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Dynamic Factor Demands Using Intertemporal Duality

Bruce A. Larson

Abstract. Intertemporal duality can be used for em-
pirteal research to derwe a sysitem of optimal choice
functions (dynamuc factor demands and output sup-
plies) consistent with an explicit dynamic optimization
framework While the [literature on intertemporal
duality focuses on infinite-horizon autonomous prob-
lems, many applied problems cannot be analyzed
within this framework This article uses intertemporal
duality to spectfy a system of optimal choice functions
for a broader and less restrictive set of intertemporal
planning problems

Keywords. Intertemporal duality, dynamic factor
demands, Hamulton-Jacob: equation, dynamic
oplimization

Agricultural production 18 mherently uncertain and
dynamic Lags exist between variable mput use and
output realization, and biological and manufactured
assets are managed over time To analyze such dynamic
production processes, agricultural econormists have con-
tmually searched for improved empirical methods to
analyze shortrun and longrun decisions and explan
response to price, policy, and technical changes

Optimal resgurce allocation and production has become
a common 1ssue analyzed at the theoretical level (1, 2, 6,
13, 15, 19, 30)! Given the profound 1nfluence of static
duality theory on theoretical and empirical investiga-
tions of firm and consumer behavior (4, 5, 8, 9, 12, 21,
31), literature on duality relationships for dynamic
optimization problems has also grown (3, 10, 14, 17,
26) For certain dynamic optimization problems,
duality relationships provide a convenient method for
modeling optimal choice functions (output supplies,
consumption and factor demands, investment
demands)

For example, 1n the context of an adjustment-cost
model of the firm, Epstein develops the dualhty be-
tween a production function and the maximized pres-
ent value of profits, which 18 then exploited to derive
the firm's system of investment .and factor demands
via the dynamic analogue of Hotelling’s Lemma (17)
Cooper and McLaren provide similar results in the
context of consumer theory (14) Chambers and Lopez
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generalize Epstein’s problem and extend their results
to a dynamic model of the financially constrained
farm household and to & model of optimal fisheries
management (10) Taylor and Monson, and Vasavada
and Chambers use this approach to study investment
in US agriculture (33, 36) The dynamic duahty
approach could be applied to many intertemporal
planning problems where assets are managed over
time, 1ncluding animal husbandry, mining indus-
tries, and forestry or agro forestry production

Cooper and McLaren distinguish three types of duality
relationships for dynamic optimization problems (1)
atemporal duality, which refers to the relationship
between 1nstantaneous functions at one point 1n time,
such as between utihity and indirect utihity functions,
(2) temporal duality, which refers to the relationship
between the present values of sequences of functions
(optimal value functions), such as between the max-
mmized present value of utility and the minimized
present value of expenditures over a given time
horizon, and (3) intertemporal duality, which refers to
the relationship between an 1nstantaneous function
and a corresponding optimal value function While
atemporal and temporal duality are essentially
equivalent to that surveyed by Diewert (14), inter-
temporal duality provides a convenient method for
modeling optimal choice functions

Intertemporal duality 1s based on the Hamilton-
Jacob: equation, which links the optimal value func-
tion to the instantaneous function via a static
optimization problem The dynamic analogues of
Hotelling’s Lemma or Roy’s Identity can be found by
applying the envelope theorem to the Harmilton-Jacob1
equation, which can be written in various forms
depending upon the structure of the intertemporal
problem While the literature focuses on 1infinite-
horizon autonomous problems, there are many ap-
plied 1ssues that cannot be analyzed within this
framework 2 Therefore, intertemporal duality could
be applied to a broader range of planning problems

20ptimal control problems are said to be autonomous when the
current value Hamiltonian 1s not an exphcit function of time, 1n
which case the solution to the problem involves aclving an
autonomous system of ordinary differential equations For example,
consider an ordinary differential equation of the form
dx/dt = glx,u,t), x(t,} = x,, where x 13 a state variable, t 13 time,
and u 18 a control variable This system 1s said to be stationary f g1s
not an exphcit function of time (dx/dt = g(x,u)), 15 free when u=0 for
allt=t,, and 15 autonomous when 1t 18 stationary and free (7, p 448)
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The main objectives of this article are to discuss the
various types of applied problems that could be
analyzed with the intertemporal duahity approach, and
to provide convement forms of the Hamilton-Jacoh
equation for these problems The results of this article
can be used as the foundation for further theoretical
and empirical applications of the intertemporal duality
approach ? I show in the autonomous case how dynamic
factor demands for infinite-horizon autonomous prob-
lems can be determmed Using an adjustment-cost
model of the firm based on the method outlined for the
autonomous case, I then develop a convemient form of
the Hamilton-Jacobr' equation for infinite-horizen
nonautonomous problems and provide the appropriate
analogue of Hotelling’s Lemma

Duality for Finite-Horizon Problems

Consider the following fimte-horizon nonautonomous
problem A

J(x,,t,t,, by = Max j f(x; u,t,b)dt 1)

wel l'O
st dx/dt = g(x,u,t,b), x(t,) = x,, x(t,) free,

where t 18 time, t, 13 1mtial tume, t; 15 terminal time,
u(t) are control variables, x(t) are state variables, x,
are imtial states, b are constant parameters, such as
prices, taxes, or other policy variables, f 1s the 1inter-
mediate function, dx/dt = g are the state equations,
and U 1s the control set Given a set of conditions to
ensure a solution to problem A, the optimal value
function J{x,,t,,t;,b) 18 defined as the optimal value
of the objective functional for the problem with mnitial
state x, that begins at t, and ends at t;, grven the
parameters b

Chavas and others used a variation of problem A to
model the present net value of a biological asset
(hogs)(12) In that case, u 18 variable inputs, x 18 the
state of the asset (weight), b 18 a vector of prices and
the discount rate, f{x, u,t,b) 18 the net revenue of flow
products ¢btained from the asset, dx/dt =g 15 a
biological growth function, t, 18 time of purchase, and
t; 18 time of sale Net revenues are an expheit func-
tion of t if the flow of outputs varies with the age of
the asset While Chavas and others (12) considered
the case of animal replacement, the asset could just as

JAlthough the focus of this article 18 1ntertemporal duality, one
can nlso use other approaches to derive systems of dynamic factor
demands For example, Pindyck and Rotemberg (29) specify a
discrete-time infinite horizon problem, and then make use of static
duality relationships to estimate a static cost function, an energy
cost share equation {the variable input), and Euler equations for
capital and labor (the quasi-fixed inputs) Lopez (23) follows a
similar approach 1in a continuous-time model
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well be a perenmal crop or a tree from which products
are obtained (milk, coffee, firewood, palm oil, gum
arabic, oranges) "L

Fimite-horizon investment problems also occur when
a farmer leases a farm for a fixed period of time In
that case, u represents variable inputs, x ::epresenta
the farm capital stock, and net mvestment dx/dt
equals gross investment less depreciation

In general, the maximum principie could-be used to
solve for the optimal choices of u 1n problem A over
the period t, to t;, but 1n practice an analytical solu-
tion 15 usually difficuit to chtain However, at any
mitial time t, < t;, 1t 18 well known that the
Hamilton-Jacob1 equation for problem A takes the
general form (20, 22)

- _BJ = Ma-x [ﬂxovu’ tosb)
at, u

+ aJ (xo?tﬂifllb)g(xnlu)tuob)] (2)
3%,

The significance of the Hamilton-Jacob: equation 18
that the maximizing u i equation 2, u* =
u*(x,,t,,t,b), are the optimal controls to problem A
for the imitial time t, Differentiating equation 2 with
respect to b and using the envelope theorem provides
the dynamic analogue of Hotelling’s Lemma

#J - of 4 aJ
b b 3xob

g+ 9 3
dx, db

Gaven forms for J, f, and g, and an error structure, u*
can be, 1n principle, estimated from equation 3 by
using simultaneous equation techniques for impheit
functions (18), although certain functional forms
allow more direct estimation procedures Thus, imter-
temporal duahity allows the optimal choice functions,
u* = ult,,t,,x,,b), to be derived from J, f, and g
without the need to solve problem A Because equa-
tion 3 18 a nonlinear function of the vanables u and x
and the parameters b, further assumptions on the
functions f and g can improve the emprrical tract-
ability of the system ¢

Equation 2 18 the general form of the Hamilton-Jacob
equation In the remainder of this article, I explore
gsome simple variations of problem A that allow the
Hamilton-Jacob:1 equation and, therefore, the

“For example, as 1n static dualty, equatien 3 18 much simplhified
when the objective functional 1a hinear 1n b and the state equations
are not a function of b




analogues of Hotelling’s Lemma to be written more
simply For example, consider the following infinite-
horizon autonomous problem B

t1
I(x,,t,t,,b) = Max 5 fix,u, b}t (4)
u to

st dx/dt = gix,u,b), x(t,) = X,, x(t;) free

Because time 18 not an exphcit argument 1n f and g
(problem B 1s autonomous), the Hamiltonian evaluated
at the optimizing u 18 constant for all t, t,<t=<t, (20)
Therefore, the Hamilton-Jacob: equation can be writ-
ten as

_ad = H*, )

at,

where H* 18 the Hanmltonian for problem B evaluated
at the optimal u Integrating both sides with respect
to 1imtial time t, and evaluating over the interval t, to
t, yields:

J(to,xo,tl,b) - J(tl:xoat]_ .b)
t,-t)

= H* (6)

But, J(t;,x%,,t;,b} = 0 because 1t 18 defined as the op-
timal value of the objective functional for the problem
beginning and ending at time t,, and there 18 no scrap
value The term 1/t; - t,) converts the sum J received
every t,-t, periods into a constant flow every period
Depending upon the situation, 1t could be more useful
to derive the analogue of Hotelling's Lemma from
either equation b or 6.

Duality for Infinite-Horizon Problems:
The Autonomous Case

The specific form of problem A in much of the hitera-
ture on duality theory and dynamic factor demands 18
some variation of problem C

Jit k., p) = Max S et[fik,I) - pkldt ) ¥))

I=0 to

st dwdt=1-ok, kit,) =k,

where I(t) 18 1nvestment 1n capital k(t), p 15 the rental
price of capital normalized with respect to output
price, « 18 the depreciation rate; f 18 the production
function, dk/dt = I — ok 18 the capital stock equation
of motion, and r 18 the firm’s discount rate J 1s not
written as an exphicit function of « and r to reduce
notational clutter

Problem C describes an adjustment-cost model of the
firm with static-price expectations (see 17, 24, 27, 35)°
However, the structure of problem C 18 also simlar
to (1) models of the extractive firm, where k 1s the
mineral stock, 1 1s the rate of extraction, and dk/dt
= -] (see 11), (2) farm-level models of sotl conserva-
tion, where k 18 topsoil depth, I 1s erosion, 818 natural
regeneration, and dk/dt = s - I(see 25), and (3) forest-
harvesting models, where k 18 tree biomass, glk}1s the
tree-growth function, I 18 the harvest rate, and
dk/dt = g{k) - I (see 13)

There are two 1mportant distinctions between problem
C and problem A First, problem C 1s autonomous In
the sense that 1ts current-value Hamiltonian 15 not an
explicit function of time (time enters only through the
discount term) And second, problem C has an infinite
time-horizon beginming at any time t,, but discounted
to time 0 Given these two conditions, the optimal
value function for problem C can be written as

J(tokmp) =g V(ko.p), where

Vik,,p) = max S et [, I} - pkidt (8)
Iz0 tg

ot di/dt =T-ok, kit) =k,

The optimal value function V 1n equation 8 18 not
written as an exphicit function of t, because 8V/dt, = 0
(2, 22) Since -3J/3t, = rVexp(-rt,) and dJ/dk, =
[dV/dk,] [exp(-rt,)}, the Hamlton-Jacobi equation for
an infinite-horizon autonomous problem at an arb:-
trary time t, (22, pp 241-2) can be:written as

av

rV(k,,p)= Max [fk,,D-pk,+
=0 ak,

(ko, PAI-ak,]] (9)

In the literature, initial time 1s usually considered to
be t, =0, 1n which case J =V, and the Hamilton-
Jacob1 equation for problem C can be written as

rd(k,,p) = Max [fk,, D—pk, +_°7

1=0 ok,

(ky, pII-ak,]] (10)

5The assurnption of static expectations implies that the decisien
unit acta as if all prices witl remain constant throughout the plan-
ning period However, if prices change, then the firm resolves the
problem at that time Therefore, only the t=t, optimal controls are
actually observed 1n practice Chambers and Lapez (10) discuss this
assumption more thoroughly, while Tayler (34) considers a general
problem that includes price uncertainty
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The maximizing investment decisions from 10,
I*=I(k,,p), are the optimal choices for problem C at
t,=0 By the envelope theorem, the derivative of
equation 10 with respect to p yields, after rearrang-
ng, the intertemporal analogue of Hotelling’s Lemma
for problem C

1
Mo = |2 e s lvak, ap

dk,dp ap

Equation 11 provides.a simple way to derive systems
of investment equations that are consistent with an
infinite-horizon autonomous control problem In con-
trast to problem A, since the objective functional in
problem C 1s hnear 1n p and the state equation 1s
hnear 1n I (and independent of p), the optimal invest-
ment [* can be written only 1n terms of the indirect
abjective function J While the theoretical investment
equation 11 1s simple to derive, 1t 15 potentially
nonlinear 1n variables and parameters and, as a
result, may be difficult to estimate Epstein (17)
inctudes variable inputs 1nto the analysis, derives the
properties of J, and also discussea the 1ssue of func-
tional forms for J

Two recent studies that apply the adjustment-cost
model of the firm to US agriculture are Taylor and
Monson, and Vasavada and Chambers (33, 36) Based
on theoretical models similar to problem C, both
studies use intertemporal duality to specify dynamic
factor demands.and output supply ¢ Each study pro-
ceeds by specifying a functional form for J, imposing
conditions on J to ensure consistent aggregation
(which 18 discussed 1n 36), and then deriving the
analogues of equation 11 based on the Hamilton-
Jacob1 equation for infinite-horizon autonomous
problems

Duality for Infinite-Horizon Problems:
The Nonautonomous Case

When Vasavada and Chambers (36) or Taylor and
Monson (33) actually estimate the system of net
investment equations, they include time trends as ex-
ogenous variables to reflect the effect of techmical
change 1n agriculture over time While Vasavada and
Chambers add a linear time trend onto equation 11,
Taylor and Monson include time explicitly into the
optimal value function, but then use the Hamilton-
Jacob1 equation for an autenomous problem to derive
the investment, equations

5For example, Taylr and Monson (33) consider labor and
materials to be variable inputs, while land and capital are con-
sidered to be quas: fixed inputs
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Technical change.in the production function provides
one case where an infimite-horizon control problem
may not be autonomous For example, Hicks-neutral
technical change implies that the firm's production
function can be written as y(t) = fitk, DA(t), where A(t)
describes the process of technical change in the pro-
duction of output y If the firm knows or. expects that
technical change will occur over time, then the firm
must solve a nonautonomous problem to find 1ts op-
timal investment choices

There are many other examples where an infinite
hor1zon nonautonomous formulation would be appro-
priate Assuggested for problem A, the objective fune-
tional for infinite-horizon problems could depend
explicitly on time 1if output 1s a flow product (milk)
from a biological asset In problem C, the capital
price, p, would also be a function of time 1f the firm
expected prices to rise over time (for example,
p(t} =plt,Jexplmit-t,)), where m 1s the expected rate of
price increase) The state equation for an infinite-
horizon problem could be a function of time if the
depreciation rate o depended on an asset’s age or 1f
technical change affected the rate of asset depreciation

Problem D 1s a simple variation of problem C that
Incorporates time 1nto the production function to
represent expected disembodied technical change

@

J%%m=g%ifﬂﬂmwmmﬁ (12

st di/dt=1-ak, kit,)=Lk,

Problem D 1s a nonautonomous control problem
because the firm’s production function 1s an explicit
function of time Therefore, the Hamilton-Jacob
equation can no longer be written as equation 9@ For-
tunately, a conventent form of the Hamilton-Jaceb:
equation for problem D can be derived using the same
process as followed for problem C First, define

Jt,k,,p) = e Vit , k,,p), where

V%%@=mx5ﬂWMMﬁwH&(m

I=0 to

dik/dt = I— ok, kit,) =k,

Because equation 13 18 a nonautonomous problem,
the optimal value function V 18 an explicit filnction of
imtial time t, Using the defimtions of J and V from
equations 12 and 13, which imply that -dJ/dt, =
(rV - aV/at,llexp(-rt,)! and 3J/dk, = [8V/3k,]
[exp(-rt,)], the Hamiton-Jacob1 equation at t, can be
written as




rVik,,t,,p)= max {flk,,L,t,)- pk,

[=0
+0V [H-ak)+ 9V ) (14)
ak, at,

By the envelope theorem, the derivative of equation
14 with respect to p yields, after rearranging, the
dynamic analogue of Hotelling's Lemma

#V ] av 3V

I*(k,,t,,p) = +k, - + ak, (15)

dk ap ap ot,op

Equation 15 shows how to derive the optimal invest-
ment choice at t, for problem D, which 15 an infimite-
horizon nonautonomous control problem There are
two 1mportant differences between equations 15 and
11 First, the optimal value function V 18 an exphcit
function of 1nmitial time for nonautonomous problems
Second, equation 15 has the additional term
8?V/3t,8p Since dV/dt, 18 the marginal value of tech-
nical change at the mnmitial time 1n problem D, the
term 32V/at,dp 1s the change 1n the marginal value of
technical change due to a change 1n the rental price of
capital

Therefore, 1f the 13sue to be studied involves an
infimite-horizon nonautonomous problem, the em-
pirical model could be based on a Hamilton-Jacob
equation stmilar to equation 14, which would allow a
time variable to be incorporated i1nto the empirical
mode] 1n a consistent manner ? The approach followed
above can be applied to any infinite-horizon non-
autonomous problem with discounting

Conclusions

In this article, the Hamilton-Jacobt equation was
derived for four general classes of dynamic optimiza-
tion problems The envelope theorem can then be
applied to the Hamlton-Jacobi equation to specify
systems of optimal choice functions The output supply
function can also be derived from a minimization
problem dual to the Hamilton-Jacob1 equation (see
17} While the properties of the optimal value func-
tion for infinite horizon autonomous models such as
problem C are well known, further research 1s needed
to 1dentify the usable properties of optimal value
functions for the other types of problems To date, far

"Whether time trends are the appropriate way to model technical
change 15 beyond the scope of this paper However, the possible em
pirical‘problems with trend analysis should be considered (28) A
possible alternative would be to include expected technical change
as a capital-augmenting stochastic process (see 32)

more empirical studies for each class of problems are
needed to determine if mntertemporal duahty will be
as useful to applied researchers as static duality
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