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Dynamic Factor Demands Using Intertemporal Duality 


Bruce A. Larson 

Abstract. Intertemporal duality can be used for em
pirical research to denve a system of optimal choice 
functIOns (dynamIc factor demands and output sup
pItes) consistent wtth an explICIt dynamIc optimIzatIOn 
framework While the hterature on mtertemporal 
dualtty focuses on mfintte-horlzon autonomous prob
lems, many app/ted problems cannot be analyzed 
wtthm thIS framework ThIS arlLcle uses mtertemporal 
duahty to specify a system of optImal choIce functIOns 
for a broader and less restrlctwe set of mtertemporal 
plannmg problems 

Kegwords. Intertemporal duaLLty, dynamlc factor 
demands, HamIlton-JacobI equatIOn, dynamIC 
opt~mLZatwn 

Agncultural productIOn IS Inherently uncertam and 
dynamIC Lags eXIst between varIable mput use and 
output reahzatlOn, and bIOlOgIcal and manufactured 
assets are managed over tIme To analyze such dynamIC 
productIOn processes, agncultural economISts have con
tmually searched for Improved 'empmcal methods to 
analyze shortrun and longrun decISIOns and explam 
response to pnce, pohcy, and techmcal changes 

OptImal resource allocatIOn and productIon has become 
a common Issue analyzed at the theoretICal level (1, 2, 6, 
13, 15, 19, 30) 1 Given the profound Influence of static 
duahty theory on theoretical and emplflcal mvestlga
tlons of fIrm and consumer behaVIOr (4, 5, 8, 9, 12, 21, 
31), literature on duality relationships for dynamIC 
optimIzatIOn problems has also grown (3, 10, 14, 17, 
26) For certaIn dynamiC optimizatIOn problems, 
duahty relationships proVide a convement method for 
modelIng optImal chOIce functIOns (output supplies, 
consumptIOn and f~ctor demands, Investment 
demands) 

For example, In the context of an adjustment-cost 
model of the fIrm, Epstem develops the duahty be
tween a productIOn functIOn and the maXimized pres
ent value of profIts, which IS then explOIted to denve 
the fIrm's system of mvestment,and factor demands 
via the dynamIC analogue of HotellIng's Lemma (17) 
Cooper and McLaren proVide Similar results m the 
context of consumer theory (I4) Chambers and Lopez 
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generahze Epstem's problem and extend theIr results 
to a dynamIC model of the fInanCially constraIned 
farm household and to a model of optImal fIshenes 
management (10) Taylor and Monson, and Vasavada 
and Chambers use thiS approach to study mvestment 
m U S agrIculture (33, 36) The dynamiC duahty 
approach could be apphed to many mtertemporal 
plannmg problems where assets are managed over 
time, mcludlng ammal husbandry, mmlng indus
trIes, and forestry or agro forestry productIOn 

Cooper and McLaren dlstmguIsh three types of duahty 
relatIonshIps for dynamIC optImizatIOn problems (1) 

atemporal duahty, whICh refers to the relatIOnship 
between Instantaneous functIOns at one pOint m time, 
such as between utihty and ind,rect utlhty functIons, 
(2) temporal duahty, which refers to the relatIonshIp 
between the present values of sequences of functIOns 
(optImal value functIons), such as between the max
ImIzed present value of utIhty and the mlmmlzed 
present value of expenditures over a given time 
horizon, and (3) mtertemporal duality, whICh refers to 
the relatIonship between an mstantaneous functIOn 
and a corresponding optimal value functIOn While 
atemporal and temporal duahty are essentIally 
eqUivalent to that surveyed by Dlewert (14), Inter
temporal duahty prOVIdes a convement method for 
modehng optimal chOIce' functIOns 

Intertemporal duahty IS based on the Hamilton
Jacobi equatIOn, which lmks the optimal value func
tIOn to the mstantaneous function VIa a static 
optimization problem The dynamiC analogues of 
Hotelling's Lemma or Roy's Identity can be found by 
applymg the envelope theorem to the Hamilton-JacobI 
equatIon, which can be wfltten In various forms 
depending upon the structure of the Intertemporal 
problem While the hterature focuses on InfImte
hOflzon autonomous problems, there are many ap
phed Issues that cannot be analyzed wlthm thiS 
framework 2 Therefore, mtertemporal duality could 
be apphed to a broader range 'of plannmg problems 

20ptlmal control probl~mB are said to be autonomous when the 
current value Hanultomsn IS not an expliCit functlOn of time, In 
which CRse the solution to the problem IDvolves solVing an 
8utonomOUB system of ordmary differential equations For example, 
conSider an ordinary differential equation of the form 
dx/dt. = g(x, U , t) I x(to> = xO' where x 15 8 state variable, t IS tIme, 
and U 18 a control varIable TIllS system 18 saId to be stattonary If g IS 
not an expliCit function ofhme (dxldt = g{x,u»), IS free when u=O for 
all t2: to. and IS autonomous when It 18 statIOnary and free (7, p 448) 
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The mam obJectives of this article are to discuss the 
vanous types of applied problems that could be 
analyzed with the mtertemporal duahty approach, and 
to prOVide convement forms of the Hamilton-Jacobi 
equation for these problems The results of this article 
can be used as the foundation for further theoretICal 
and empmcal applications of the mtertemporal duahty 
approach 3 I show m the autonomous case how dynamiC 
factor demands for mfimte-honzon autonomous prob
lems can be detennmed Usmg an adJustment-cost 
model of the firm based on the method outhned for the 
autonomous case, I then develop a converuent fonn of 
the Hamilton-Jacobi' e_quatlOn for mfimte-honzon 
nonautonomous problems and prOVIde the appropnate 
analogue of Hotelhng's Lemma 

Duality for Finite-Horizon Problems 

ConSider the followmg firute-honzon nonautonomous 
problem A 

J(Xo,tot"b) = Max f'f(x;u,t,b)dt (1) 
"'U Lo 

s t dxldt = g(x,u,t,b), x(to) = Xo, x(tl ) free, 

where t IS time, to IS InItIal tIme, tl 18 termInal tIme, 
u(t) are control vanables, x(t) are state variables, Xo 
are initial states, b are constant parameters, such as 
pnces, taxes, or other policy vanables, f IS the mter
mediate functIOn, dxldt = g are the state equatIOns, 
and U IS the control set Given a set of conditions to 
ensure a solutIOn to problem A, the optimal value 
functIOn J(x., to, tl ,b) IS defined as the optimal value 
of the objectIVe functIOnal for the problem With Imtlal 
state X. that begms at to and ends at t" gIven the 
parameters b 

Chavas and others used a variatIOn of problem A to 
model' the present net value of a bIOlogIcal asset 
(hogs)(12) In that case, u IS variable mputs, x IS the 
state of the asset (weight), b IS a vector of pnces and 
the discount rate, f(x, u, t, b) IS the net revenue of flow 
products obtamed from the asset, dxldt = g IS a 
bIOlogical growth functIOn, to IS time of purchase, and 
tl IS time of sale Net revenues are an explicit func
tIOn of t If the flow of outputs varies With the age of 
the asset While Chavas and others (12) conSidered 
the case of animal replacement, the asset could JUst as 

3Although the focus of thiS article IS mtertemporal duality, one 
can olBO UBe other approaches to derive systems of dynamiC factor 
demands For example, Pmdyck and Rotemberg (29) specify a 
discrete-time Infimte honzon problem, and then make use of ~tatlc 
duahty relatIOnships to eBtlIllate a statIc c-ost functIOn, an energy 
cost share equatIOn (the variable mput), and Euler equations for 
capital and labor (the quasI-rued mputs) Lopez (23) follows a 
Similar approach m a contmuous-Lime model 

well be a perennIal crop or a tree from which products 
are obtamed (milk, coffee, firewood, palm O\I~ IP;lD1 
arabiC, oranges) 

Fmlte·honzon mvestment problems als_o occur when 
a farmer 'leases a farm for a fixed perIOd of tIme In 
that case, u represents variable mputs, x represent8 
the farm capital stock, and net mvestment dxldt 
equals gross mvestment less depreCiation 

In general, the maximum prmclple could-be used to 
solve for the 'optimal chOICes of u m problem A over 
the period to to t l , but m practice an analytical solu
tIOn IS usually difficult to obtam However, at any 
Imtlal time to S t l , It IS well known that the 
Hamilton-Jacob, equatIOn for problem A takes the 
general form (20, 22) 

aJ = Max [[(x.,u,to,b) 
ato u 

+ ~~.-<x.,to,t'"b)g(x., u,to,b)] (2) 

axe 

The slgmficimce of the Hamllton-Jacobl equation 18 
that the maxlmlzmg u ID equation 2, u· = 
u'(xo,to,t"b), are the optimal controls to problem A 
for the IDltial time to DUferentlatmg equatIOn 2 With 
respect to b and usmg the envelope theorem prOVides 
the dynamiC analogue of Hotelhng'. Lemma 

a2J = ~ + ~ g + .E.... ..i[. (3) 

atoab ab axoab aX. ab 

GIVen forms for J, f, and g, and an error structure, u· 
can be, m prmclple, estimated from equatIOn 3 by 
usmg 81multaneous equatIOn techmques for ImpliCit 
functIOns (18), although certam functIOnal' forms 
allow more dIrect estimatIOn procedures Thus, mter
temporal duality allow8 the optimal chOice functIOns, 
u· = u(to,t"x.,b), to be derived from J, f, and g 
Without the need to solve problem A Because equa
tion 3 IS a nonlinear functIOn of the vBnl\bles u and x 
and the parameters b, further assumptIOns on the 
functIOns f and g can Improve the empIrical tract
ability of the system' 

EquatIOn 2 IS the general form of the HBmllton-Jacobl 
equatIOn In the remamder of thiS article, I explore 
some Simple variatIOns of problem A that allow the 
Hamilton-Jacobi equatIOn and, therefore, the 

4For example, as In static dualIty. equation 3 IS much slmphfied 
when the Objective functional IS linear In b and the state equatIons 
are not a functIOn of b 
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analogues of Hotelhng's Lemma to be wrItten more 
sImply For example, consIder the followmg mfinIte
horIZOn autonomous problem B

'II fl:x, u, b)dt (4) 
u to 

S t dxldt = g(x, u, b), x(to) = x., x(t, ) free 

Because tIme IS not an exphclt argument m f and g 
(problem B IS autonomous), the HamIltonIan evaluated 
at the optImIZmg u IS constant for all t, to S t S t, (20) 
Therefore, the HamIlton-JacobI equatIon can be wrIt
ten as

aJ =H*, (5) 

where HO IS the HamIltonIan for problem B evaluated 
at the optImal u Integratmg both SIdes WIth respect 
to lDltlal tIme to and-evaluatmg over the mterval to to 
t, YIelds: 

(6) 

But, J(t x., t b) = 0 because It IS defined BB the op
" " tImal value ofthe ObjectIve functIOnal for the problem 

begInnmg and endmg at time tl , and there IS no scrap 
value Th~ term lI(tl - to) converts the sum J receIved 
every t,-to pe,=,ods mto a constant flow every penod 
Dependmg upon tJle SituatIOn, It could be more useful 
to denve the analogue of Hotellmg's Lemma from 
either equatIOn 5 or 6_ 

Duality-for Infinite-Horizon Problems: 
The Autonomous Case 

The specIfic form of problem A In much of the htera
ture on dUalIty theory and dynamIc factor demands IS 
some varIatIOn of problem C 

J(toko'p) = Max re-"[fl:k, D - pkldt (7) 
I> 0 to 

s_t dxldt = 1- ak, k(to) = k., 

where I(t) IS mvestment In capItal k(t), p IS the rental 
prIce of capItal normalIzed WIth respect to output 
price, a IS the depreCIatIon rate; f IS the productIOn 
functIOn, dkldt = I - ak IS the capItal stock equatIOn 
of motIon, and r IS the fIrm'S dIscount rate J IS not 
wrItten as an expliCit functIOn of a and r to reduce 
notatIonal clutter 

Problem C deSCrIbes an a<\Justment-cost model of the 
firm WIth statIc-priCe expectatIOns (see 17, 24, 27, 35) 5 

However, the structure of problem C IS also SImIlar 
to (1) models of the extwctIve firm, where k IS the 
mmeral stock, I IS the rate of extraction, and dkJdt 
= -I (see 11), (2) farm-level models of SOIl conserva
tIon, where k IS topsoIl depth, I IS erOSIOn, S IS natural 
regeneratIOn, and dkJdt = S - I (see 25), and (3) forest
harvestmg models, where k IS tree bIOmass, g(k) IS the 
tree-growth function, I IS the harvest rate, and 
dkldt = g(k) - l(see 13) 

There are two Important dIStmctlOns between problem 
C and problem A Fll"st, problem C IS autonomous m 
the sense that Its current-value HamIltoman IS not an 
exphclt functIOn of tIme (tIme enters only through the 
d,scount term) And second, problem C has an mfimte 
time-hOrIzon begInrung at any tIme to, but discounted 
to tune 0 GIVen these two condItIOns, the optImal 
value functIOn for problem Ccan be wrItten as 

J(tok.,p) = e-"· V(ko'p), where 

~I e-n'-;,> [fl:k, D - pkldt (8)V(ko,p) = max 
I> 0 to 

s t dkJdt = 1- ak, k(to) = k. 

The optimal value functIOn V m equatIon 8 IS not 
WrItten a8 an expliCIt functIon of to because av/at. = 0 
(2, 22) Smce -aJ/ato = rVexp(-rt,) and aJ/ak, = 

[aV/akol [exp(-rt,)l, t!Ie HamIlton-Jacobi equatIOn for 
an mfinIte-honzon autonomOU8 problem at an arbi
trary tIme to (22, pp 241-2) can be'w~;tten as 

rV(k.,p)= Max [fl:k.,D-pko+ av (ko,p)[I-akol] (9) 
12:0 ako 

In the lIterature, mltIal tIme IS usually conSidered to 
be to = 0, m whIch case J = V, and the Hamllton
JacobI equatIon for problem C can be Written as 

rJ(k.,p) = Max [fl:ko, D-pko +~(ko,p)[I-akol] (10) 
1>0 ako 

Srrhe assumption of statiC expectatIons Imphes t.hat. the deCISIOn 
Unit acts as If all prlces~wlll remam constant throughout the plan
mng penod However, If pnces change, then the firm resolves the 
problem at that tIme Therefo_re, only the t=to optimal controls are 
actually observed In practlce Chambers and Lopez (10) diSCUSS thiS 
assumptlon more thoroughly I while Taylor (34) conSiders a general 
problem that mcludes price uncertamty 

29 



The maximizing Investment deCIslOns from 10, 
I*=I(k"p), are the optimal chOIces for problem C at 
to=O By the envelope theorem, the denvatlve of 
equatIOn 10 wIth, respect to p YIelds, after rearrang· 
mg, the mtertemporal analogue of Hotelling's Lemma 
for prohlem C 

2 
IO(k.,p) = [ aJ }{~ +kO] + ako (11) 

akoa~ l ap 

EquatIon 11 provldes,a SImple way to denve'systems 
of mvestment equatIOns that are consIstent WIth an 
Infirute-horlZOn autonomous control problem In con· 
trast to problem A, smce the objectIve functIOnal 10 

problem C IS linear m p and the state equatIOn IS 
linear In I (and mdependent of p), the optImal mvest· 
ment 10 can be wrItten only m terms of the mdnect 
objectIve functIOn J WhIle the theoretIcal mvestment 
equatIOn 11 IS SImple to denve, It IS potentIally 
nonlInear In vanables and parameters and, as a 
result, may be dIfficult to estImate Epstem (17) 

Includes vanable mputs Into the analYSIS, denves the 
propertIes of J, and also dIscusses the Issue of func· 
tIOnal forms for J 

Two recent stumes that apply the a~ustment·cost 
model of the firm to U S agrIculture are Taylor and 
Monson, and Vasavaila and Chambers (33, 36) Based 
on theoretIcal models SImIlar to problem C, both 
studIes use mtertemporal duality to speCIfy dynamIC 
factor demands,and output supply 6 Each study pro· 
ceeds by speclfymg a functIOnal form for J, Imposing 
condItIons on J to ensure consIstent aggregatIOn 
(whIch IS dIscussed In 36), and then denvlng the 
analogues of equatIOn 11 based on the HamIlton· 
JacobI equatIOn for mfinlte·hOrIzon autonomous 
problems 

Duality for Infinite-Horizon Problems: 
The Nonautonomous Case 

When Vasavada and Chambers (36) or Taylor and 
Monson (33) actually estImate the system of net 
mvestment equatIOns, they mclude time trends as ex· 
ogenous varIables to reflect the effect of techmcal 
change m agrIculture over tIme WhIle Vasavada and 
Chambers add a linear tIme trend onto equatIon 11, 
Taylor and Monson melude time exph~ltly mto the 
optimal value functIOn, but then use the HamIlton· 
JacobI equatIOn for an autonomous problem to denve 
the mvestment,equatIOns 

6For example, Taylrn and Monson (33) conSider labor and 
materials to be vanabiL Inputs, while land and capital are con
Sidered to be quasI ftxed mputs 

Techmcal,change,m the productIOn JunctIOn prOVIdes 
one case where an mfimte·horlzon control problem 
may not be autonomous For example, Hlcks·neutral 
techmcal change Imphes that the firm's productIon 
functIOn can be wrItten as yet) = f(k,I)A(t), where A(t) 
descrIbes the process of techmeal change m the pro· 
ductlOn of output y If the firm knows or, experts that 
techmcal change WIll occur over tIme, then the firm 
must solve a nonautonomous problem to find ItS op· 
tImal mvestment chOIces 

There are many other examples where an mfimte 
honzon nonautonomous formulatIOn would be appro· 
prlate As suggested for problem A, the objectIve func· 
tIonal for mfimte·horIzon problems could depend 
explICItly on tIme If output IS a flow product (mIlk) 
from a bIOlogICal asset In problem C, the capItal 
prIce, p, would also be a functIOn of tllI\e If the firm 
expected pnces to Tlse over tIme (for example, 
p(t) =p(to)exp[m(t-to)], where m IS the expected rate of 
prlce lncrease) The state equatIOn for an Infinlte
hOrizon problem could be a functIOn of tIme If the 
depreCIatIOn rate c:r depended on an asset's age or If 
techmcal change affected the rate of asset deprecIatIOn 

Problem D IS a SImple varIatIOn of problem C that 
mcorporates tIme mto the productIOn functIOn to 
represent expected dIsembodIed techmcal change 

J(koto,p)=~aJ' te'" [f(k,I,t)-pkl dt (12) 

s t dk/dt = I - c:rk, keto) = ko 

Problem D IS a nonautonomous control problem 
because the firm's productIOn functIOn IS an explICIt 
functIOn of time Therefore, the Hamllton·Jacobl 
equatIOn can no longer be WTltten as equatIOn 9 For· 
tunately, a convement form of the HamIlton·Jacobl 
equatIOn for problem D can be denved USIng the same 
process as ,followed for problem C FIrst, define 

V(k"to' p) = max re''''''''' [f(k, I, t) - pkl dt (13) 
12.0 to 

dkJdt = 1- ak, keto) = ko 

Because equatIOn 13 IS a nonautonomous problem, 
the optimal value functIOn V IS an explICIt functIOn of 
ImtIal time ,to Usmg the defimtlOns of J and V from 
equatIOns 12 and 13, whIch Imply that -aJlato = 
[rV - avlato][exp(-rtoll and aJlak o = [aV lako I 
[exp(-rto)l, the Hamllton·Jacobl equatIOn at to can be 
wrItten as 
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rV(ko,t"p)= max {f(~,I,to)-pko 
Ii:!: 0 

+ 	av [I-ak l + av } (14)o 

ako ato 

By the envelope theorem, the derIvative of equatIon 
14 with respect t~ p YIelds, after rearrangmg, the 
dynamIc am'logue of Hotelhng's Lemma 

I*(k"t."p) = [~1[ av +1<,,- aZV ]+ "1<,, (15) 
ak,aj ap atoap 

EquatIOn 15 shows how to derIve the optimal mvest
ment chOice at to for problem D. whIch 18 an InfinIte
hOrIzon nonautonomous control problem There are 
two Important differences, between equations 15 and 
11 FIrst, the optimal value functIOn V IS an exphclt 
functIOn of InItial time for nonautonomous problems 
Second, equatIon 15 has the additional term 
a'v/atoap Smce flv/ato IS the marginal value of tech
mcal change at the mltlal time m problem D, the 
term a'v/atoap IS the change m the marginal value of 
techmcal change due to a change m the rental PrIce of 
capItal 

Therefore, If the Issue to be studied mvolves an 
mfimte-horIzon nonautonomous problem, the em
pIrIcal model could be based on a Hamilton-JacobI 
equatIOn Similar to equatIOn 14, whICh would allow a 
time varIable to be mcorporated mto the emplflcal 
model m a consIstent manner 7 The approach followed 
above can be apphed to any mfimte-horlzon non
autonomous problem wIth dlscountmg 

Conclusions 

In thiS article, the Hamilton-JacobI equatIOn was 
derIved for four general classes of dynamiC opt,miza
tion problems The envelope theorem can then be 
applied to the Hamilton-JacobI equatIOn to speCify 
systems of optImal chOice functions The output supply 
functIOn can also be derIved from a mlmmlzatlon 
problem dual to the HamIlton-Jacobi equatIOn (see 
17) WhIle the properties of the optImal value func
tIOn for mfimte hOrIzon autonomous models such as 
problem C are well known, further research IS needed 
to Identify the usable properties of optImal value 
functIOns for the other types of problems To date, far 

7Whelher time trends are the appropnate way to model techmcal 
ch_ange IS beyond the scope of thiS paper However, the pOSSIble em 
plrIcal'problems WIth trend analyslB,should be conSidered (28) A 
pOSSible alternative would be to Include expected techmcal change 
as a capItal-augmentmg stochastiC process (see 32) 

more emplrIcal studIes for each class of problems are 
needed to determme If mterteIIlporal dual!ty WIll be 
as useful to apphed researchers as statIc duality 
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