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Probability distributions of crop yields are an important input in risk

management analyses by farmers. Farm yield data are one obvious source
of information regarding yield distributions. Often, however, farmers do not
hawve yield data for enough years to construct reliable representations of
their yield distributions. Data at a more aggregated level, such as county
average yields, may be available for a much longer time period and should
provide some insights on the nature of farm vield distributions. As
Eisgruber and Schuman demonstrate, however, the variance of county
average yields will, in general, be less than that of farm level yields, and
unadjusted county average yields cannot simply be used along with farm
level yields to create a larger data set.

In this paper we consider the case where a farmer has a short time
series of farm level data and a longer time series of county level data. The
goal is to adjust the county level data and combine it with the farm level
data to obtain a probability distribution for the farm. The literature on the
"expert problem," which deals with the issue of combining probability *
assessments from different sources, provides insight for this problem.

In the sections which follow, we first review some of the issues raised
in the expert problem literature. We then describe the data used in this
study and discuss one approach to the important problem of adjusting county
level data so that it is appropriate for use in characterizing farm level
probability distributions. Next, we describe the alternative methods for
combining the farm level and county level data to be considered in this
analysis. We then report the results.of empirical tests of the performance of
each method. In the concluding section we summarize our findings and

identify areas for further research.



The Expert Problem

Decision makers often seek information about uncertain quantities from
external sources. In the literature on combining probability assessments,
these external sources -- which may include people, statistical forecasting
models, and sample data -- are termed "experts." The problem facing the
decision maker is to combine his or her own beliefs regarding the uncertain
quantity with information from experts in a manner that takes into account
knowledge about the reliability of the expert information and yields a
probability distributional representation that is consistent with the laws of
probability.

If the expert information and the decision maker's prior ‘knowledge are
specified in terms of probability density | unictions, Bayes theorem provides a
framework for addressing this problem. For continuous random variables

Bayes theorem can be written as:

(1) ple]x) = 2(—9%{)()—'& if p(X)>0

The usual interpretation of Bayes theorem is that the posterior probability of
a random variable 8 conditional on X, p(8 | X), is equal to the product of the
prior probability density of 6 , p(8), and the likelihood of ¥ conditional on 8,
p(X | 9), divided by the probability of X, p(X). Since the posterior
probability is conditional on X, the term p(X) is a constant. When factored
out of (1), the inverse of p(X) is referred to as a normalizing constant, since
it ensures that the total integral of the density function equals one.

In a practical setting, decision makers find it particularly difficult
to formalize their knowledge of p(X | 8), the likelihood function that is
required for implementation of Bayes theorem. Research on this problem has
focused on the identification of conditions under which simpler rules can

be used to combine probabilities in a manner consistent with Bayes rule.



One notable result is the multiplicative rule derived by Morris. Assuming
that information on only the variance of the expert's probability distribution
has no effect on the decision maker's assessment (invariance to scale) and
that the decision maker's assessment of the true value of the random var-
iable will be in the tail of the expert's distribution is not conditional on the
true value of the random variable (invariance to shift), Morris shows that
the decision maker's posterior density is the product of his prior density, the
expert's density, a calibration function, and a normalizing constant. When
expert judgements are independent, this multiplicative rule can easily be
extended to cormnbine probability assessments from several experts.

The calibration function in the multiplicative rule ensures that the
expert's probability assessment is well calibrated -- i.e. that "...over the
long run, for all propositions assigned a given probability, the proportion that
is true equals the probability assigned" (Lichtenstein, Fischoff, and Phillips,
p. 307). In this study, a probability distribution based on unadjusted county
average data would not be calibrated for farm level yields if it under-
estimated their variance. Therefore, one practical problem to be addressed
in this study is that of calibrating the county level data. When the
calibration function is to be empirically based, the lack of farm level data
complicates this problem.

Another difficulty encountered when combining probability assessments
is dependence among the experts. It is frequently the case that probability
assessments from experts are not independent of each other or of the decision
maker's prior. Probability assessments can be dependent ewven if the experts
have formulated the assessments independently and do not know each other.
Similar training and experience or the use of common estimation techniques

or common data is sufficient to render them dependent. In this study, farm



and county level data would be expected to be correlated, since both are
subject to the effects of weather, widespread disease and pest problems.
When such dependence exists, the decision maker should allow for it in
formulating a posterior density. Winkler (1981) considers the case of
dependence among experts when the probability distributions are normally
distributed. His results will be introduced and applied later in this paper.

Given the difficulty of applying Bayes theorem in practical settings,
other researchers have suggested the use of "rule of thumb" or “weighted
average" methods of combining probability assessments. There is evidence in
the literature to support the use of simpler methods. Winkler (1986, p. 301)
questions “whether modeling in the expert resolution problem can be effective
enough in practice to justify the time and effort that it requires.” wvon
Winterfeldt and Edwards (p. 134) note that procedures implementing Bayes
theorem involve greater mathematical complexity than simple averaging.
They conclude that “no reason exists for expecting such procedures to lead to
better estimates." Therefore, we also consider weighted average schemes.
Design of the Empirical Analysis

In this study, data on per acre corn yields for five farms in Nobles
County of southwestern Minnesota were used to investigate alternative
strategies for constructing farm level yield distributions. For each farm,
data for the years 1958-1982 were available from farm record data. Average
per acre corn yields in Nobles County for the same time period were also
available. To simplify the analysis, the effects of technological change over
time were eliminated by detrending each data series with coefficients
determined from an ordinary least squares regression of yield on time. The
methods developed in this study can, however, be modified to include

consideration of yield trends.



The detrended yield series are presented in Table 1. As predicted by
Eisgruber and Schuman, the value of the standard dewviation is lower for the
county than for any one of the individual farms. Given the unique charac-
teristics of individual farms the mean yield is expected to differ across.
farms, a point which is confirmed by this data series. The average county
yield will not, in general, be directly relevant for an individual farm.

Construction of farm lewvel yield distributions requires assumptions
regarding the distributional form of the farm and county level data and the
resulting posterior distribution. Consistent with much of the work done in
the area of risk management, the normal distribution for the prior and
posterior distributions is considered. In addition a nonparametric approach
is considered, with the construction of an empirical CDF. The latter
approach is supported by the findings of Pope and Ziemer that ". . . the
empirical distribution function performs favorably relative to appropriate ML
methods, especially in small samples and regardless of the underlying parent
distributions" (p. 40).

Calibrating County Level Data

As evident from Table 1, adjustments to the location and dispersion of
the county data are required for it to be a meaningful input into the creation
of a farm vyield distribution. The design of this study considers two cases;
one where the farmer has three years of farm level data to combine with
15 years of county level data and one where 10 years of farm level data are
combined with 15 years of county level data. In these cases, there are then
three and 10 common years of farm and county data. The objective is to use
the common years of farm and county data to determine the relationship
between the particular farm yields and the county average yields. The

15-year county data time series’'is then adjusted to reflect this relationship.



Table 1: Detrended Yield Series
Year Farm1 Farm2 Farm3 Farm4 Farm$5% County

1958 122.28 106.99 114.93 108.80 120.94 97.73
1959 96.15 119.10 106.22 102.50 110.15 94.71
1960 125.08 131.72 128.20 107.75 124.43 99.69
1961 126.40 137.68 121.03 116.07 132.88 108.67
1962 116.65 114.47 115.99 109.00 115.60 98.65
1963 130.50 140.62 110.97 114.16 147.85 109.63
1564 93.18 102.66 114.01 53.90 103.54 98.61
1965 100.87 84.54 102.46 84.88 98.96 90.59
1966 120.92 136.68 116.17 98.66 122.75 106.57
1967 112.94 102.04 122.40 109.93 109.20 98.55
1968 132.98 116.04 126.77 97.63 108.30 103.53
1969 128.70 122.02 133.52 120.73 135.36 117.51
1970 134.57 141.34 133.28 42.49 138.02 108.49
1971 111.24 113.79 121.19 123.87 126.83 99.47
1972 132.51 139.11 151.54 124.50 160.12 118.45
1973 115.9% 130.05 125.94 100.35 126.72 104 .43

1974 68.81 84.71 95.47 78.96 93.24 63.41
1975 94.92 106.01 96.66 65.61 105.96 89.39
1976 67.20 63.29 72.54 56.37 83.68 61.37

1977 115.21 127.80 89.36 110.26 106.74 107.35
1978 140.27 138.12 135.67 131.03 119.12 111.33
1979 130.65 108.72 108.71 107.35 122.51 106.31
1980 110.95 110.74 100.42 112.11 126.29 89.29
1981 139.73 161.58 158.05 108.86 141.27 118.27
1982 117.85 126.01 125.84 105.01 126.58 111.25

Mean 115.46 118.23 117.09 99.63 119.88 100.53
Std. Dev. 19.13 20.42 18.49 22.76 16.20 13.89



For the years of common data, the standard deviation for the farm, of,
and for the county, o, and the difference between the farm mean and the
county mean, d, are calculated. Each element of the calibrated county series
Xci, is obtained from:

(2) Xei = (m + (o5 / oo)(Xj - m)) + 4,
where Xj is the ith observation of the uncalibrated data and m is the mean
of the 15-year county series. The calibrated county data are given in Table 2.

This method of calibration ensures that the adjusted county data is
relevant in creating farm level yield distributions and also preserves the
additional information contained in the longer county time series. This latter
point is seen in Table 2 where the mean and standard deviation for the
calibrated county differ from those for the farm.

Methods for Combining Farm and Calibrated County Data

Two base strategies in this study are to use farm level data only and
calibrated county level data only. These are reported as methods one and
two in the empirical results section. It is interesting in itself to compare
these strategies since it provides insight into the question of when there is
enough farm level data to make it unnecessary to use county level data.
Three additional strategies involving a weighted average of farm and
calibrated county level data are considered for the nonparametric case.
These strategies, reported as methods three, four, and five, are to use equal
weights, weights based on sample size with no consideration of dependence,
and weights based on sample size with dependence considered. The weights
assigned to the farm level data for methods four and five respectively are:

2nf

(3) wg= and,

nf +nce

(4) weg = [1-(we=0.5)p]wry.
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In these equations n is the number of ohservations, p is the sample
correlation coefficient, and the subscripts f and c denote the farm and county
respectively, while the subscript d denotes dependence. In each case, the
weight assigned to the calibrated county data is one minus the weight
assigned to the farm data. This weighting scheme assumes that the farmer
is able to obtain at least as much county level data as farm level data. If
the number of observations is the same and there is no dependence the
weight assigned to the farm will be one. If there is positive correlation
between the farm and county data, the weight assigned to the farm data will
be reduced if, in the absence of dependence, more than half of the weight
would have been assigned to the farm data.

Since a normal distribution is fully described by its mean and variance,
the posterior distribution for the assumption of normal distributions can be

represented by mean, u* and variance, o?*.  As derived by Winkler (1981, p.

484)
2 2
(68) w*= . ik ; Pefte po + > cc; pofte #f and
gf + oo — 2pofoc of t oo~ 2pafac
© o = (it oo ,
2 2

of + ao — 2pofog

where the subscripts f and ¢ represent farm and county. We consider the
possibility of ignoring dependence (p=0) and accounting for dependence (p=0),
reported as methods four and five in the empirical results section.
Empirical Results

Our criterion for evaluating the methods of constructing farm yield
distributions is calibration. Empirically, an assessment process is well

calibrated if the CDF values associated with a sample of realizations are
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uniformly distributed. In this analysis we calculate CDF values, Uj,
associated with yields in the 10-year post sample period. Testing for
calibration involves using goodness of fit tests for the hypothesis that the
sample Uj's come from a uniform [0,1] distribution. Stephens identifies five
nonparametric tests for uniformity. They are the Kolmogorov, D, the
Cramér-von Mises, Wz, the Kuiper, V, the Watson, U2, and the Anderson-
Darling, Az, statistics. In this study the Cramér-von Mises, W2, and the
Watson, Uz, tests are used. Stephens evaluates the power of each of these .
tests and shows that the W2 statistic is effective at detecting a change in the
mean while the U2 statistic is effective at detecting a change in the variance.

The results of the tests for calibration are presented in Table 3. The
null hypothesis is that the distribution is well calibrated or that the Ui's are
uniformly distributed on the interval [0,1]. Cases where we fail to reject
the null hypotheses at the 0.15 level of significance are denoted by the
symbol, ¥, while cases where we fail to reject the null hypothesis at the 0.10
level of significance are denoted by the symbol, *. Since it is easier to reject
the null hypothesis at the 0.15 level than at the 0.10 level of significance the
former provides a stronger test for calibration.

As one would expect, yield distributions derived using 10 years of farm
level data are better representations than those derived using only three
years of farm level data. The evidence from the analysis with the five
farms considered here indicates that if a farmer has 10 years of farm level
data, there is no advantage to combining it with calibrated county data.

The distributions derived from the calibrated county data consistently
perform well, while the use of weighted averége methods yields mixed
performance. This may be due to the way in which we use the farm data

to calibrate the county data. Since the calibration method already makes use
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Table 3:
Three Years of Farm Data
w2 u2
Farm Method N NP N NP

1 0.502 0.598 0.154 0.314
2 0.257%#F Q. 163%* (0 145 (. 119%#
3 - 0.344% - 0.077%#
4 0.833 0.311% 0.531 0.048%#
5 0.466  0.316* 0.263 0.052%#*
1 0.506 1.075  0.099*%* 0.314
2 0.265%% 0. 317% (. 119%* g 183
3 - 0.737 - 0.129%#
4 0.832 0.661 0.250 0.100%*
5 0.438  0.673 0.172  0.103*#
1 1.237 1.099 0.295 0.338
2 0.954 0.865 0.279 0.321
3 - 1.488 - 0.239
4 1.402 1.769 0.482 0.329
5 1.159 1.714 0.333 0.315
1 0.187*%# 0 749 0.209 0.674
2 0.178%# (0 231%# Q 145 0.215%
3 - 0.324% - 0.258
4 0.170%* 0.179%#* 0 141%x Q. 121%#
5 0.168%¥ 0. 179%# (0 140% 0, 122%#
1 1.931 2725 0.372 0.674
2 1.370 1.583 0.273 0.381
3 - 1.657 - 0.254
4 2.400 1.450 0.672 0.235
5 1.629 1.494 0.335 0.229

NP -

Calibration Test Results

Ten Years of Farm Data

w2 u2

N NP N NP
0.136%# 0 175%#  QBQ*# (. 130%*
0.110%% 0. 117%# 0 097%# () 124%#

- 0.209%% - 0.093x#
0.320% 0.118%%* 0.263  0.048%*
0.197%% 0.173%* 0 162 0 087**
0.021%#* 0.065%%* 0. 033%# § pp4x#
0.026%% 0.031%* (.051%* g Q57%#

- 0.220%#% - 0.100%#
0.285% 0.125%# 0.305 (.087*#
0.124%#* 0 212%# 0 145% 0. 153
0.563 0.681 0.237 0.346
0.536 0.647 0.275 0.312

- 0.972 - 0.154
0.760 0.610 0.499  0.109%#
0.665 0.689 0.370  0.075%*
0.088%* G 153%* 0 109%# 0 173
0.107*%# 0.121%# 0 113%# ( 144%

- 0.107x% - 0.101%#
0.301% (0.136%* 0.261  0.148%
0.248%* ( 133%x# (0 214  0.144%
0.204%# 0.307% 0.057*%#% (. 086*#
0.133%# (. 178%# 0 047*#* (. 093%#

- 0.437 - 0.138x%
0.244%* 0.410  0.105%* Q. 158
0.199*%* 0.463  0.063** 0.195

indicates failure at the 0.10 level of significance to reject the null hypothesis
that the distribution is well calibrated.
indicates failure at the 0.15 level of significance to reject the null hypothesis
that the distribution is well calibrated.

Normal Distribution

Nonparametric
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of the information in the farm level data, further combining of the farm and
calibrated county data does not improve the results.

Under the assumption of the normal distribution, the methods where
farm and calibrated county level data are combined tend to perform worse
than the two base strategies. A possible explanation lies in the formula used
to combine the distributions, which assigns weights based on the variance of
the distribution. It does not allow for the possibility that there may be other
indicators Aof the degree of confidence of the expert information, such as the
number of sample cbservations.

For the nonparametric case, different weighting methods have little
effect on the performance of the resulting distributions.

These results provide no strong indication regarding the choice of the
nonparametric or normal distribution. In practical usage, the choice will
most likely depend on the context of the problem. If one has reason to
believe that the yield distribution for the farm in question is not normal, one
would want to use the empirical CDF. However, the normal distribution
may be the choice if its use simplifies the analysis and one does not have
prior beliefs regarding the form of the distribution.

Conclusions

Probability vyield distributions were constructed for five farms in
southwestern Minnesota assuming a normal distribution and an empirical
CDF or nonparametric case. The purpose was to consider the possibility of
calibrating county level data to combine with farm level data when only a
small amount of farm level data is available. Five different methods for
combining the distributions were used for the empirical CDF and four

different methods were used for the normal distribution.
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Using the criterion of calibration we found that more years of farm
level data produced better yield distributions. Yield distributions constructed
using calibrated county data only generally performed well, indicating that
an effective method of calibrating county level data may have heen identified.

The results of this study, although they must be considered exploratory,
indicate potential for the use of county level data in the creation of farm

yield distributions. Further study with more farms in different regions will

explore this potential further.
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