1,956 112 214 101 

IMean value for net Investment durmg)981-85 IS $1 78 billIon 

Swamy and TInsley's minImum root mean square fore
cast error estImates WIll also be useful m assessmg 
BayeSIan prIor d,stributIOns (48) If these estImates 
Imply a d,stributIOn for the coeffiCIents, whIch is 
more general than a BayeSIan prIor d,strIbutIOn Im
phed by our prIor behefs, then such prIor dIstrIbu
tIons are mcapable of producmg accurate forecast~ 
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