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The Stochastic Coefficients Approach to Econometric Modeling,
Part III: Estimation, Stability Testing, and Prediction

P.A.V.B. Swamy, Roger K. Conway, and Michael R. LeBlanc
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Abstract. In this final article of our three-part series,
we demonstrate why stochastic coefficients models are
well suited to predict future variables We analyze the
forecasting problem and consider various criteria of
prediction If a forecaster must choose one from among
several coherent predictors, then the choice should be
the one with the best track record Decomposing the
forecast error shows that stochastic coefficients models
can cover more posstble sources of prediction error and
correct for them The empirical record shows that
stochastic coefficients models can substantially reduce
out-of-sample forecast errors more than fixed coeffi-
cients models Our assessmeni of coeffictent stability
tests is they are contradictory, misleading, and
without empirical value

Keywords. Stochastic coefficients, fixed coefficients,
conditional expectation, Bayeswin tnference, coherence,
estimation, prediction, stability tests

Edutor’s note Part I A Critique of Fixed Coeffi-
cients Models appeared 1n Vol 40,"No 2, Spring
1988 Part Il Description and Motwation appeared
in Vol 40, No 3, Summer 1988

Stochastic coefficients models are 1deally swited to the
problem of predicting future values of variables We
say 1deally because such models cover almost all
possible sources of prediction errors and introduce
suitable corrections for each error We also show that
either parameter estimation or testing of hypotheses
about parameters 1s a "“halfway house’ on the road to
predicting future observations

If the objective of estimation 1s forecast accuracy,
then one should attempt to find an estimation pro-
cedure that yields predictions as close to actual
realizations as possible One should select the predic-
tor that has the highest probability of taking values

Swamy 15 a semor economist with the Board of Governors, Federal
Reserve System, and adjunct professor of economics at The George
Washington Umversity (Washington, DC), and Conway and
LeBlanc are agricultural economists with the Resources and
Technology Division, ERS The authors received valuabie com-
ments and help from James Barth, Charlie Hallahan, Arthur
Havenner, Tom Lutton, Ron Mittelhammer, Peter von zur

+

Muehlen, Nadine Loften, and Douglas McManus

close to actual realizations ! It 15 impossible to derive
predictors based on this general criterion A neces-
sary condition, however, for a predictor to take values
close to actual realizations with the highest probability
15 that the mean square error (that 1s, the predictor’s
expected squared deviation from the actual realiza-
tion) 13 a minimum

Predictors with uniformly mimimum mean square
error typically do not exist, a difficulty that can be
avolded by replacing the criterion of minimum mean
square error with the criterion of minimum average
mean Square error

The latter criterion selects a predictor if 1ts expected
squared deviation from a varable 15 a minimum
Minimum average mean square error predictors take
the form of conditional expectations, which can be
evaluated exactly if their true functional forms are
known and if they do not depend on unknown param
eters Surfacing are problems 1n which the functional
forms assumed for conditional expectations may not
coincide with their true functional forms, and the
errors of the estimates of the unknown parameters
appearing 1n the assumed functional forms substan-
tially affect the accuracy with which the desired
values can be predicted

Our approach, then, 1s to use stochastic coeffictents
models to specify conditional expectations The
motive for introducing stochastic coefficients models
18 the hope that such models can approximate true
models better than fixed coefficients models This
hope 1s not without a methodological basis If a func-
tional form assumed for a conditional expectation 1s
true, then 1t 1s appropriate to adopt the criterion of
mimimum variance unbiasedness for parameter esti-
mation This eriterion can satisfy a necessary condi-
tion for maximizing the probability that a predictor
can generate predictions that are close to the true
conditional expectation However, there still remains
the problem of recognizing an operational unbiased
predictor with mimmimum average mean square error

'Here, we use the term “predictors” to refer to a random varable's
real valued measurable functions that are used to predict the future
values of the random variable The term “predictions” refers to the
values taken by these predictors We use the term “estimators” to refer
to the real-valued measurable functions of random variables which are
used to guesa the unknown true value of a fixed parameter
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{51)? Consequently, we may follow de Finettr's sugges-
tion-that the condition of coherence 1s the only mimmurn
requured condition one should 1mpose on predictors

The derivation of coherent predictions 18 no easy task

For example, Lane and Sudderth’s method of deriving
coherent predictions 15 difficult to use because we must
specify a fimitely additive probability distribution (32)

We may find a Bayesian procedure which gives coher-
ent predictions, however, to approximate our opinions
via a probability density function (pdf) Even this pro-
cedure may be complicated because the specification of
a consistent set of prior probabihities of models and the
prior pdf's for thewr parameters require a demanding
exercise in self-interrogation A Bayes procedure based
on prior probabilities and prior pdf's can produce bet-
ter forecasts than a non-Bayesian procedure 1n some
cases But, expressing our opinions about models and
their parameters 1n the form of prior probabilities and
pdf's, respectively, and checking their consistency,
are very difficult tasks The difficulty of checking the
logical validity of models 1s, of course, common to
both Bayesian and non-Bayesian methods

We can apply exact or approximate Bayesian and
non-Bayesian methods to generate predictions under
some assumptions about the data-generating process
By dividing available data into fitting and forecast
samples, we can use part of the data to generate
predictions for the rest of the data, comparing these
predictions with the realized values The result of
these comparisons can guide the choice of models 1n
other situations that share common features with the
environment, resulting 1n the data used 1n the com-
parisons Qur experience with such comparisons sug-
gests that time-varying and stochastic modeling of
regression slopes may contribute to improved fore-
casts These forecasts become useful 1n analyzing
sources of so-called coefficient 1nstability, predicting
uncertainty that may arise 1n conventional models

The Forecasting Problem®

We are concerned with the following prediction prob-
lem we want to predict the value yy., that would be
taken by a variable y:' 1n some future period s after T,
where T 18 the terminal period of' the currently
avallable sample observations on yt We will make
this prediction havmg T+s observations up to time
T+s on a vector X, ¢ Yof K variables that are related to
another variable yt and also having T observations
on y,_ up to time T4

2Italicized mumbers mm parentheses cite sources listed in the
References at the end of thig article

3Several sections 1n this article are based on (51}

4We distinguish a random variable from its value by an asterisk
For example, y, 18 the value taken by the random variable y: n
penod t

Formalizing this pomt prediction problem 1nvolves a
randem variable yt taking on values 1in a sample
space, according to a distribution which 18 assumed to
belong to a family The currently avallable*sample
observatlons y=U, ¥, , ¥r) on ¥y (yl.

yz, , yT)' constitute the data We may also have
observatlons on variables with the symbol xL (xu,
th, ) xKL) The observations x,,t = 1,2, , T+s,

on these vanables are also part of the data when the
distribution of yl 18 determined by 1ts own past values
and by current and past values of xt

The problem 1s the determination of a suitable predic-
tor, that 1s, a real-vaiued function ?TH deﬁned over
the sample space, of which 1t 18 hoped that yTH(y

x*) will tend to be close to the unknown value yT+3
The value §.(¥’, ") t.aken on by $r. v x™) for the
observed value (¥, x)’ of (¥* s x* )15 then the forecast
of yr4+s, which will be our educated guess for the
unknown value We say that a predictor 1s operational
if 1t does not involve any unchservable quantities

A best predictor $14s should be sufficiently close to
the actual realization yr., and because 9T+3 1S a ran-
dom variable, the value yr+, 15 covered by an interval
of values which §T+B takes with a high probability Te
make this requirement precige, we specify four meas-
ures of closeness of (or distance from) a predictor to yr.

Criteria of Prediction

Swamy and Schinasi extend well-known criteria used
1n point estimation to the problem of point prediction
as follows (51)

(a) Criterion of highest concentration A predictor
3\(1~+B of the actual value yy. 18 better than any other
predictor ¥ 74, when

pr{yr+e — M < 9T+s < Yris Tt A2) 2
priyrss — M <.'7T+a < ¥Y14s + Az, (1)

for all possible values of \; and \; 1n a chosen 1nterval
(0, M) and for all possible realizations yr., Here, pr
denotes “'probability "’

(b) Minimum mean square error Swamy and
Schinasi show that a necessary condition to satisfy
criterion 1 for all A and for all yp, 18

E@T+s - yT+a)2 = E@- T+s — YT+3)2, (2}

with the inequality being strict on a set of a positive
;\Jebesg’ue measure, that 18, the mean square error of
Y. about the actual realization y7,, 18 a mimmmum

(¢) Pitman’s nearness (PN) A predictor i\f'ns 18 nearer
to the value yr, than another predictor ¥, when



PHLG Trs) Y72} < LAF 1405 Yrag)] > 172, (3)

where the loss function, D@\TH, ¥T+s), Fepresents the
consequences of predicting y1,, by a value of §T+E

Swamy and Schinasi state two sets of sufficient cond-
tions for a predictor to be nearer to yr.,, than another
predictor 1n the PN sense

(d) Minimum average mean square error A predictor
yT+s 18 called the mimmmum “average mean square
error” predictor i1f it mimnimizes
A * '

EGTis — ¥Tae)? €Y
If we wish to predict y+.., from a Borel measurable fune-
tion fly*), say, of y*, then among all such functions of y*
with finite second moment, that whxch mimmizes the

average mean square error 4 with yT+,, fy*) 15 the con-
ditional expectation of yTﬂ,, given y* =y, denoted by 5

fly) = E(yriq | ) (5)

When fr-n_,, = EL\/;+s 'y), the average mean square
error 4 reduces to the average conditional variance of

YT+5; given y

Criteria (a), (b), and (c) are based on distances from
predictors to actual realizations, while criterion (d) is
based on distances from predictors to y-i:ﬂ, which 1s a
random variable In the definition of ecriterna (b} and
{d), attention has been implicitly restricted to predic-
tors with finite variance, because otherwise the prob-
lem of mimimizing the (average) mean square erro
does not arse Predictors with infinite variance
violate the necessary condition 2land sothey cannot
satisfy the criterion of highest concentration
{eriterion 1) In fact, predictors satisfying either the
criterion of highest concentration or the criterion of
minimum mean square error (criterion 2) do not gen-
erally exist For this reason, the minimum average
mean square error criterion 4 15 the one used exten-
sively 1n the econometric literature However, mini-
mum average mean square error predictors some-
fimes have infinite mean square error For example,
the forecast yris-1 1S a mimimum average mean
square error forecast 1f y; follows a random walk,
yt —yt 1 +al,t—-0 +1, +2, whereatlsawhlte
nowse error term with zero mean For this process,
E(¥T+s | Yr4e-1) = yTra-1, and E(yTseo1 — y1ea) 18
finite when viewed as the average conditional vari-
ance of yT+,, given yris-1, and 1s infintte when viewed
as an unconditional mean square error of yTﬂ about
¥T+s—1 The distinction between criteria (b) and (d) 15
not clearly explained in the econometric literature

83ee (36, p 264) for a proof of this statement

Criterion (c) 18 different from criteria (b) and (d) 1n
that attention 1s also given to predictors with infinite
variance Keating and Mason give examples of
predictors that are good in the PN sense (27, 28)

The result expressed 1n equation 5 18 theoretically 1m-
portant but has little practical use unless one knows
the true functional form of the conditional expectation
of YT+5, given y A conditional expectation that does
not exist, however, could not have generated our
data Conditions for the existence of various forms of
conditional expectations are different (52) One usually
cannot verify the truth of these conditions, and the
best one can do 18 to argue (from coherent economic
theories, for example) that, 1n many cases, one would
expect (yT+s, y ) to follow a distribution which
implies the existence of the conditional expectation
(equation 5) of particular form (49) ¢ The first step in
any statistical method of generating predictions 1s to
formulate a statistical model about the data-generating
process The dlstnbutlon 1mphed by this model 1s the
one assumed for (erﬁ, y '

If the vector (y-Lg, y*’)' 18 Jjointly normal, then the
conditional expectation 1n equation 5 can be ex-
pressed as

E(yT4s | ¥) = EyT+s+cOV(yT+a,y Y [var(y™)]~
v -~ Ey™), (6)

where cov(yTus, y° ) =E(yT+e — EyToa)y”™ — Ey™Y,
and [var(y®)]~ 18 any generalized inverse of the
covartance matrix of y* {36, p 522} These variances
and covariances may be time dependent if the variable
YT+, ¥ ) 18 nonstationary

Conditions other than normality may also be used to
derive the predictor, equation 6, with the minimum
average mean square error property Specifically,
Chipman (6, pp 603-5) proved that the predictor
(equation 6) has the mmimum average meansquare
error within the class of Jmear (affine) predictors of
¥Yt1+s Whenever (yT+s, y "' 18 not normal but possesses
finite second-order moments So, one may be tempted
to conjecture that only normal distributions give
hinear predictors with the minimum average mean
square error property 1n linear regression While this
conjecture 18 not true without further conditions, 1t 18
true for most practical purposes, as rigorously proved
by Goel and DeGroot (19, p 899) and Rao (38)

SUnlike 1ncoherent theories, coherent theories whose premises
are not contradictory can be true The intwtively appealing con-
eept of evidence stating that under no hypothesis, H, shall there be
a high probability of outcomes being interpreted as strong evidence
against H 1s useless unless our hypotheses are grounded in
coherent economic theories



Where the mean vector, EL\/LS, y*')r, 15 unknown
{which seems usual) and the covariance matrix of
(y;ﬁ, y*‘)' 15 known (which seems unusual),
Goldberger, Swamy and Mehta, and Harville have
mimimized criterion 4, subject to the restriction that
the predictor ?TLS 15 equal to the homogeneous linear
function, c'y*, where ¢ 15 a Tx1 vector of constants,
and to the unbiasedness restriction that E9T+s 18
equal to the mean assumed for yfl:;s {20, 23,,47) " The
predictor that comes out of this constrained min-
umization procedure 1s called the mimimum vanance
linear (homogeneous} “unhased” predictor, and 1t 1s
the same as the predictor expressed in equation 6
with Ey;ﬂ and Ey* replaced by their respective
minimum varience hinear (homogeneous) unbiased
estimators The minimum variance Ilinear
“unbtased’” predictor of yr,, will coincide with the
minimum variance ‘unbiased” predictor of yr,, 1n
the normal case but not with the conditional expecta-
tion 1n equation 5, even 1n this case

Swamy and Schinasi show that the criterion of
minimum variance unbiasedness satisfies a neces
sary condition for maximizing the probability that a
predictor generates predictions close to its expected
value (51) No guarantee provides that actual realiza-
tions will be close to this expected value The expected
value of the minimum variance linear “unblased”
predictor of yr., will not coincide with the true ex-
pected value of y; v If the unbiasedness restriction 1s
erroneous & Imposing erroneous unhiasedness restric-
trons may have the undesirable consequence of
vielding highly mnaccurate forecasts

Conditions 1 and 2 logically lead to the criterion of
minmmum mean square error in satisfying a neces-
sary condition for maximizing the probability with
which a predictor takes values close to actual realiza-
tions If condition 2 is true, then it follows that for at
least one value of'y—]':+B the inequality 118 true but not
necessarily for all possible values of y;,r (36, p 96)
This result shows that a predictor, §T+g, which
mintmtzes the mean square error, E(r4+s — yT4sF, for
all values of y»ﬁs 15 useful 1f 1t satisfies the inequality
1 for those values of yr’;ﬂ which actually occur Un-
fortunately, such a predictor does not exist, as shown
1n the statistics literature (34, p 5) Nevertheless,
comparing 2 with 4 shows that the conditional expec-
tation of y$+s, given a realization of y*, nearly

"This unbiasedness restriclion ensures that both the distribution
of yr., and the distribution assumed for y1,, are located at the
same value go that their variances are comparable It differs from
the unbiasedness definition E,,(% = § for all 8e®, where & 13 an
estimator of the fixed parameter 8 and @13 the parameter space

#The unbiasedness restriction, Eyq_, = E‘v-l-ﬂ, 18 erroneous if the
assurned functional form for the mean of y., 18 different from the
true form

satisfies conditton 2 1f the true conditional distribu-
tion of y»’;ﬂ, given y* =y, 15 sufficiently tight around
1ts mean value Therefore, a necessary condition for
obtaining accurate forecasts 15 that we specify and
evaluate accurately the true conditional expectation
of yLS, given y* =y Perhaps, we can better satisfy
this necessary condition 1f we work with stochastic
coefficients models rather than fixed coefficients
models Apgamn, any rigorous derivation of an
econometr:¢c model using probability calculus
naturally leads to a stochastic coefficients model
unless severe restrictions are imposed on derivation
True models are better approximated by stochastic
coefficients models than by fixed coeflicients medels,
particularly when the premises of the latter are
contradictory

If we are interested 1n satisfying condition 2, why do
we need condition 37 Our interest 1n the criterion of
PN 15 justified by the following observations

+ PN 15 an intrinsic measure of acceptability (27)

¢ Sufficient conditions can be found for satisfying
the criterion of PN, whereas only a necessary
condition can be found for satisfying the
criterion of highest concentration 1

¢ Keating and Mason's results demonstrate that
neither mean square error nor PN should reign
exclusively in the comparigon of estimators (27)

Fixed and Time-Varying
Coefficients Approaches

The true functional form of equation 5 18 unknown, so
a functional form for equation 5 must be assumed
The usual practice among econometricians 1s to
presume that for every t, y; follows the reduced-form
model

s

yr=xit+e =041, +2, ) N

with fixed coefficients so that the mmimum average
mean square error linear predictor of y7,, 18

Xf T + W V-iy — X, 8
ag?

where Ey-"fﬂ = Xf4gT, Ey* = Xm, cov(y-"f+m yl*’) =w'
and var(y*) =¢2V are implied by the assumptions
underlying model (7) with fixed x; This predictor has
the minimum variance within the class of hinear “un-
biased” predictors of yr.g, 1f 7 1n both the terms of the
predictor 8 1s replaced by # = (X'V'X)-! X'V-ly~

Several forms of w and V are given 1n (25, chaps 8 and
11) For suitable defimtions of xf., and X, the predictor



8 also represents the minimum average mean square
error linear predictor of an element of a vector
variable following a vector autoregressive (VAR)
model If equation 7 represents a umivariate autg-
regressive model, then X consists of lagged y's, and w
can be equal to 0 The vector w can be zero if equation
7 represents a regression-model with a serially unco: -
related error term

The predictor 8 will not give accurate forecasts 1n the
case where the slopes of the function 7 change over
time The following model, developed 1n (48} may be
appropriate

ye = (M2, + x{JE0 (6 =0, +1, 2, ) ©)
(For an explanation of these symbols, see (54, part II))

When this model 1s appropriate, the minimum
average mean square error linear predictor of yr..5 1s

xT+a(2trs @ D) vec(Il) +
x745d® L {{I®T DL, (¥ ~ DyZ,vec(Il), (10)

where the ﬁrst term equals EyTH, Ey = D,7Z.vec (H))
cov (yT+5, y Y = x4, Jd Zq4(1@ J)Dy, and var(y *)
= Ly are 1mplied by the assumptions underlylng model
9 wtth “fixed” x, and 2, (54, p 27) This predictor be
comes the minimum vanance linear "unbiased” predic-
tor of yr., if vec(IT) 1n both the terms of the predictor 10
15 replaced by vec(I) = (Z¢DsL;'DyZ, )" Z;DyL, "y
whenever L, 1s nonsingular

The model 1n 9 provides a useful approach for the
decomposition of forecast error sources Partition
several of the vectors of 9 as follows

X = (In Xél), Z; = (1! zét)v J = (Jll J2)'! I= (7"1 H] HZ) (11)
Model 9 may then be expressed as the sum of terms
similar to model 7 and additional terms involving xg,

and zg,

ye=xi(my, ) (1 ) +1, x3,) (Jff’f)
2 Jake

= x(m; + x{Tlgzy, + JiE; + X T4k 12)

An estimated version of the fixed coefficients. model 7
implies a forecast of y 1n some future period s after T,

given by Jr.,,
A A, A A
YT+s = AT45T + €744, 13)
A, A A
where X1.,7 and er,, are some estimators or predic-

tors of the first and second terms on the right-hand
side of the predictor 8

The forecast error (the difference between the predie-
tor, yTH, and the future realization, yr.) that arises
from using a fixed coefficients model when model 12
15 true, may be decomposed as

A ' A
P1rs — Yr4e = R B — m)) A
+( 'rl"+s - x'i"+s)7rl + (5T+s - JI'ET-H;)
— XT+ollaZor1s — Xo719d 5744, (14)

which, 1n order of ‘appearance, 1s the sum of (1) a
linear combination of the sampling errors of the coef-
ficient estimates, (2) a hnear combination of the
errors 1n predicting future values of the independent
variables, (3) the error 1n predicting stochastic shifts
in the intercept, (4) the failure to predict deter-
minstic shifts in regression intercept and slopes, and
(6) the failure to predict stochastic shifts in regression
slopes Except for (2), all these forecast error sources
are accounted for when equation 9 15 used Qbserve
that an accounting of forecast error sources based on
an estimate of equation 7 15 himited to (1) and (3) The
remaining error sources cannot be diagnosed using
fixed coefficients models The error resulting from (2)
18, of course, beyond the reach of any of the equations
7 and 9, because 1t originates from errors 1n fore-
casting exogenous events and/or comes from observa-
tion, sampling, and measurement deficiencies

One persistent problem 1n applied economic forecast-
ing has been the recurrence of forecast drifts causing
selected model equations to dnift away from later his-
torical realizations The conventional add-factoring of
intercepts has not always proved satisfactory, espe-
cially 1n cases of suspected nonstationary regression
slopes We have shown that one role of the z,
variables 1n equation 12 1s to account for sources of
coefficient nonstationarities Equation 12 accounts
for movements in coefficients that are caused by
movements 1n certain observable variables suggested
by theoretical considerations but neglected 1n equa
tion 7 In diagnostic terms, if the z, variables are
ehiminated, then forecast error interpretations are
limited because forecast errors cannot be hased on
errors in predicting deterministic shifts in regression
slopes (see equation 14) Equation 12 1s useful for
distinguishing between errors arising from intercept
mstability, amenable to add-factor sclutions, and
errors arising from other sources

The hist of potential sources of errors 1n equation 14 1s
exhaustive Although add-factoring (the judgmental
adjustment of intercepts to realign errant equations
to fit current data) has been useful, the exclusive
focus on intercept instability, that 18 (8. — J{br4s),
by add-factoring may mean that important sources of
forecast error remain unaccounted for An econometric
methodology with built-in features for measuring all
coefficients variation, as 1n equation 9, however,
could feasibly lend itself to being used as a diagnostic
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tool for ascertaiming all sources of equation instability,
x74s (gZ74q + JEr.s) An estimate of equation 9
would yield an allocation of the total uncertainty over
all components of an equation, as shown 1n equation
12, permitting quck investigation of the likely
sources of future equation volatility

If alternative policy regimes have parametric implica-
tions for the behavior of the economy, as suggested by
the socalled Lucas critique, a time-varying stochastic
coefficients approach may provide a means for an
ticipating consequences XT,Ilszyr, of alternative
conjectured policy assumptions, not available with
conventional fixed coefficients techniques, whenever
the z,, elements include observable policy variables

Without a doubt, equation 7 1s sumpler to work with l

than model 9 because the second and fourth terms ap-
pearing on the right-hand side of equation 12 are
1gnored 1n equation 7 Even though including these
terms complicates our models and possibly makes our
parameter estimates imprecise and nonunique, we
have no choice except to include them if model 7 does
not give useful forecasts No logical principle war-
rants excluding these terms because no cne knows for
sure that these terms are absent from the true model
We later show why the prediction prineiple advocated
by Zellner (61, p 32) and others cannot conclusively
reject equation 9 in favor of equation 7

Estimation Procedures

The predictors 8 and 10 are not gperational because
they involve unknown parameters To obtain comput-
able forecasts, we need the estimates of these param
eters The vector 7 or vec(Il), if fixed, can be estimated
by one o1 more of the following procedures

* The least squares procedure,

¢ The generalized least squares procedure based
on an estimated error covariance matrix,?

® A fully or partially restricted reduced-form pro-
cedure that fully or partially accounts for the
connection between v and the coefficients of a
structural model,

+ A Bayes procedure,

¢ Shrinkage estimators, and

* Robust procedures

9Swamy and Tinsley’s estimate of the error covariance matrix (o1
model 8 may be singular (48), in which case Paige's numerically
stable and efficient algorithm based on matrix décompositions
should be used for estimating model 9 (31)

The corresponding methods of estimating w, V,¢?, and
the varances and covariances 1n equation 10 are also
avallable Several methods of estimating w, V, andg?
are summarized in (25) and a method of estimating van-
ances and covariances 1n equation 10 appears 1n (48) 10

Swamy and Schinasi1 show that, if all the unknown
parameters 1o equations 8 and 10 are replaced by
their respective sample estimates, then we cannot 1n
practice recognize an operational “unbiased’ predic-
tor with minimum variance 1n small sam‘ﬁles (73!
They also show that a umiversally preferred choice
among different estimation procedures for equations
7 and 9 1s not possible based on either the exact finite
sample distribution theory or the asymptotic theory

Akaike’s Information Criterion

Akaike has derived fiom information-theoretical con-
siderations a probability density function (pdf) which
may be expected to approximate the true pdf for a
variable (I, 2) The criterion he has used to find this
approximation 1s

Bip.g) = - | -

where p(y) 1s the true pdf for a variable y*, gly)is an
approximation to p(y), and the integration 1s over the
entue range of y* Clearly, this criterion can be wiil-
ten as

(y) )
™ log ‘: Py ] gydy, 15

B(p, g) = Eloggly) — Elogp(y) =< 0, (16)

where the expectation 15 with respect to the tiue
distribution of y*

Because the quantity on the right-hand side of equa-
tion 16 1s nonpositive, when [ % [ply} — gly)ldy = 0, as
shown by Rao (36, p 59), the greater the value of
Elogg(y) 1s, the closer the pdf g(y) is to the true pdf p(y)
in the sense of B(p,g) However, the statement that
the unknown true pdf, p{y), can be well approximated
by g(y) if and only if gy} maximizes Elogg(y) 1s useless
as it stands Deciding whether the condition 1s o1 1s
not satisfied or taking the expectation of logg(y) with
respect to p(y) 15 1mpossible without knowing the
family of pdf’s which covers the true pdf for y~ as a
special case The maximum hkelithood methed 15 ap
plied to a family of pdf°’s for this reason, which

19Swamy and Tinsley's (48) method of estimating variances and
covarlances extends Swamy’s earlier work {45, 46); which does con
siderably more than Chow's (7, p 340, 8, p 1,237) perfunctory
description of it as a "survey " Reinsel (1982, 1984} also presents
estimators and predicto: - (39, 40) He, however, basically repeats
the results recorded earlier 1n the above papers (47)



presumably covers the true pdf as a special case The
strict 1nequality in equation 16 1s an important step
in proving the consistency of maximum hkelihood
estimators (29, p 891) The only explicit statements
about the iterpretation of a pdf like p{y) 1n criterion
15 that we have found are in the applications of
criterion 15, where p(y) 18 thought of as the pdf of the
unknown true distribution Does this mean that dis-
tributions which do not possess pdf’s cannot be true?
A singular normal distribution does not possess a pdf
except on a subspace Prior distributions satisfying
Shiller’s smoothness restrictions do not possess pdf's
on the entie parameter space (26, 57) 1! Even though
stable distributions have pdf’s, these pdf's are
generally expiessed only as infinite series, which are
not easy to wark with Any of these distributions can
be true We should not say, then, that p(y) in criterion
15 1s the pdf of the unknown true distribution If ply)
15 restricted a prior: to belong to a particular famly of
pdf’s, thén criterion 15 may have the same defects as
the maximum likelithood criterion (63, p 8) For ex-
ample, if we assume that p(y) belongs to the family of
pdf's implied by a mixed autoregressive, moving
average model of fimite but unknown order, then
criterion 15 does not lead to consistent estimates of
the order unless 1t 1s modified, as 1n (22) (See (43))

Swamy and von zur Muehlen have developed some
sufficient conditions for the existence of different
famihies of distributions (52} Logic permits us to say
only that these families are true if their sufficient
conditions are true But, no one can determine the
truth of these sufficient conditions, assuming they
are coherent Our beliefs about these sufficient condi-
tions may be expressed as subjective probabilities,
which may then be transformed consistently into sub
jective probabilities on individual distributions (52)
The defect of criterion 15 1s that 1t 18 unable to take
1mto account'such probabilities

A justification of criterion 15 rests on the belief that
the entropy of a distribution is a good measure of
uncertainty Copas shows this betlief 15 not correct 1n
nonnot mal cases by way of an example where a com-
pany 18 operating under much greater uncertainty in
one of the two cases, though the entropies of distribu-
tions 1n the two cases are exactly the same (15) Copas
wrote that this result arises as a direct consequence
of the fact that the entropy of a distribution depends
only on the distrbution of the different heights of 1ts
pdf, paving no attention to the values of the variable
at which these various heights are attained Entropy
can be, therefore, a very imperfect measure of statis-
tical uncertainty B{p, g) should not be used as a

""There are apphcations of equation 15, where there 15 no men
tion of these points
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measure of the distance between g(y) and p(y) for this
reason, regatdless of any knowledge of the context
and restrictions 1t puts on the shape of distribution
one finds attractive

A possible alternative reaction is to note that, when
some conditions are satisfied, equation 15 provides
useful forecasts A set of such conditions 18 provided
by Shibata (44) He has proved that if p(y) 1s deter-
mined by an autoregressive process of infinite order
and if gly) 15 determined by an autoregressive process
of finite order K{<T)AR(K)), where the order K 1s
selected so as to maximize Elogg(y), or some other
modification of Elogg(y), then an asymptotic lower
bound 1s attained in the limit for the average mean
square error of an estimated conditional mean of
AR(K) This result 1s a large sample'analog of the éx
act fimte sample result that the conditional mean of
AR(K) 1s & mimimum average mean square error
predictor 1if AR(K) 18 the true model The key assump-
tion used by Shibata is that the order of the auto-
regression determiming the true pdf is infinite
Statisticians who believe in the principle of par-
simony or simplicity assign to such an assumption
the zero probability of being true (See (43)

It 15 difficult to determine whether or not Shibata's
demonstration constitutes an argument against the
information criterion 15, or against the principle of
parsimony or simphacity, or against de Finetti’s (16)
condition of fimite additivity In any case, autoregres-
sive models of finite or infinite order clearly 1gnore
sources (4) and (5) of forecast errors deseribed 1n equa-
tion 14 One cannot be sure that these sources are
absent in any forecasting situation Garcia-Ferre,
Highfield, Palm, and Zellner's results showed that
autoregressive models of order 3 for annual real out-
put growth rates of nine countiies did not generally
result 1n lower root mean square forecast errors rela-
tive to naive models, so relying solely on Shibata’s
theoretical result 1s difficult (17)

Importance of Comparing Different
Predictors .

Qakes has proved that no universal algorithm guar-
antees accurate forecasts forever, s¢ any attempt to
prescribe a single forecasting procedure, applicable to
all empirical situations, must be unsatisfactory (35)
No agreement of the values taken by a predictor
(based solely on the data known up to the current
period) with the actuals for a finite past time period
could possibly umply that the values of the predictor
would agree with the actuals in the future Past suc-
cess does not guarantee future success If we knew only
that a predictor had produced accurate forecasts 1n a
past period, we could not guarantee that any future




forecasts generated by the' predictor would be suffi-
ciently accurate, becszuse some predictors exist for
which the mtial values do not contrel the future
values

For this reasen, de Finett1 set up minimal criteria
that forecasts should be coherent based on data cur-
rently available (16) One predictor 1s as valid as any
other, 1f they all satisfy the ,requirements for
coherence based on what knowledge 1s available A
predictor that conforms to probabihty calculus or does
not violate any of the probability laws 18 coherent
This means only that de Finett1’'s concept of
coherence prohibits the use of any contradictory
resirictions or premise that 18 inconsistent relative to
the axioms of probability theory For example, if the
premises of equation 7 are contradictory, then we can-
not obtain coherent forecasts by using that model

If a forecaster must choose one predictor from among
several coherent ones, a likely choice would be the
one with the best track record The forecast can repre-
sent, at most, a measure of the confidence with which
one .expects that predictor to forecast an event based
on currently available evidence, and not based on
information vet to be observed Obtaining useful
codification of statistics that ywelds a satisfactory
predictor selector for all people in all settings 1s
impossible Each experimenter must choose among
various coherent predictors by comparing their past
forecasting performance

A Coherent Approach to Prediction

We consider a-Bayesian solution to the problem of find-
mg the entire predictive distribution Jeffreys’ book
(24) 18 mainly responsible for the following Bayesian
approach 1n Zellner’s (60, pp 306-17) and Geisel’s (18)
seminal work on comparing models Given our beliefs
in the form of a fimite set of exhaustive and mutually
exclusive models, M;, M,, , M, about the process
that has generated the values of the variable y*, we
can compute the marginal probability density func
tion (pdf) for y tmplied by the 1th model by

p{ylMl)= !P(Y|9|’M1)P(91|M1)dgn (17)
Rgl

where 8, 18 the vector of parameters appearing in M,,
p(y | 8,, M,} 1s the conditional pdf for v*given §, and
M,, p(6, | M,) 18 the prior pdf for 6,, and Ry, 1s the range
of 8, Let pr(M,) denote the prior probability of M, be-
ing true When a particular value of the random
variable y*, say y, 18 observed, we may employ Bayes’
theorem to revise the prior probability pr(M,) to
become the posterior probability, that 1s

pr(M,)p(y | M,)
priM,|y) =
E Pr(M i [ M, )
priMply [M,) (=1,2, ,n) (18
e
We may derive the predictive pdf by ‘
p(yT+,, l y)=1L pr(M, iy)p(yT+E | M, Y), (19)
1=1
where

plyTis | My, ¥) = | plyr+a | 61, M, )pl6, [ M,, y)dé,
Ry,

The denominator of the ratio on the right-hand side of
equation 18 18 not equal to the unconditional pdf for
y unlessM,, M,, » M,, are mutually exclustve and
exhaustive We did not violate any probability laws
1n deriving equation 19 In this sense, the predictive
pdf, equation 19, 18 coherent More important, equa

tion 19 gives.a coherent method of pooling the predic-
tive pdf's given by different competing models of the
same data-generating process, as long as the premises
of any of these models are not contradictory

If we use only one model, say M,, and do not use all
other models to generate the predictive pdf for yT+s,
then we set pr(M,) =1 and pr(M,) = 0 for: # 1 For
these values of pr(M,), 1t 15 obvious from 19 that
EyTie|¥) = Py M, ¥) Formulas 8 and 10 are
based on the assumptions that pr{model 7} =1 and
primodel 9) = 1, respectively These assumptions are
false f we view models 7 and 9 as approximations to
the true model because any approximately true model
18 neither absolutely true nor absolutely false
Because we do not know of any models that are
literally true, down to the last decimal point, some
analysts feel that all models are faise Boland says
this opinion 18 a self-contradietion (5, p 179) We do
not believe that self-contradiction 13 consistent with
Bayesian coherent behavior If we truly beheve that
all the models M, , M,, , M, considered 1n equation
18 are indeed false, then as coherent Bayesians, we
should be saying that priM,) =0for1=1, 2, , n
Otherwise, we would be contradicting ourselves If
priM,)=0for1=1, 2, , n, then formula 18 1s 1n-
determinate Our models can be true 1f we satisfy the
necessary condition of logical vahidity, although we
cannot establish their truth status
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Swamy and von zur Muehlen discussed probabihistic
logic as a valid tool for scientific analysis and inter-
pretation of causal relationships (52) This logic can
be used to merely bound (rather than specify) priM,),
if we have some beliefs about the sufficient conditions
under which M, 18 true Thus, scientific beliefs are
useful 1n quantifying pr(M,) The prior pdf’s for 6,
must also be consistent with these beliefs In this
sense, pr(M,) 13 related to p(d, | M,) Because we do not
know of any model that 18 hiterally true, we should
assign positive probabilities to more than one logically
valid model This assignment 15 warranted by the fre-
quent disagreement among economists as to which
model 15 superior to address a given 1ssue If any con-
sensus that ignores all but one of the opimons ex-
pressed 15 not satisfactory, then it 1s reasonable to
have more than one model with a positive probability
of being true The problem with the predictive pdf 19
18 that coming up with an exhaustive and mutually ex-
clusive set of models 15 difficult The prior pdfs
plo, [M)1=1,2, .n, which were selected based on
considerations of mathematical convenience, may not
be consistent with the values assigned to pr(M,),
1=1,2, ,n, and may not represent anybody’s
beliefs If we prefer model 7 to model 9 because the
Bayesian analysis of model 7 18 sumpler than the
Bayesian analysis of model 9, then our inferences
are 1ncoherent 1if the premises of model 7 are
contradictory

Linkage

Suppose that we have two different econometric
models giving two different predictions of an
unknown value yr,, We do not know which one to
choose because we do not know which one of these two
predictions will be closer to the actual value yr,,
This 15 not unusual 1n economics We will have more
than two models giving us more than two predictions
about the same value If these models are not mutually
exclusive and exhaustive, then we cannot use the
previousily discussed Bayesian approach However,
we can use the following non-Bayesian approach
under certain conditions

Let 91,-”3, ,9m'»p+5 be the "‘unbiased’’ predictors of
¥1+s E1ven by m different econometric models, and
assume that we have reason to beheve*that the ex-
pected squared dev1at10n of 91 T+ from ¥p,, 18 smaller

than that of any y}T+5 for =2, ,m Let
Yris= (Yz T HaaY:i T+s¢r ,Ym Tis)' and let
c=1{1,1, ,1) be an {m-1)x1 vector of umt

elements Suppose that yl T+s 18 correlated with the
predictor (¥ 7,4 — t91 T+s) With zero expectation- Then
there exists an (m+1)th predlctor whose expected
squared deviation from yT+s 15 smaller than that of

yl T+s
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This {m+1)th predictor 1s

A -~ P ~
¥m+l T+s=¥1,T+s —COVY1 Tras ¥ s — l?lAT+s)')
— ~ oy
Ivary 14, — Y1748l I\ T+ —t¥1.T4sh (20)

wilere all the variances and covariances are about
¥T+s.and for any matrnix A, A~ denotes a generalized
inverse of A The predictor 20 results from making
covanance adjustment in ?,,T+s with respect to the
concomitant variable (¥ 1., — L§1 T+s) with zero expec
tation (37, p 359)

However, 1t 15 doubtful that the predictors 91‘—;” and
¥ T+s g1ven by different models suffering from dif-
ferent types of specification errors will be "unbiased”
If Eyl T+s # E¥ 1y for 3 =2, ,m, which seems
likely, then the expected squared deviation of (20)
fiom yT+s will not be smaller than that of HTJ,S
because the predictor (¥ i — a}’n Tis) With nonzeiro
expectation 1s not a concomitant varlable suitable fol
making covariance adjustment in .Vl T+s» €ven when
91 T4+518 ‘unbiased” If we use sample estimates of the
vaniances and covariances m place of theiwr known
values used 1n equation 20, then we are no longer tn a
position to c1a1m that the expected squared deviation
of 20 from yT+5 15 always smaller than that of any
yj T+s (37, p 360) The predictor 20, based on esti-
mated variances and covariances will be incoherent 1f
the estimates violate any of the assumptions unde:
which the constituent predictors, 3’}, T+s'S, are derived

The difficulties presented by equation 20 are not en-
countered 1f we use equation 9 alone Because equation
9 15 a general model covering various fixed coeffi-
cients models as special cases (54) we can Justify using
this general model for predicting and abandoning the
method of pooling the predictions of different fixed
coefficients models, particularly when the premises of
the fixed coefficients models are contradictory

Stability Tests

Some econometricians would hike to see some evidence
against the stability of the coefficients of equation 7
before they admit that a version of equation 9
deserves their consideration Stability tests are sup-
posed to give such evidence A brief description of
these tests appears 1n (30, pp 575-8) Based on our
discussion of Birnbaum’s confidence concept 1n Part |
(4, 53), a full disclosure of statistical evidence takes
the form df = (reject Ho 1n favor of Hy, a, Sy} or
d; = {reject H; 1n favor of Hy, 1, Bu), where Hy = a
null hypothesis, H, = an alternative hypothesis,
ar = the probabuility of type I error, and 8y = the prob
ability of type 1I error Can we come up with such
disclosures about coefficients’ stabihity?




We divide the available time seres of length T on
variables 1n equation 7 mmto G mutually exclusive
subperiods, with m, observations in the first sub-
period, and m, observations in the second subperiod,
go that min(m,,m;, ,mg)> K Note that L%,
m, = T Assumng that the coefficient vector = vares
between subperiods but not within each subperiod,
we can depict the observations as

_ _ a1 Fa-
vil [xo 0 ofn] [
Y; 0 X, 0| F—;

= + , e

_}'E_J [0 0 Xg g G |

or more compactly as
y* = X7 + €%, (22)

where for1=1,2,. ,G, yrls a m, x1 vector of obser-
vations on the dependent variable, X, 18 a m, x K
matrix of rank K of observations on K independent
nonstochastic varables, n, 18 a Kx1 vector of
regression coefficients, ¢, 18 a m, X 1 vector of
stochastic disturbances, y* = (v, y;,'.. val
7 =lni,ms, - 6], e =[efe3! ea’l’, and X
represents the block-diagonal matrix on the right-
hand side of equation 21 The vector ¢* 18 assumed to
have a normal distribution with mean.zero and the

covanance matrix I

The null hypothesis of coefficient stability can be
stated as

Hy my=my = 7g, 23
which can be expressed as
1 1 o 00 ofr, | (o]
0 I-I 00 Ofxy | 10
Rr = = (24)

1 -1 0 Ta-1 0
0 I "I L‘II'G | LOJ

¢ 0 0
6 0 0

The statlhtlz::s literature states that under the null
hypothesis (23), the statistic, (T —GK)/(G-1)K times

y* XX TR RRK T R HRE THXPIX Ty (g5)
y*Tly* -y* TIX(X T1X- X T-ly*

15 distributed as F with (G - 1)K and T - GK degrees
of freedom (59)

Suppose that we use statistic 25 to test the hypoth-
es1s 23 agamnst the alternative hypothesis,

H; Rr = 0, (26)
and come up with the decision,
(reject Hg in favor of Hy, a1, B1r) 27)

If the values of oy and 8y 1n the statement 27 are suffi-
clently small, then the statement 27 provides strong
but mneonclusive evidence against coefficients’ stability
The values of ¢ and 8 1n the statement 27, however,
depend on the values of R and T used If we use an mn-
correct value of either R or I, then the values of a
and g will be incorrect and the evidence of the state-
ment 27 will be misleading Even 1if our assumptions
about the forms of R and L are correct, and if we use a
sample estimate of T 1n place of 1ts known value used
1n the statistic 25, then we may not know the exact
distribution of the statistic 25 If we use an asymp-
totic distribution of the statistic 25 to evaluate o and
Bu, then due to the approximate nature of the values
of o1 and B, the evidence 1n the statement 27 may be
misleading It 1s also poesible that for some sample
estimates (or a prior: values) of £, g > 05 and
fin = 05 In that case, the evidence in the statement
27 18 worthless

Other difficulties arise because 26 is not the only
alternative hypothesis of interest There 18 no
guarantee that the coefficients of model 7 do not
change 1n periods other than those specified by the
hypothesis 26 Model 9 15 appropriate if the alter-
native hypothes:s that = changes at any or every't 1s
true Under this realhistic alternative, the statistic 25
13 not defined Lattle reason exists to use the test
statistic 25 if we want to test the null hypothesis 23
against this realistic alternative hypothesis To
divide a time series into event-conditioned subperiods
as 1n equation 21, econometricians must have consid-
erable knowledge of their data One cannot be content
with casual inspection of a few stereotyped measures,
such as F values, as 18 common practice in much ap-
plied econometric work

An alternative to the statistic 25 1s the CUSUM or
CUSUM-square statistic of Brown, Durbin, and
Evans (30, pp 576-8) These alternative statistics are
based on recursive residuals which are not unique
We can get T-K nonzero and K zero recursive
residuals for model 7 (where T 18 the number of obser-
vations and K 1s the number of independent vari-
ables) We get different T - K recursive residuals
depending on which K of the T residuals are set equal
to zero Computing these residuals usually means T
18 arbitrarily set equal too®] Therefore, the values of
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oy and Sy for the test of the null hypothesis in 23
against the alternative hypothesis that the coefficient
vector of equation 7 changes at some unknown
periods based on the CUSUM (or CUSUM square)
statistic depend on the value of £ employed and also
on which K of the T residuals are set equal to zero

For this reason, two different econometricians work

g with two different recursive residuals for the
same model and data can come up with two different
paurs of values of (o, fu) for the CUSUM (or CUSUM-
square) test These pairs of values may give contradic-
tory conclusions It 1s also clear that the CUSUM (or
CUSUM-square) test cannot detect shifts 1n coeffi

cients 1n any period If we set the recursive residuals
of that period equal to zero This discussion and the
discussion 1n the previous paragraphs show that the
stability tests are not infor mative and can be mislead-
ing By contrast, we can conclude that the coefficients
of equation 7 are unstable 1f using equation 9 produces
a noticeable and 1mportant improvement 1n forecast-
ing performance relative to that of equation 7 12

Even 1n large samples, the CUSUM {or CUSUM-square)
test does not give correct conclusions because, under
the alternative hypothesis that = in 7 changes at
some unknown periods, 1n some unknown manner,
the power, (1 - f3y;), of this test does not tend to 1 as
the sample size tends to o The basic difficulty 1s that
the time-varying coefficients of equation 9, 1z, + J£ ,
are not consistently estimable (See the uncertainty
principle formulated by Bwamy and Tinsley (48,
P 117))The seductive danger of stability tests 1s that
they pretend to a kind of relevance which their logical
machinery cannot justify

Some Applications

The authors have employed stochastic coefficients
models before to forecast several economic variables
for several time periods The stochastic coefficients
model they employed can be represented by

Ve = X{m + X{e} (28)

where the K x1 vector e:'m assumed to follow a first-
order autoregressive vector process Equation 28 18 a
restricted version of equation 9 obtained by zeroing
the vector z;, and setting J,Efequal to e:'

12]¢ 15 fair to point out that, like recursive residuals, forecasts
based on asymptotically efficient estimators of the parameters of
equations 7 and 9 may also be arbitrary when the asymptotic effi
ciency 15 defined as in Lehmann (34, p 415) For example, when the
solution of the likelihood equations for the parameters of equation
7 or 915 not unique, asymptotically efficient hikelihood esttmators
such as the one step estimator suggested by Lehmann (34, p 435)
depend on a somewhat arbitrary iniial estimator and need no
longer agree with the meximum likelihood estimator even for large
samples However, the arbitrariness of asymptotically eflicient
estimators 15 of a very different nature frem those of recursive
residuals
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The reasons for considering equation 28 include

¢ Employing model 28, though restrictive, 1s more
general than mode] 7

* Estimating model 28 does not need as much
(magnetic) core on the computer as estimating
model 9 needs

¢ Comparing the forecasts of models 7, 28, and 9
shows whether proceeding 1n order of increasing
complexity increases the accuracy of forecasts

* Working with model 28 has computational
benefits which produces fewer unknown param
eters than model 8

A natural approach to investigating the advantages
and disadvantages of equation 28 1s to apply Zellner’s
prediction principle (61, p 32) Split the available time
series 1nto two nonoverlapping parts The period of the
first part 1s called the estimation (or fitting) period and
the period of the second, the forecast period Let
t=12, , T be the fitting period and let t = T+1,
T+2, ,T+n be the forecast period Estimate model
28 and 1ts fixed coefficients counterpart by using the
first part and then use these estimated models along
with the values of the independent variables for the
forecast period to predict the values of the dependent
variable for the foiecast period without revising the
parameter estimates We call such forecasts nonse-
quential or multi-step-ahead 2

The authors have used Swamy and Tinsley’s (48)
method described 1n Part II of this article (54) to
estimate equation 28 The maximum likelihood esti-
mates of the parameters of equation 28 may not exist,
and Swamy and Tinsley’s iterative method of esti-
mating these parameteis 1s not guaranteed to con-
verge, 30 we do not iterate on Swamy and Tinsley’s
method until convergence (48) Because equation 28
fits the sample values perfectly whenever an estimate
of x{m 15 added to the cor1esponding p1ediction of x(c;,

131t 13 obvious that this procedure 13 not operational if the values
of the independent variables for the period T+s are not available at
the time of forecasting yr., Since our purpose 1s to ohtain separate
estimates of the terms on the right hand side of equation 14, we
have to wse these values of independent variables Without
separating the second of these terms from the rest, 1t 15 not possible
to evaluate forecast errors arising from coeflicients' instability
Forecasters are also interested in knowing the magnitudes of each
term on the right hand side of equation 14 Thus, we are solving
here a problem which 18 more mmportant than a practical fore
casting problem

If we estimate sequentially the fixed parameters using all past
data prior to each of the forecast periods, T+1, T+2, ,T+n, then
we call the corresponding forecasls sequential or one step ahead
The primary purpose of Swamy and Schinast’s article (51) 15 to
demonstrate that the one step ahead forecasts will not necessar:ly be
closer to the realized values of the forecasted variable than the
mults step-ahead forecasts There 18 no non-Bayesian theory which
mandates prediction with sequential estimation



measures of within-sample fits are useless to disctim-
mate among the estimates obtained at different itera-
tions of Swamy and Tinsley’s procedute To avoid
overfitting, we choose estimates which minimize the
root mean square forecast error

[ i )IE: (§T+s - YT+5)2]%:
s=]

where QTTB 15 a forecast of yr4s 1N some period s after
the terminal period T of the fitting period The root
mean square forecast error 15 a generally good
substitute for an averaged within-sample residual
sum of squares From L iterations of the Swamy and
Tinsley procedure, we obtain L different estimates
of the unknown parameters in model 28 Insert-
ing these estimates into formula 10 furnishes L dif-
ferent predictions for each forecast period We show
these predictions by 91-”,1, s=1,2, , n,
r=1,2, ,L These predictions give L different
values for the root mean square forecast erro
[%l v (§T+s,1 —yrsP1%,1=1,2, ,L We select the

g=1

estimates of the unknown parameters by minimizing
these L values * We use these minimum root mean
square forecast error estimates to forecast the values
of y:'= beyond the period T+n The sample beyond the
period T+n 1s used to compare the forecasting pet-
formance of an estimated stochastic coefficients
mode] with those of other models

To estimate the fixed coefficients counterpart of equa-
tion 28, Swamy and his co-authors considered both
the classical least squares procedure and an approx-
imate generalized least squares procedure based on a
sample estimate of the error covariance matrix They
also applied approximate Bayes and ridge-type
shrinkage estimators to equation 7 with and without
serial correlation 1n the error term These estimates
allow us to evaluate the corresponding mimimum
average mean square error predictors for the forecast
period, T+1, T+2, ,T+n, and the root mean
square forecast errors of these predictions are com-
puted We obtain one root mean square forecast erro
for each fixed coefficients estimator We choose the
estimates of the fixed coefficients corresponding to
the smallest of these root mean square forecast errois

Table 1 shows the results of the authors’ computa.
tions Use of time-varying, stochastic coefficients
modeling may substantially reduce out-of-sample
forecast errors, similar to reductions obtained 1n
several earlier empirical applications of the stochastic
coefficients models listed 1n table 1

4The arbitrariness of these estimates 1s less harmful 1n terms of
the accuracy of forecasts they lead to than the arbitrariness of
prior distributions

The results n table 1 generally turned out favorably
to the stochastic coefficients models because the
minlmuin average mean square error predictors cor-
responding to these models are evaluated at then
respectlve minimum root mean square forecast error
estimates of unknown parameters These results can-
not be reproduced using any arbitrary a priort values
of parameters This statement not only elaborates
upon footnote 14 but also explains why Alexander
and Themas (3) and Wolff (58) find that the forecasts
of exchange rates generated by the Kalman filte:
with a priort values of parameters are poor relative-to
the forecasts of random walk meodels '3

We used equation 28 to estimate an agricuitural in-
vestment model (see 10 for a complete discussion of
the model) Investment 15 assumed to be generated by
a linear version of the flexible accelerator where

Kt - KL_] = b|_ + bmwt + butUt + B;Kq__l N (29)
and W 1s the ratio of input to output price, K 158 the
capital stock, and U is the implicit rental rate of capital

We compared the usefulness of the stochastic coeffi-
cients specification’s ferecast accuracy with six other
models 1n five-period out-of-sample tests Although
the six alternatives do not exhaust all possible

models, they help evaluate the predictive capability -

of the stochastic coefficients investment model

One of the s1x models 15 the fixed coefficient analogue
of the stochastic coefficients investment model Net
investment 1s regressed on a constant, an inputfoutput
price ratio, a rental rate, and lagged capital stock
Two other models are variants of the fixed coefficients
mode]l One mode!l includes net farm income (incomsé)
as a regressor, the other 1ncludes a time trend (time)
The fourth model 1s a fixed coefficient, nonhnear flex-
ible accelerator, where the adjustment parameter 1s a
function of the ratio of input to output prices and the
rental rate The final two models are atheoretical In-
vestment 15 assumed to be a stochastic process follow-
g both a first-order autoregressive AR(1) process
and a second-order autoregressive AR(2) process

Table 2 shows that the stochastic coefficients model 1s
the superior predictor However, an unambiguous indi-
cator of forecast accuracy does not exist Each indicator

has 1ts own risk function For example, a mean absolute |

error criterion 15 based on an absolute deviation.loss
function, while a mean square error criterion 1s based
on a quadratic loss function Therefore, different
analysts may prefer different models, depending on
their assumed loss function Considering a wide variety »

15For examples of the use of stochastic coefficients models n a
policy simulation framework, see (9, 11, 14)
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Table 1—Out-of-sample root mean square forecast errors of stochastic coefficrents and fixed coefficients estimators!

Dependent Fitting  Forecast  Stochastic Fixed Random Improvement
Source variable period? period coefficients  coefficients®  walk? over best
alternative
Percent
Conway, Hallahan, Beef retail price 1968 Q1- 1980 Q1- 729 14 00 — 48
Stillman, and Prentice Us) 1979Q4 1983 Q4
(1987)
Pork retail price 1968 Q1- 1980 Q1- 583 291 — -100
Uus) 1979Q4 1983 Q4
Broiler retail 1968 Q3 1980 Q1- 3178 6 02 — 37
price (U S) 1979 Q4 1983 Q4
Conway and Gill Fixed weight 1960Q1 1981 Q1
(1987) GNP 1nflation 1980 Q4 1984 Q4 200 395 — 49
rate (U §) !
LeBlanc, Kitchen, Exchange rate 1975 9- 1985 3~ 036 048 0049 25
and Conway (1988) US$%$/Canada $ 19852 19857
Swamy, Kennickell, and M1 aggregate 1960 Q1- 1982 Q3- 4 644 19 804 — 77
von zur Muehlen (1986) (U S8) 1982 Q2 1985 Q2
Swamy and Tavlas Monetary base 1967 Q1- 1984 Q4- 562% . 534 1767 -5
(1989) (Australia) 1984 Q3 1985 Q4 ' -
Swamy and'Tavlas Monetary base 1967 Q1- 1986 Q1- BR35 960 978 8
(1989) (Austraha) 1984Q3 1987Qz
Swamy and Tavlas M1 aggregate 1967 Q1- 1984 Q4- 19225 2109 2716 9
(1989) (Australia) 1984 Q3 1985Q4
Swa;ny and Tavlas M1 aggregate ‘1967 Ql- 1986 Q1- 9395 1159 1651 19
(1989) (Australia) 1984 Q3 1987Q2 .
n
Swamy and Tavlas M3 aggregate 1967 Q1- 1984 Q4- 6595 1173 2706 44
(1989) (Australia) 1984 Q3 1985Q4
Swamy and Tavlas M3 aggregate 1967 Q1- 1986 Q1- 7745 1555 1137 az
(1989) (Australia) 1984 Q3 1987 Q2
Swamy, Kolluri, and Treasury bill 1960 Q1- 1984 Q1- 411 585 658 Y30
Singamsett: (1988) rate (U S) 1983 Q4 1986 Q4
Swamy and Schinasi Stock prices 1900-73  1974-83 680 B77¢ 1801 22
(1986) .
Schinasi and Swamy Exchange rate '
(1987) dollar/pound 19733-  19804- 2170 3540 3030 28
1980 3 1981 6
dollar/yen 1973 3- 1980 4- 3270 4030 3 960 17
1980 3 19816 i
dollar/ 1973 3- 1980 4- . 2170 2 560 3 690 15
deutschmark 19803 1981 6
Schinas: and Swamy G-10 weighted 1975 1- 1983 1- 2009 2181 2 056 2
(1988; average dollar 198212 1984 12
Schinasi and Swamy G-10 weighted 1976 1- 1984 1- 2618 2715 2873 4
(1988) average dollar 1983 12 198512 i
Schinasy-and Swamy (-10 weighted 19731-  19851- 2311 2315 2712 0
(1988) average dollar 1984 12 1986 12

18qiare root'of an average of sum of sguared deviations multiplied by 100
*Numbers shown after years signify either quarters (Q) or specific months

3Forecasts based on the best predicting estimates

fy, = y,_| + white noise

SForecasts of the same variable for these two different forecast periods are based on 1dentical parameter estimates

8Sequential forecasts
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Table 2—0Qut-of-sample net investment forecast, 1981-85

Stochastic Fixed Flexible
Year Actual coefficients coefficients Income Time accelerator AR1 AR2
Mtlhon dollars (1972)
1981 -993 —-385 354 623 602 308 610 566
1982 -2,017 -1,169 321 -359 987 120 543 500
1983 -1,962 -1,369 343 -818 1,349 135 502 472
1984 -1,815 —1,359 449 614 1,764 157 478 460
1985 -2,104 —1,845 33 198 1,580 169 463 460

of forecast and other criteria, including goodness of fit
and tracking measures, 15 preferable

Table 2 presents each model’s forecasts for 1981-85
The forecast statistics, based on years with dramatic
declines 1n agricultural investment, provide an ex-
cellent test of forecast accuracy The absolute error
shows that the stochastic coefficients model dominates
the fixed coefficients models each year After missing
the actual value by a relatively wide margin 1n 1982
($849 mullion), the stochastic coefficients’ forecast 1m-
proves through 1985, where the absolute error 15 $258
mithon The evaluation statistics for each model aie
mean absolute error (MAE), mean absolute percen-
tage error (MAPE), root mean square error (RMSE),
and Theil's U2 coefficient Table 3 shows that the
stochastic coefficients model 1s the most accurate out-
of-sample forecaster The mean absolute error
statistic (MAE) 1s representative of the stochastic
coefficients’ dominance over 1ts competitors The
nearest competitor, the flexible accelerator model, 15
more than three times greater. in MAE The stochas-
tic coefficients model outperforms the other six
models for nearly any sensible risk function

Conclusions

By accepting that the aim of inference 1s to generate
predictions for future observables, we can see that the
problem of comparing alternative model specifications
18 resolved by comparing the accuracy of predictions
the models generate and choosing the model that
predicts best Experience with such comparisons sug-
gests that allowing all coefficients 1n an economic
relationship to vary over time may contribute to 1m-
proved forecasts The economics literature has long
recognized that slopes of economic relationships may
not be constant through time because of aggregation
effects and policy changes Therefore, the assumption
of time-varying coefficients cannot be so easily dis-
missed on the grounds that, when coefficients vary,
“the concept of seasonal adjustment can become
rather confused” (21, p 1,014), or that increasing the
complexity of the models used to generate predictions
does not necessarily lead to better predictions

Table 3—Forecast evaluation statistics!

Model MAE MAPE RMSE Thell's
U2
Stochastic coefficients 533 34 189 089

Fixed coefficients 2,297 133 217 103
Fixed coefficients
with income
Fixed coefficients
with time 2,078 119 215 102
Flexible accelerator 1,829 109 213 100
AR1 3,034 170 224 106

AR2 1,956 112 214 101

2,269 131 217 102

!Mean value for net investment during, 1981-85 13 $1 78 bilhion

Swamy and Tinsley’s minimum root mean square fore-
cast error estimates will also be useful 1n assessing
Bayesian prier distributions (48) If these estimates
imply a distribution for the coefficients, which 1s
more general than a Bayesian prior distribution 1m-
phied by our prior beliefs, then such prior distribu-
tions are 1ncapable of producing accurate forecasts

References

1 Akaike, H “"Maximum Likelihcod Identification
of Gaussian Autoregressive Moving Average
Models,” Biometrika Vol 60, 1973, pp 255-65

2 Akaike, H “A New Look at the Stochastic Model
Identification,” I E E E Transaction ond Auto
matic Control. A-C-19, No 6, 1974, pp 716-22

3 Alexander, D, and LR Thomas “Monetary/.
Asset Models of Exchange Rate Determination
How Well Have They Performed in the 1980’57
International Journal of Forecasting Vol 3
1987, pp 53-64

3

4 Birnbaum, A “The Neyman-Pearson Theory as
Decision Theory, and as Inference Theory, with a
Criticism of the Lindley-Savage Argument for
Bayeman Theory,” Synthese Vol 36, 1977,
pp 19-49



10

11

12

13

14

15

16

18

Boland, LA The Foundation of Ecornomic
Method London George Allen and Unwin, 1982

Chipman, JS “Estimation and Aggregation 1n
Econometrics An Application of the Theory of
Generalized Inverses,” Generalized Inverses and
Applications (ed M Zuhair Nashed) New York
Academic Press, 1976

Chow, GC Econometrics New York McGraw-
Hall Book Co, 1983

Chow, GC "“Random and Changing Coefficient
Models,” Handbook of Econometrics (eds 7
Griliches and M D Intriligator) Vol 2
Amsterdam North-Holland, 1984, pp 1,213-46

Conway, RK “An Examination of the ‘Schuh
Controversy’ Have Agricultural Exports Become
Elastie,” Applied Economics Vol 19, 10987,
pp 853-73

Conway, R K, J Hrubovcak, and M LeBlanc A
Forecast Evaluation of Capital Investment in
Agriculture US Dept Agr, Econ Res Serv
TB-1732, Aug 1987

Conway, RK, J Hrubovcak, and M LeBlanc
“The Structure of Agricuttural Investment Com-
paring a Flexible Accelerator with Stochastic
Coeffictents,” Journal of Business & Economuc
Statistics Vol 6, 1988, pp 23140

Conway, R K ,,C B Hallahan, R P Stillman, and
PT Prentice Forecasting Livestock Prices Fixed
and Stochastic Coefficients Estimation US
Dept Agr, Econ Res Serv TB-1725, May 1987

Conway, RK , and G Gill Is the Phillips Curve
Stable? A Time Varying Parameter Approach
US Dept Agr, Econ Res Serv Staff Report No
AGES861209, May 1987 and forthcoming Journal
of Policy Modeling

Conway, RK , R Durst, J Hrubovcak, and M
LeBlanc Ecenomic Consequences of Tax Reform
on Agricultural Investment US Dept Agr,
Econ Res Serv TB-1741, Feb 1988

Copas, J B "Discussion of Professor Bernardo’s
Paper, Reference Posterior Distributions for
Bayesian Inference,”” Journal .of the Royal
Statistical Society Series B Vol 41, No 2, 1979,
pp 128-30

de Finetty, B The Theory of Probability: Vol 1
New York John Wiley & Sons, 1974

17

18

19

20

21

22

23

24

25,

26

27

Garcia-Ferrer, A, R A Highfield, F Palm, and
A Zellner *“‘Macroeconomic Forecasting Using
Pooled International Data,” Journal of Business
& Eeconomiec Statisties Vol 5, No 1, Jan 1987,
pp 953-67

Geisel, MS "Bayesian Comparison of Simple
Macroeconomic Models,” Studies in Bayeswan
Econometrics and Statistics (eds SE Fienberg
and A Zeliner) Amsterdam North-Holland
Publishing Company, 1975, p 227 56

Goel, PM, and MH DeGroot “Only Normal
Distributions Have Linear Posterior Expecta-
trons in Linear Regression,” Journal of the
American Statistical Assoctation Vol 175,
No 372, Dec 1980, pp 895-900

Goldberger, A S “Best Linear Unbased Predic-
tion mm the Generalized Linear Regression
Model,” Journal of the American Statistical
Association Vol 57, No 298, June 1962,
pp 369-75

Granger, CW J,and NW Watson “Time Series
and Spectral Methods 1n Econometrics,” Hand-
book of Econometrics (eds Z Griliches and M D
Intriligator) Vol 2 Amsterdam North-Holland,
1984, pp 979-1,022

Hannan, E J *The Estimation of the Order of An
ARMA Process,” The Annals of Statistics Vol 8,
No 5, 1980, pp 1,071-81

Harville, D "Extension of the Gauss-Markov
Theorem to Include the Estimation of Random
Effects,” The Annals-of Statistics Vol 4, No 2,
1976, pp 38495

Jeffreys, H Theory of Probability 3rd edition
London Oxford University Press, 1967

Judge, GG, WE Gniffiths, R Carter Hill, H
Lutkepohl, and TC Lee The Theory and Prac
tice of Economeirics 2nd edition New York John
Wiley & Sons, 1985

Kashyap, AK,PAVB Swamy,JS Mehta, and
RD Porter "Further Results on Estimating
Linear Regression Models With Partial Prior
Information,” Economic Modelling Vol 5,No 1,
Jan 1988, pp 49-57

Keating, JP, and RL Mason “Practical
Relevance.of an Alternative Criterion 1n Estima-
tion,” The American Statisticcan Vol 39, No 3,
Aug 1985, pp 2034



28

29

30

31

32

33

34

35

36

37

38

39

Keating, JP, and RL Mason “James-Stein
Estimation From an Alternative Perspective,”
The American Statistictan Vol 42, No 2, May
1988, pp 1604

Kiefer, J , and J Wolfowitz "Consistency of the
Maximum Likelihood Estimator in the Presence of
Infinitely Many Incidental Parameters,” Annals
of Mathematical Statistics Vol 27, 1956, pp
884-906

Kmenta, J Elements of Econometrics 2nd edi-
tion New York Macmillan Publishing Co , 1986

Kourouklis, S, and C C Paige "“A Constrained
Least Squares Approach to the General Gauss-
Markov Linear Model,” Journal of the American
Statistical Assoctation. Vol 76, No 375, Sept
1981, pp 620-5

Lane, DA, and WD Sudderth ‘“Coherent Pre-
dictions Are Strategic,” The Annals of Statistics
Vol 13, No 3, 1985, pp 1,244-48

LeBlanc, M, J Kitchen, and RK Conway "A
Stochastic Coefficents Interpretation of Ex-
change Rate Models "’ Paper presented at Eco-
nomic Dynamics and Control Conference, Arizona
State Umiversity, Tempe, Mar 1988

Lehmann, EL Theory of Point Estimation New
York John Wiley & Sons, 1983

Qakes, D "Self-Calibrating Priors Do Not
Exist,” Journal of the American Statistical
Assoctation Vol 80, No 390, June 1985, p 339

Rao, CR Linear Statistical Inference and Its
Applications 2nd edition New York John Wiley
& Sons, 1973

Rao, CR “Least Squares Theory Using An
Estimated Dispersion Matrix-and Its Application
to Measurement of Signals,” Proceedings of the
Fifth Berkeley Symposium on Mathematical Sta-
tistics and Probability Vol 1 Berkeley Univ of
Califormia Press, 1967, pp 355-72

Rao, CR “Characterization of Prior Distribu-
tions and Solutions to a Compound Degision
Problem,” The Annals of Statistics Vol 4, No 5,
1976, pp 823-36

Remnsel, G “Multivariate Repeated-Measure-
ment or Growth Curve Models With Multivariate
Random-Effects Covariance Structure,”’ Journal
of the American Statistical Association Vol 77,
No 377, Mar 1982, pp 190-95

40

41

42

43

44

45

46

47

48

49

50

Reinsel, G “Estimation and Prediction 1n a Mul-
tivariate Random Effects Generalized Linear
Model,” Journal of the American Statistical
Association Vol 79, No 386, June 1984, pp
406-14

Schinas;, GJ, and PA VB Swamy '‘The Out-
of-Sample Forecasting Performance of Exchange
Rate Models When Coefficients Are Allowed to
Change,” International Finance: Discussion
Paper # 301 Fed Res Board, 1987

Schinasi, GJ, and PA V.B Swamy “Forecast-
1ng the G-10 Weighted Average Dollar,” Memo-
randum to Exchange Rate Forecasting Group
Fed Res Board, 1988

Shibata, R '"Selection of the Order of an
Autoregressive Model by Akaike's Information
Criterion,” Biometrika. Vol 63, No 1, 1976, pp
117-26

Shibata, R “Asymptotically Efficient Selection
of the Order of the Model for Estimating Param-
eters of & Linear Process,” The Annals of Statis-
tics Vol 8, No 1, 1980, pp 147-64

Swamy, P A V B Statistical Inference in Random
Coefficient  Regression Models New York
Springer-Verlag, 1971

Swamy, PA VB “Linear Models with Random
Coefficients,” Frontiers in Econometrics {ed P
Zarembka) New York Acedemic Press, 1974, pp
143-68

Swamy, PAV B ,andJ S Mehta “Bayesian and
Non-Bayesian Analysia of Smitching Regressions
and of Random Coefficient Regression Models,”
Journal of the American Statistical Association
Vol 70, No 351, Part 1, Sept 1975, pp 593-602

Swamy, PAVB, and PA Tinsley “Linear
Prediction and Estimation Methods for Regres-
sion Models with Stationary Stochastic CoefTi-
citents,” Journal of Econometrics Vol 12, Feb
1980, pp 103-42

Swamy, PAV B, RK Conway, and P von zur
Muehlen “‘The Foundations of Econometrice—
Are There Any?’ Econometric Reviews Vol 4,
No 1, 1985, pp 1-120

Swamy, PAVB, AB Kennickell, and P von
zur Muehlen “Forecasting Money Demand With

Econometric Models ”’ Special Stucies Paper No
196, Fed Res Board, 1986

19



51

52

53

54

65

20

Swamy, PAVB, and GJ Schinas1i “Should
Fixed Coefficients be Reestimated Every Period
for Extrapolation®’ Special Studies Paper No
213, Fed. Res Board, 1986, and forthcoming
Journal of Forecasting

Swamy,PA VB, and P von zuor Muehlen “Fur-
ther Thoughts on Testing for Causality wath Eco-
nometric Models,” Journal of Econometrics Vol
39, Nos 1 and 2, Sept /Oct. 1988, pp 10547

Swamy, PAVB.,, RK Conway, and MR
LeBlanc “The Stochastic Coefficients Approach
to Econometric Modeling, Part I A Critique of
Fixed Coefficients Models,” The Journal of
Agricultural Economics Research Vol 40, No 2,
Spning 1988, pp 2-10

Swamy, PAVB, RK Conway, and MR
LeBlanc "The Stochastic Coefficients Approach
to Econometric Modeling, Part II Description
and Motivation,” The Journal of Agricultural
Economics Research Vol 40, No 3, Summer
1988, pp 21-30.

Swamy, PAVB, and GS Tavias “Financial
Deregulation, The Demand for Money, and Mone-
tary Policy in Australia,” IMF Staff Papers Vol
36, No 1, Mar 1989

56

57

58

59

60

61

Swamy, PAVB, BR Kolluri, and RN
Singamsetts “What Do Regressions of Interest
Rates on Deficits Imply?”’ Finance and Economics
Discussion Series No 3, Fed Res Board, 1988

Thurman,SS,PA VB Swamy, and J S Mehta
“An Examination of Dhstributed Lag Model Coef-
ficients Estimated With Smoothness Priors,”
Communications in Statistics — Theory and
Methods Vol 15, No 6, June 1986, pp 1723-50

Wolff, C C P “Time-Varying Parameters and the
Out-of-Sample Forecasting Performance of Struc-
tural Exchange Rate Models,” Journal of
Business and Economuc-Statistics Vol 5, No 1,
Jan 1987, pp 87-98

Zellner, A “An Efficient Method of Estimating
Seemngly Unrelated Regressions and Tests for
Aggregation Bias,” Journal of the Amerwcan
Statistical Association Vol 57, No 298, June
1962, pp 348-68

Zellner, A An Introduction to Bayesian Inference
tn Econometries New York John Wiley & Sons,
1971

Zellner, A “Bayesian Analysis 1n Econometncs,”
Journel of Econometrics Vol 37, No 1, Jan
1988, pp 27-50



