

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Estimation of Transition Probabilities Using Median Absolute Deviations

C.S. Kim and Glenn Schabble

Abstract

The probability-constrained minimum absolute devnations (MAD) estrmator appears to be superior to the probability-constrained quadratec programming estimator in estimating transition probabilities with limited aggregate time series data Furthermore, one can reduce the number of columns in the probabilityconstrained MAD̆D simplex tableau by adopting the meduan property

Keywords. Minimum absolute devrations, transition probabilities, meduan absolute devrations, quadratic programming

Markov processes are a special class of mathematical models that are often appled to economs decisionmaking in stochastic dynamic programming (5), structural changes of an industry or changes in size economues (23), or international trade (6) ${ }^{1}$ To estimate a meaningful transition matrix, researchers need time-ordered data that reflect intertemporal changes of micro units over states (or classifications) However, time-ordered changes of microeconomic units are, generally not avalable for most economuc vanables, therefore, researchers must often work with aggregate time senes data In an ingenious article, Lee, Judge, and Takayama (19) showed how one can estimate transition probabilities for a Markov process reflecting the behavior of micro units whth only aggregate time series data They concluded from a limited trial, based on the assumption of normality of the error terms, that the probabllityconstramed quadratic programming (QP) estimator is superior to the probability-constramed minimum absolute deviations (MAD) estimator in estimating transstion probabilities In a subsequent article, Lee, Judge, and Zellner concluded from their sampling experıment that the probablity-constramed MAD estimator is infernor to the probability-constrained QP estimator (14, p 135)

We prove here that the probability-constraned MAD estimator is superior to the probability-constramed QP

[^0]estimator when estimating transition probabilities'with limited aggregate time series data Second, we present an alternative model, minimization of median absolute deviations (MOMAD), based on the assumptions that the error terms are nonnormally distributed and that the researcher has a prom information about the dynamic nature of the Markov process Thrd, we prove that the MOMAD estimator is identical with the probabilityconstramed MAD estımator, which'Bassett and Koenker (3) concluded is a more efficient estimator for any error distribution for which the median is superior to the mean as an estimator of location Moreover, the constraint matrix assoclated with the MOMAD model involves fewer columns in the simplex tableau

Notation and Minimization of Absolute Deviations

The stochastic process of a finite Markov Chain can be expressed as

$$
\begin{align*}
\operatorname{Pr}\left(\mathrm{S}_{\mathrm{t}}, \mathrm{~S}_{\mathrm{j}, \mathrm{t}+1}\right) & =\operatorname{Pr}\left(\mathrm{S}_{\mathrm{t}}\right) \cdot \operatorname{Pr}\left(\mathrm{S}_{\mathrm{j}, \mathrm{t}+1} \mid \mathrm{S}_{\mathrm{tt}}, \mathrm{~S}_{\mathrm{l}, \mathrm{t}-1}, \quad, \quad \mathrm{~S}_{10}\right) \\
& =\operatorname{Pr}\left(\mathrm{S}_{\mathrm{tt}}\right) \cdot \operatorname{Pr}\left(\mathrm{S}_{\mathrm{j}, \mathrm{t}+1} \mid \mathrm{S}_{\mathrm{tt}}\right) \tag{1}\\
& (\text { for all } 1 \text { and } \mathrm{J})
\end{align*}
$$

where $\operatorname{Pr}\left(\mathrm{S}_{\mathrm{t}}\right)$ represents the probability that state S_{1} occurs on trial $t, \operatorname{Pr}\left(\mathrm{~S}_{1 \mathrm{t}}, \mathrm{S}_{\mathrm{j}, \mathrm{t}+1}\right)$ is the joint probability of S_{it} and $\mathrm{S}_{\mathrm{J}, \mathrm{t}+1}$, and $\operatorname{Pr}\left(\mathrm{S}_{\mathrm{j}, \mathrm{t}+1} \mid \mathrm{S}_{\mathrm{tt}}\right)$ represents the conditional probability for the state S_{1} Equation 1, presented by Kemeny and Snell (12), explains that the probability of goung to each of the states depends only on the present state and is independent of how we arrived at that state

Summing both sides of equation 1 over all possible outcomês of the state S_{1} may be represented by

$$
\begin{align*}
\operatorname{Pr}\left(\mathrm{S}_{\mathrm{j}, \mathrm{t}+1}\right) & =\sum_{1}^{\mathrm{r}} \operatorname{Pr}\left(\mathrm{~S}_{\mathrm{tt}}\right) \cdot \operatorname{Pr}\left(\mathrm{S}_{\mathrm{j}, \mathrm{t}+1} \mid \mathrm{S}_{\mathrm{t}}\right) \tag{2}\\
& =\sum_{\mathrm{l}}^{\mathrm{r}} \operatorname{Pr}\left(\mathrm{~S}_{\mathrm{tt}}\right) \cdot \mathrm{P}_{\mathrm{y}}
\end{align*}
$$

where P_{V} represents the transition probability and has the following properties

$$
\begin{align*}
P_{v} & \geq 0 \text { for all } 1 \text { and } j \tag{3}\\
\sum_{j} P_{v} & =1 \tag{4}
\end{align*}
$$

By replacing $\operatorname{Pr}\left(\mathrm{S}_{\mathrm{j}, \mathrm{t}+1}\right)$ and $\operatorname{Pr}\left(\mathrm{S}_{\mathrm{tt}}\right)$ with the observed proportions y_{Jt} and $\mathrm{x}_{\mathrm{l}, \mathrm{t}-1}$, respectively, we can write equation 2 in the following conventional notation for regression analysis

$$
\begin{equation*}
y_{\mathrm{Jt}}=\sum_{1}^{\mathrm{r}} \mathrm{X}_{1, \mathrm{t}-1} \cdot P_{\mathrm{v}}+\epsilon_{\mathrm{tt}}(\mathrm{~J}=1,2, r) \tag{5}
\end{equation*}
$$

where y_{jt} reflects the observed proportion in state j in time $t, X_{1, t-1}$ is the observed value of the proportion in state 1 in time $\mathrm{t}-1$, and ϵ represents a random disturbance

In estimating models of the type described in equation 5 , researchers have made extensive use of the methods of minumizing the sum of absolute and/or squared errors Although the method of least squares is supenor to the MAD procedure of the random events being considered are normally distributed, Bassett and Koenker (3) and Hull and Holland (9) demonstrate that the MAD estimator is a superior robust method, especially for nonnormal error distributions Bassett and Koenker show that, for any error distribution for which the median is supenor to the mean as an estimator of location, the MAD estimator is preferable to the least squares estimator, in the sense of having strictly smaller asymptotic confidence regions Bassett and Koenker note that this condition holds for an enormous class of distributions that either have peaked density at the median or have long tails

The observed proportions for each time period in equation 5 are multinomially distributed, and the multinomial reduces to the binomial when the individual is considered either to be or not to be in state 1 The binomal probabilities increase monotonically until they reach a maxımum value and then decrease monotoncally One can show whether or not the binomial is symmetrically distributed by proving that $\alpha_{3}=\mathrm{U}_{3} / \sigma^{3}$ equals zero where U_{3} is the third moment about the mean of the binomial distribution For the binomal distribution, with the probability θ of being in state 1 , the components of α_{3} can be derved as $U_{3}=n \theta(1-\theta)(1-2 \theta)$ and $\sigma^{3}=$ $[n \theta(1-\theta)]^{3 / 2}$, where n is the sample size Therefore, for the binomial distribution, the measure of skewness can be written as

$$
\begin{equation*}
\alpha_{3}=\frac{U_{3}}{\sigma^{3}}=\frac{1-2 \theta}{[n \theta(1-\theta)]^{1 / 2}} \tag{6}
\end{equation*}
$$

From equation 6, the binomal is symmetric if $\theta=1 / 2$ and/or the sample suze n becomes exceedingly large Because 'aggregate time series data are used to estimate transition probabilities, it is reasonable to assume that the sample size is not large When there are more than two states, so that the probability of the individual being in state 1 cannot be 05 for each state because of constraint 4, the binomial is asymmetrically distributed and the probability-constrained MAD estimator would be superior to the probability-constramed QP estimator.

Consider the problem of estimating an r^{2} dimensional vector of unknown parameters $P_{v j}$ from a sample of independently observed proportions for each time period on the random varables $\mathrm{Y}_{11},, \mathrm{Y}_{\mathrm{rT}}$ whth the followng probability distribution

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{Y}_{\mathrm{tt}}<\mathrm{y}_{\mathrm{ft}}\right]=F\left(\mathrm{y}_{\mathrm{yt}}-\sum_{\mathrm{i}=1}^{\mathrm{r}} \mathrm{X}_{\mathrm{t}, \mathrm{t}-1} \cdot \mathrm{P}_{\mathrm{yj}}\right) \tag{7}
\end{equation*}
$$

where $\mathrm{J}=1,2, \mathrm{r}$, and $\mathrm{t}=1,2, \mathrm{~T}$

The probability-constramed MAD estimator $\overline{\mathrm{P}}$ is a solution to the following problem

$$
\begin{equation*}
\underset{\mathrm{P} \in \operatorname{Rrxr}}{\operatorname{Minimize}}\left[\sum_{\mathrm{j}=1}^{\mathrm{r}} \sum_{\mathrm{t}=1}^{\mathrm{T}}\left|\mathrm{y}_{\mathrm{jt}}-\sum_{\mathrm{i}=1}^{\mathrm{r}} \mathrm{X}_{\mathrm{x}, \mathrm{t}-1} \cdot \mathrm{P}_{\mathrm{v}}\right|\right] \tag{8}
\end{equation*}
$$

Followng Barrodale and Young (2), Lee and others (14), Sposito (20), (21), and Spyropoulos and others (22), the probability-constrained MAD estimator is then a solution to the problem

$$
\begin{align*}
\text { Minimize } & \sum_{\mathrm{j}=1}^{\mathrm{r}} \sum_{\mathrm{t}=1}^{\mathrm{T}}\left(\mathrm{U}_{\mathrm{jt}}+\mathrm{V}_{\mathrm{Jt}}\right) \tag{9}\\
\text { subject to } & \sum_{\mathrm{J}}^{\mathrm{r}} \mathrm{P}_{\mathrm{l}}=10 \text { for } 1=1,2, \quad \mathrm{r} \tag{10}\\
& \sum_{1}^{\mathrm{r}} \mathrm{X}_{\mathrm{l}, \mathrm{t}-1} \cdot \mathrm{P}_{\mathrm{y}}-\mathrm{U}_{\mathrm{Jt}}+\mathrm{V}_{\mathrm{Jt}}=\mathrm{y}_{\mathrm{Jt}} \tag{11}\\
& \text { for } \mathrm{J}=1,2,, \mathrm{r}, \mathrm{t}=1,2, \quad \mathrm{~T} \\
& \mathrm{U}_{\mathrm{Jt}}, \mathrm{~V}_{\mathrm{Jt}}, \text { and } \mathrm{P}_{\mathrm{v}} \geq 0 \tag{12}\\
& \text { for all } 1, \mathrm{~J}, \text { and } \mathrm{t}
\end{align*}
$$

Minimization of Median Absolute Deviations

Since Hazell (8) introduced the minmmzation of total absolute deviations (MOTAD) model, several economists have identufied the MAD criterion as "minimizing the mean absolute deviations" (see 4, 10, 11, 24) However, the median property has not received sufficient attention among economists A number of authors have discussed the concept of the median property Andrews (1), Bassett and Koenker (3), Harvey (7), and Hill and Holland (9) showed that the minmum absolute deviatoons estimator is superior to the least-squares estimator, when the median is superior to the mean as an estimator of location for nonnormal distributions Furthermore, Spyropoulos and others (22) showed that a median property can be used to improve the rate of convergence of linear programming solutions associated wnth minimum absolute devations (see (16) for the case of nonconvergence) Finally, Parzen (18) and Sposito (21) show that, for a random variable e, the quantity $\sum_{1}\left|e_{1}-c\right|$ acheves, its minımum value when c is equal to the medran

Following Bassett and Koenker (3), we assume that P_{v} for all 1 and J are located so that the probability distrrbution function F in equation 7 has median zero Because the median is the point that divides the area under the probability density function, we have the following equality

$$
\begin{gather*}
\left.\operatorname{Pr}\left(\sum_{1}^{r} X_{1, t-1} \cdot P_{\mathrm{v}}>\mathrm{y}_{\mathrm{jt}}\right)=\operatorname{Pr} \sum_{1}^{r} \mathrm{X}_{\mathrm{l}, \mathrm{t}-1} \cdot \mathrm{P}_{\mathrm{lj}}<\mathrm{y}_{\mathrm{j} t}\right) \\
=1 / 2 \tag{13}
\end{gather*}
$$

In several situations, researchers have a prom knowledge about the dynamic nature of transition probabilties As energy costs have risen and irrigation water has become more scarce, for example, irrigation technology adopted by farmers has changed from highpressure, water-intensive systems to low-pressure, energy- and water-efficient systems Recent urrgation technology shifts in the Southern High Plans have involved a transition from high-pressure center-pivot systems to low-energy precision application (LEPA) systems, whereas Southwest irrgation of tree crops has been shifting from gravity-fed to drip urrigation systems The proportion of energy- and water-efficient irrigation systems has been increasing, suggesting positive median deviations As an example suggesting negative devations over time, we have observed that the number of smokers among professionals has decreased, and that this trend is likely to contmue

In these cases, researchers may be interested in the positive or negative medran deviations in equation 13, depending on whether the dynamic nature of transition probabilities moves toward positive or negative deviations These cases suggest an alternative' specification for the probability-constrained MAD model based on minimizing only the sum of the absolute values of the negative median deviations or the sum of the absolute values of the positive median deviations We can minrmize the sum of 'the absolute values of the negative median deviations by solving the following linear programmung model

Model I

$$
\begin{align*}
\text { Minumize } & \sum_{\mathrm{J}=1}^{\mathrm{r}} \sum_{\mathrm{t}=1}^{\mathrm{T}} \mathrm{Z}_{\mathrm{Jt}}^{-} \tag{14}\\
\text {subject to } & \sum_{\mathrm{J}}^{\mathrm{r}} \mathrm{P}_{\mathrm{lj}}=10 \text { for } 1=1,2, \quad, \tag{15}\\
& \sum_{1}^{r} \mathrm{X}_{\mathrm{l}, \mathrm{t}-1} \cdot \mathrm{P}_{\mathrm{lj}}+\mathrm{Z}_{\mathrm{J}}^{-} \mathrm{t} \geq \mathrm{y}_{\mathrm{Jt}} \tag{16}\\
& \text { for } \mathrm{J}=1,2,, \mathrm{r}, \mathrm{t}=1,2, \quad \mathrm{~T} \text { and } \\
& \mathrm{Z}_{\mathrm{J} t}^{-}, \text {and } P_{1 \mathrm{~J}} \geq 0 \tag{17}
\end{align*}
$$

where $\sum_{j=1}^{r} \sum_{t=1}^{T} Z_{j t}^{-}$is the sum of the absolute values of the negative median deviations

An alternative model can be specified that munimzes only the sum of the absolute values of the positive median deviations as follows

Model II

$$
\begin{align*}
\text { Minimize } & \sum_{\mathrm{J}=1}^{\mathrm{r}} \sum_{\mathrm{t}=1}^{\mathrm{T}} \mathrm{Z}_{\mathrm{jt}}^{+} \tag{18}\\
\text {subject to } & \sum_{\mathrm{J}}^{\mathrm{r}} \mathrm{P}_{\mathrm{v}}=10 \text { for } \mathrm{l}=1,2, \quad \mathrm{r} \tag{19}\\
& \sum_{\mathrm{l}}^{\mathrm{r}} \mathrm{X}_{\mathrm{l}, \mathrm{t}-1} \cdot \mathrm{P}_{\mathrm{v}}-\mathrm{Z}_{\mathrm{jt}}^{+} \leq \mathrm{y}_{\mathrm{Jt}} \tag{20}\\
& \text { for } \mathrm{J}=1,2,, \mathrm{r}, \mathrm{t}=1,2, \mathrm{~T} \text { and } \\
& \mathrm{Z}_{\mathrm{Jt}}^{+}, \text {and } \mathrm{P}_{\mathrm{V}} \geq 0 \tag{21}
\end{align*}
$$

where $\sum_{j=1}^{\mathrm{r}} \sum_{\mathrm{t}=1}^{\mathrm{T}} \mathrm{Z}_{\mathrm{jl}}^{+}$is the sum of the absolute values of the positive median deviations

For any error distribution for which the median is superior to the mean as an estimator of location, the MOMAD estimator for both model I and model II is identical with the probability-constramed MAD estimator We can easly prove the identity by first converting equations 9 through 12 into matrix notation as follows

$$
\begin{array}{ll}
\text { Minmmize } & (\mathrm{U}+\mathrm{V})^{\prime} \mathrm{e}_{\mathrm{r} T} \\
\text { subject to } & \mathrm{GP}=\mathrm{e}_{\mathrm{r}} \\
& \mathrm{XP}-\mathrm{U}+\mathrm{V}=\mathrm{Y} \\
& \mathrm{P}, \mathrm{U}, \mathrm{~V} \geq 0
\end{array}
$$

where U and V are ($\mathrm{rT} \times 1$) column vectors of surplus and slack variables, respectively, $\mathrm{e}_{\mathrm{r} T}$ is an ($\mathrm{r} T \times 1$) column vector with all elements $1, \mathrm{X}$ is an $\left(\mathrm{rT} \times \mathrm{r}^{2}\right)$ block diagonal matrix, P is an ($\mathrm{r}^{2} \times 1$) column vector, Y is an ($r T \times 1$) column vector, and G is an $\left(r \times r^{2}\right)$ coefficient matrix, such that $\mathrm{G}=\left[\mathrm{I}_{1}, \mathrm{I}_{2},, \mathrm{I}_{\mathrm{r}}\right]$ with each I_{1} an $(r \times r)$ identity matrix Now define variable Z as follows

$$
\begin{equation*}
\mathrm{Z}=(\mathrm{U}+\mathrm{V}) \tag{22}
\end{equation*}
$$

where Z is an $(\mathrm{rT} \times 1)$ column vector
Rearranging equation 22, we have the equation

$$
\begin{equation*}
\mathrm{V}=\mathrm{Z}-\mathrm{U} \tag{23}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\mathrm{U}=\mathrm{Z}-\mathrm{V} \tag{24}
\end{equation*}
$$

Inserting equations 22 and 23 into equations 9^{\prime} and 11^{\prime}, respectively, the probability-constrained MAD model can be rewritten as follows

$$
\begin{array}{ll}
\text { Minimize } & \mathrm{Z}^{\prime} \mathrm{e}_{\mathrm{r} T} \\
\text { subject to } & \mathrm{GP}=\mathrm{e}_{\mathrm{r}} \\
& \mathrm{XP}+\mathrm{Z}-2 \mathrm{U}=\mathrm{Y} \\
& \mathrm{P}, \mathrm{Z}, \mathrm{U} \geq 0 \tag{28}
\end{array}
$$

or equivalently as

MOMAD Model I

$$
\begin{array}{ll}
\text { Minımize } & \mathrm{Z}^{\prime} \mathrm{e}_{\mathrm{r} T} \\
\text { subject to } & \mathrm{GP}=\mathrm{e}_{\mathrm{r}} \\
& \mathrm{XP}+\mathrm{Z} \geq \mathrm{Y} \\
& \mathrm{P}, \mathrm{Z} \geq 0 \tag{32}
\end{array}
$$

which is identical with the MOMAD Model I given in equations 14 through 17 , where $\mathrm{Z}=\mathrm{Z}^{-}$

In cases where equations 22 and 24 are inserted into equations 9^{\prime} and 11^{\prime}, respectively, the probabilityconstraned MAD model can be rewritten as follows

$$
\begin{array}{ll}
\text { Minımize } & \mathrm{Z}^{\prime} \mathrm{e}_{\mathrm{rT}} \\
\text { subject to } & \mathrm{GP}=\mathrm{e}_{\mathrm{r}} \\
& \mathrm{XP}-\mathrm{Z}+2 \mathrm{~V}=\mathrm{Y} \\
& \mathrm{P}, \mathrm{Z}, \mathrm{~V} \geq 0 . \tag{36}
\end{array}
$$

or equivalently as

MOMAD Model II

$$
\begin{array}{ll}
\text { Minimize } & \mathrm{Z}^{\prime} \mathrm{e}_{\mathrm{rT}} \\
\text { subject to } & \mathrm{GP}=\mathrm{e}_{\mathrm{r}} \\
& \mathrm{XP}-\mathrm{Z} \leq \mathrm{Y} \\
& \mathrm{P}, \mathrm{Z}, \geq 0 \tag{40}
\end{array}
$$

which is identical with the MOMAD model II given in equations 18 through 21 , where $\mathrm{Z}=\mathrm{Z}^{+}$

Consequently, the probabilty-constramed MAD estimators are identical with the probability-constrained MOMAD estmators However, the MOMAD procedure reduces rT variables from the probability-constraned MAD procedure to estimate the transition probabilities of the finte Markov Process

Properties of the MOMAD Estimator

Properties of the QP and MAD estimators assoclated with the probability constrants in equation 10 are unknown Therefore, we restrict our discussion to the QP and MAD estimators without the probabilty constraints Since the MOMAD estimator is conceptually identical with the probability-constraned MAD estimator when the median is superior to the mean as an estimator of location, we shall concentrate our discussion on the properties of the MAD estumator only

Let m represent the population median For a continuous random variable e, the sample median is asymptotically normal with mean m and variance $\left[4 \mathrm{rff}^{2}(\mathrm{~m})\right]^{-1}$, where $f(\cdot)$ is the population density function Under the assumption that P_{y} is located so that the distribution function F in equation 7 has median zero, $\sqrt{\mathrm{rT}}(\tilde{\mathrm{P}}-\mathrm{P})$ converges in distribution to an r^{2} dimensional Gaussian random vector with mean zero and covariance matrix $W^{2} \cdot Q^{-1}$ (9) Here $\overline{\mathrm{P}}$ is a vector of the MAD estimator $\tilde{P}_{\mathrm{ij}}, \mathrm{P}$ is a vector of the parameter
$P_{\mathrm{y}}, \mathrm{W}^{2}=\left[4 \mathrm{f}^{2}(0)\right]^{-1}$, and $\mathrm{Q}=\lim (\mathrm{rT})^{-1} \mathrm{X}_{\mathrm{rT}}^{\prime} \mathrm{X}_{\mathrm{rT}}$ In other words, the MAD estimator is consistent as well as asymptotically Gaussian for a large sample, with a covarnance matrix [$\mathrm{W}^{2} \cdot \mathrm{Q}^{-1}$] Thus, the MAD estimator has strictly smaller asymptotic confidence regions than the QP estimator for linear models from any distribution function F for which the sample medran is a more efficient estimator of location than the sample mean

A Numerical Example

To lllustrate the MOMAD procedure as well as to demonstrate that the MAD estimator is superior to the QP estimator, we use the numerical example used by Lee, Judge, and Takayama (18) In matrix notation form, the transition probabilties to be estimated are as follows

$$
\mathrm{P}=\stackrel{\begin{array}{r}
\mathrm{S}_{1} \tag{4}\\
\mathrm{~S}_{2} \\
\mathrm{~S}_{3} \\
\mathrm{~S}_{4}
\end{array}}{ }\left[\begin{array}{rrrr}
\mathrm{S}_{1} & \mathrm{~S}_{2} & \mathrm{~S}_{3} & \mathrm{~S}_{4} \\
06 & 04 & 0 & 0 \\
01 & 05 & 04 & 0 \\
0 & 01 & 07 & 02 \\
0 & 0 & 01 & 09
\end{array}\right]
$$

Table 1 shows the synthetic data relating to the sample proportions in each'state As Lee, Judge, and Takayama experimented, we assumed that we do not know the transition probablity matrix (equation 41), but have only the information contained in the aggregate data in table 1 Under this assumption, we estimate the transition probabilities by the probability-constramed QP, MAD, and MOMAD procedures (tables 2 and 3) Table 2 con-

Table 1-Synthetic data relating to the sample proportions in each state

Time pernod	Proportion in state (1)					
	$\frac{\mathrm{S}_{1}}{}$	$\mathrm{~S}_{2}$				$\frac{\mathrm{~S}_{3}}{}$
8	00815	01890	03999	$\frac{\mathrm{~S}_{4}}{03296}$		
9	0678	1671	3885	3766		
10	0574	1495	3765	4166		
11	0494	1354	3650	4502		
12	0431	1239	3546	4784		
13	0383	1147	3457	5013		
14	0345	1072	3380	5203		
15	0314	1012	3315	5359		
16	0290	0963	3261	5486		
17	0270	0924	3216	5590		
18	0254	0892	3180	5674		

Table 2-The probability-constrained QP, MAD, and MOMAD estimates of the transition matrix from different ascending portions of the aggregate data for a Markov process

Time period	Estimators		
	QP	MAD	MOMAD ${ }^{1}$
$\mathrm{t}=8,9, \quad 18$	$\left[\begin{array}{lllll}0 & 753 & 0237 & 0 & \\ 0 & 010 \\ 0 & 624 & 376 & 0 \\ 016 & 071 & 716 & 197 \\ 0 & 004 & 095 & 901\end{array}\right]$		$\left[\begin{array}{lllll}0598 & 0 & 402 & 0 & 0 \\ 101 & 508 & 391 & 0 \\ 0 & 094 & 706 & 200 \\ 0 & 002 & 098 & 900\end{array}\right]$
$\mathrm{t}=9,10, \mathrm{l}$	$\left[\begin{array}{lllll} \\ 755 & 245 & 0 & 0 \\ 0 & 595 & 405 & 0 \\ 016 & 086 & 699 & 199 \\ 0 & 0 & 099 & 901\end{array}\right]$	$\left[\begin{array}{llll}597 & 403 & 0 & 0 \\ 101 & 509 & 390 \\ 0 & 093 & 707 & 200 \\ 0 & 002 & 098 & 900\end{array}\right]$	$\left[\begin{array}{llll}597 & 403 & 0 & 0 \\ 101 & 509 & 390 & 0 \\ 0 & 093 & 707 & 200 \\ 0 & 002 & 098 & 900\end{array}\right]$
$\mathrm{t}=10,11, \mathrm{l}, 18$	$\left[\begin{array}{lllll}754 & 246 & 0 & & 0 \\ 0 & & 589 & 411 & 0 \\ 016 & 088 & 698 & 198 \\ 0 & 0 & & 099 & 901\end{array}\right]$	$\left[\begin{array}{lllll}0608 & 392 & 0 & 0 \\ 097 & 524 & 379 & 0 \\ 0 & 089 & 712 & 199 \\ 0 & 004 & 096 & 900\end{array}\right]$	$\left[\begin{array}{llll}608 & 392 & 0 & 0 \\ 097 & 524 & 379 & 0 \\ 0 & 089 & 712 & 199 \\ 0 & 004 & 096 & 900\end{array}\right]$
$\mathrm{t}=11,12,18$	$\left[\begin{array}{lllll}749 & 0 & & 251 & 0 \\ 0 & 728 & 272 & 0 \\ 017 & 068 & 718 & 197 \\ 0 & 0 & 098 & 902\end{array}\right]$	$\left[\begin{array}{lllll}765 & 235 & 0 & 0 \\ 0 & 596 & 404 & 0 \\ 015 & 086 & 699 & 200 \\ 0 & 0 & 100 & 900\end{array}\right]$	$\left[\begin{array}{lllll} & 765 & 235 & 0 & 0 \\ 0 & 596 & 404 & 0 \\ 0015 & 086 & 699 & 200 \\ 0 & 0 & & 100 & 900\end{array}\right]$
$\mathrm{t}=12,13,18$	$\left[\begin{array}{lllll} & 856 & 0 & 0 & \\ 0 & & 758 & 242 & 0 \\ 0 & & 059 & 776 & 165 \\ 004 & 0 & & 083 & 913\end{array}\right]$	$\left[\begin{array}{lllll}687 & 0 & 313 & 0 \\ 057 & 736 & 207 & 0 \\ 005 & 066 & 729 & 200 \\ 0 & 0 & 100 & 900\end{array}\right]$	$\left[\begin{array}{lllll}0687 & 0 & 313 & 0 \\ 057 & 736 & 207 & 0 \\ 005 & 066 & 729 & 200 \\ 0 & 0 & 100 & 900\end{array}\right]$
$\mathrm{t}=13,14, \mathrm{l}, 18$		$\left[\begin{array}{lllll}608 & 0 & 228 & 164 & 0 \\ 097 & 600 & 303 & 0 \\ 0 & 086 & 713 & 201 \\ 0 & 0 & 101 & 899\end{array}\right]$	$\left[\begin{array}{llll}608 & 228 & 164 & 0 \\ 097 & 600 & 303 & 0 \\ 0 & 086 & 713 & 201 \\ 0 & 0 & 101 & 899\end{array}\right]$

[^1]Table 3-The probability-constrained QP, MAD, and MOMAD estimates of the transition matrix from different descending portions of the aggregate data for a Markov process

Time period	Estımators		
	QP	MAD	MOMAD ${ }^{1}$
$\mathrm{t}=8,9, \quad, 17$	$\left[\begin{array}{lllll}0752 & 0248 & 0 & 0 \\ 0 & 615 & 371 & 014 \\ 016 & 073 & 720 & 191 \\ 0 & 004 & 093 & 903\end{array}\right]$	$\left[\begin{array}{lcrll}0600 & 0400 & 0 & 0 \\ 100 & 503 & 390 & 007 \\ 0 & 098 & 706 & 196 \\ 0 & 0 & 098 & 902\end{array}\right]$	$\left[\begin{array}{lcccl}0599 & 0401 & 0 & 0 \\ 101 & 504 & 388 & 007 \\ 0 & 097 & 707 & 196 \\ 0 & 0 & 098 & 902\end{array}\right]$
$t=8,9,16$	$\left[\begin{array}{llll} \\ 750 & 250 & 0 & 0 \\ 0 & 612 & 371 & 017 \\ 017 & 075 & 719 & 189 \\ 0 & 003 & 093 & 904\end{array}\right]$	$\left[\begin{array}{llll}613 & 387 & 0 & 0 \\ 091 & 516 & 388 & 005 \\ 002 & 094 & 708 & 196 \\ 0 & 001 & 097 & 902\end{array}\right]$	$\left[\begin{array}{lllll}613 & 387 & 0 & 0 \\ 091 & 516 & 388 & 005 \\ 002 & 094 & 708 & 196 \\ 0 & 001 & 097 & 902\end{array}\right]$
$\mathrm{t}=8,9, \quad 15$	$\left[\begin{array}{lllll} & 749 & 228 & 0 & 023 \\ 0 & 631 & 369 & 0 \\ 017 & 070 & 721 & 192 \\ 0 & 004 & 093 & 903\end{array}\right]$	$\left[\begin{array}{lllll}599 & 401 & 0 & 0 \\ 101 & 503 & 388 & 008 \\ 0 & 098 & 707 & 195 \\ 0 & 001 & 097 & 902\end{array}\right]$	$\left[\begin{array}{lllll}598 & 402 & 0 & 0 \\ 101 & 502 & 389 & 008 \\ 0 & 098 & 707 & 195 \\ 0 & 0 & 098 & 902\end{array}\right]$
$\mathrm{t}=8,9,14$	$\left[\begin{array}{lllll} & 746 & 216 & 0 & 038 \\ 0 & 631 & 369 & 0 \\ 017 & 074 & 721 & 188 \\ 0 & 002 & 093 & 905\end{array}\right]$	$\left[\begin{array}{lllll}699 & 301 & 0 & 0 \\ 032 & 574 & 389 & 005 \\ 012 & 085 & 707 & 196 \\ 0 & 001 & 098 & 901\end{array}\right]$	$\left[\begin{array}{lllll}699 & 301 & 0 & 0 \\ 032 & 574 & 389 & 005 \\ 012 & 085 & 707 & 196 \\ 0 & 001 & 098 & 901\end{array}\right]$
$\mathrm{t}=8,9,13$	$\left[\begin{array}{llll}772 & 228 & 0 & 0 \\ 0 & 632 & 368 & 0 \\ 008 & 069 & 722 & 201 \\ 005 & 004 & 092 & 899\end{array}\right]$	$\left[\begin{array}{llll}756 & 243 & 001 & 0 \\ 0 & 608 & 385 & 007 \\ 014 & 080 & 710 & 196 \\ 001 & 0 & 097 & 902\end{array}\right]$	$\left[\begin{array}{llll}756 & 243 & 001 & 0 \\ 0 & 608 & 385 & 007 \\ 014 & 080 & 710 & 196 \\ 001 & 0 & 097 & 902\end{array}\right]$
$\mathrm{t}=8,9,12$	$\left[\begin{array}{llll} & \\ & 767 & 0 & 233 \\ 0 & & 784 \\ 016 & 216 & 0 \\ 014 & 047 & 735 & 204 \\ 0 & 0 & 104 & 896\end{array}\right]$	$\left[\begin{array}{llll}598 & 396 & 006 & 0 \\ 101 & 505 & 380 & 014 \\ 0 & 099 & 711 & 190 \\ 0 & 0 & 096 & 904\end{array}\right]$	$\left[\begin{array}{lllll} & 598 & 396 & 006 & 0 \\ 101 & 505 & 380 & 014 \\ 0 & 099 & 711 & 190 \\ 0 & 0 & 096 & 904\end{array}\right]$

${ }^{1}$ Estumators for MOMAD models I and II
tains the estimators of the transition matrix from different ascending portions of the aggregate data, whule table 3 used different descending portions of the aggregate data The probability-constraned QP estimator, using the trials $(\mathrm{t}=8,9,, 18)$ in table 2 , deffers from that presented by Lee, Judge, and Takayama (13) Sumlarly, the probability-constrained QP estimator for the trials ($\mathrm{t}=8,9,12$) in table 3 differs from that presented by Lee, Judge, and Zellner (14) These authors used a simplex algorthm developed by Wolfe (25), whereas we used Minos, developed by Murtagh and Saunders (17), which uses the reduced-gradient algorthm, also developed by Wolfe (26)

Tables 2 and 3 show that the probability-constramed MAD and MOMAD estimators are identical Furthermore, the MOMAD estimator is more efficient than the
probabllity-constrained QP estimator However, the efficlency between these two estimators needs further study

Comparison of the QP and MOMAD Estimators

The sample median is asymptotically normal with mean (m) and variance $\left[4 \mathrm{rTf}^{2}(\mathrm{~m})\right]^{-1}$, where (m) is the population median and $f(\cdot)$ is the population probability density function Because the probability density function $f(m)$ is unknown, there are no meaningful statistical test procedures based on the sample medıan Therefore, a nonparametnc statistical method (the binomial test) is used to check the signuficance of the dufferences in the dispersion of the estimators about the true parameters (14)

The null hypothesis to be tested is as follows

$$
\mathrm{H}_{0} \cdot \operatorname{Pr}\left[\left|\stackrel{\rightharpoonup}{P}_{\mathrm{lj}}-\mathrm{P}_{\mathrm{lj}}\right|>\left|\hat{\mathrm{P}}_{\mathrm{l}}-\mathrm{P}_{\mathrm{lj}}\right|\right]=1 / 2
$$

relative to the alternative

$$
\mathrm{H}_{\mathrm{A}} \operatorname{Pr}\left[\left|\stackrel{\ddot{P}}{\mathrm{v}}-\mathrm{P}_{\mathrm{v}}\right|>\left|\hat{\mathrm{P}}_{\mathrm{v}}-\mathrm{P}_{\mathrm{v}}\right|\right]>1 / 2
$$

where $\dot{P}_{1 j}, \hat{P}_{v j}$, and $P_{y j}$ are the probability-constraned QP estimator, the MOMAD estimator, and the true parameter, respectively

The procedures of the binomial test and its statistical table can be,found in Siegel (19) We applied the test using only those pairs in which there is no tie (see 15) The results of the binomal test show that the MOMAD estimator is at least as efficient as, or more efficient than, the probability-constrained QP estimator in estimating the transition' probabilities (table 4)

Table 4-The binomial tests for H_{0}
$\operatorname{Pr}\left[\left|\overline{\mathbf{P}}_{\mathrm{I}}-\mathbf{P}_{\mathrm{l}}-\left|>\left|\hat{\mathbf{P}}_{\mathrm{y}}-\mathbf{P}_{\mathrm{t}}\right|\right]=\mathbf{1 / 2}\right.\right.$ vs
$\mathbf{H}_{\mathbf{A}} \operatorname{Pr}\left[\left|\dot{\mathbf{P}}_{\mathrm{ij}}-\mathbf{P}_{\mathrm{j}}\right|>\left|\hat{\mathbf{P}}_{\mathrm{v}}-\mathbf{P}_{\mathrm{v}}\right|\right]>\mathbf{1 / 2}$

	Probabilities associated with values in the binomal test	Superior estimator based on the binomial test at $\alpha=0$
Time period		

Conclusions

We have proposed the use of the minimization of median absolute deviations (MOMAD) to estimate transition probabilities of a finite Markov chain with limited aggregate time sernes data The MOMAD model is conceptually identical with the MAD model However, the MOMAD model is simpler to use than the probabilityconstraned MAD procedure, while using a linear programming algorthm We also showed that the MOMAD estımators are more efficient than the QP estrmators by demonstrating that (1) the MOMAD and MAD models are conceptually identical, and (2) the MAD estimators and, therefore, the MOMAD estimators are more efficient than the QP estimators

References

1 Andrews, David F "A Robust Method for Multiple Linear Regression," Technometrics, Vol 16, 1974, pp 523-31

2 Barrodale, I, and A Young "Algornthms for Best L_{1}^{\prime} and L_{∞} Linear Approximations on a Discrete Set," Numèrcal Mathematucs, Vol 8, 1966, pp 295-306

3 Bassett, Gllbert, Jr, and R Koenker "Asymptotic Theory of Least Absolute Error Regression," Journal of the American Statistical Association, ' ${ }^{\prime}$ Vol 73, 1978, pp 618-22

4 Buccola, ST "Minimzzing Mean Absolute Deviations to Exactly Solve Expected Utilty Problems Comment," American Journal of Agncultural Economics, Vol 64, 1982, pp 789-91

5 Burt, OR "Economics of Conjunctive Use of Ground and Surface Water,'" Hilgardia, Vol 36, 1964, pp 31-111

6 Dent, W T "Application of Markov Analysis to International Wool Flows," Revrew of Economucs and Statzstcs, Vol 49, 1967, pp 613-16

7 Harvey, A C "A Comparison of Prelıminary Estrmators for Robust Regression," Journal of the American Statrstccal Assoczation, Vol 72, 1977, pp 910-13

8 Hazell, P B R "A Linear Alternative to Quadratic and Semıvariance Programming for Farm Planning Under Uncertanty," American Journal of Agricultural Economics, Vol 53, 1971 pp 53-62

9 Hill, R, and P W Holland 'Two Robust Alternatives to Least-Squares Regression," Journal of the American Statzstcal Assocration, Vol 72, 1977, pp 828-33

10 Johnson, D, and M Boehlye "Minımzing Mean Absolute Deviations to Exactly Solve Expected Utiity Problems," American Journal of Agricultural Economics, Vol 63, 1981, pp 728-29

11 \qquad "Minmizing Mean Absolute Deviations to Exactly Solve Expected Uthlity Problems Reply," American Journal of Agricultural Economucs, Vol 64, 1982, pp 792-93

12 Kemeny, J G , and J L Snell Finite Markov Chains Princeton, NJ D Van Nostrand Company, Inc, 1960

13 Lee, T C, G G Judge, and T Takayama. "On Estimating the Transition Probabilities of a Markov Process," Journal of Farm Economucs, Vol 47, 1965, pp 742-62

14 Lee, T C , G G Judge, and A Zellner Estımating the Parameters of the Markov Probabality Model from Aggregate Time Series Data 2nd rev ed New York North-Holland Publishing Co, 1977

15 Lindgren, B W Statustical Theory 2nd ed New York Macmullan Company, 1968

16 McCormick, G F , and V A. Sposito "A Note on L_{1} Estmation Based on the Median Positive Quotient," Royal Statistzcal Socrety, Series C, Vol 24, 1975, pp 347-350

17 Murtagh, B A, and M Saunders Minos User's Guzde Tech Rept SOL 83-20 Systems Optimization Laboratory, Dept of Operations Research, ${ }_{4}$ Stanford Unve, 1983

18 Parzen, E Modern Probabilty Theory and its Applcation New York John Wley and Sons, 1960

19 Siegel, S Nonparametric Statistics for the Behavroral:Scvences, New York 'McGraw-Hıll, 1956

20 Sposito, V A "On Unblased L_{p} Regression Estimators," Journal of the Amerncan Statstical Assocration, Vol 77, 1982, pp 652-53

21 \qquad Linear and Nonlinear Programming Ames lowa State Univ Press, 1975

22 Spyropoulos, K, E Kıountouzıs, and A Young "Discrete Approximation in the L_{1} Norm," The Computer Journal, Vol 16, 1973, pp 180-86

23 Telser, L G "Advertising and Cigarettes," Journal of Political Economy, Vol 70, 1962, pp 471-99

24 Thomson, K.J, and P B R Hazell "Relability of Using the Mean Absolute Deviation to Derive Efficlent E, V Farm Plans," American Journal of Agricültural Economics, Vol 54, 1972, pp 503-06

25 Wolfe, P "The Simplex Method for Quadratic Programming," Econometrica, Vol. 27, 1959, pp 382-98

26 ming," in Recent Advances in Mathematical Programming, ed R L Graves and P Wolfe New York McGraw-Hill, 1963

[^0]: Kim and Schable are economusts with the Commodity Economics Div sion and the Resources and Technology Division, ERS They appreci ate the helpful comments of V A Sposito at Iowa State University, T C Lee at the Unversity of Connecticut, and G G Judge at the Unuversity of Calıforma Berkeley on an earher draft of this paper
 ${ }^{1}$ Italicized numbers in parentheses refer to items in the References at the end of this article

[^1]: ${ }^{1}$ Estmators for MOMAD models I and II

