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Estimation of Transition Probabilities 
Using Median Absolute Deviations 

CoS. Klrn and Glenn Schaible 

Abstract_ The probabtltty-constratned mtntmum abso­
lute demattons (MAD) esttmator appears to be supenor 
to the probab,ltty-constratned qundrattc programmtng 
esttmator tn esttmattng transttton probab,ltttes Wlth 
ltmtted aggregate t,me senes data Furthemwre, one 
can reduce the number of columns tn the probabtltty­
constratned MAD stmplex tableau by adopttng the 
medmn property 

KeylJJOrds_ Mtntmum absolute devtattons, transttwn 
probab,l,ttes, medmn absolute demattons, If!UUlrattc 
programmtng 

Markov processes are a speCIal class of mathematIcal 
models that,are often applIed to economIc declslOnmak­
Ing In stochastIC dynamIC programnung (5), structural 
changes of an Industry or changes m sIZe econonues (23), 
or internatIOnal trade (6) I To estImate a meamngful 
transItIon matnx, researchers need tIme-ordered data 
that reflect Intertemporal changes of mIcro umts over 
states (or classIficatIOns) However, tIme-ordered 
changes of mICroeconomlc umts are, generally not avail­
able for most econonuc vanables, therefore, researchers 
must often work WIth aggregate time senes data In 
an Ingemous artIcle, Lee, Judge, and Takayama (13) 
showed how one can estImate transItion probabIlitIes 
for a Markov process reflectIng the behaVIOr of nucro 
umts WIth only aggregate tIme senes data They con­
cluded from a IInuted tnal, based on the assumptIOn of 
normalIty of the error terms, that the probabllIty­
constraIned quadratIc programming (QP) estImator IS 
supenor to the probabIlIty-constrained mlmmum abso­
lute deVIatIOns (MAD) estImator In estImating transI­
tIOn probabIlItIes In a subsequent artICle, Lee, Judge, 
and Zellner concluded from theIr samplIng expenment 
that the probabIlIty-constrained MAD estImator IS 
mfenor to the probability-constramed QP estImator (14, 
p 135) 

We prove here that the probabIlIty-constrained MAD 
estImator IS supenor to the probabilIty-constrained QP 

KIm and Schruble are econonusts With the CommodIty EconOmICS DIVl 
sion and the Resources and Technology Dlvlslon, ER& Theyapprecl 
ate the helpful comments of V A SPOSito at Iowa State Uruverslty, 
T C Lee at the Uruverslty of Connecticut, and G G Judge at the 
Uruverslty of Cahforma Berkeley on an earher draft of thIS paper 

1 ItahcIZed numbers m parentheses refer to Items In the References 
at the end of thIS artIcle 

estimator when estimating tranSItIOn probabllItles'Wlth 
lmuted aggregate time senes data Second, we present 
an alternatIve model, nummIZatlOn of medIan absolute 
deVIatIOns (MOMAD), based on the assumptIons that the 
error terms are nonnormally rustnbuted and that the 
researcher has a prwr! InformatIOn about the dynanuc 
nature of the Markov process ThIrd, we prove that the 
MOMAD estimator IS Identical WIth the probabllIty­
constramed MAD estunator, wluch-Bassett and Koenker 
(3) concluded IS a more efficIent estimator for any error 
rustnbutlOn for wluch the meruan IS supenor to the mean 
as an estimator of locatIOn Moreover, the constramt 
matnx assoc!ated WIth the MOMAD model mvolves 
fewer columns m the SImplex tableau 

Notation and Minimization of Absolute 
Deviations 

The stochastIc process of a finIte Markov Cham can be 
expressed as 

Pr(S,t. ~,t+l) ~ Pr(S,t)· Pr(~,t+11 s,t. S"t-I, ,S,O) 

~ Pr(S,t) • Pr(~,t+1 I Sit) (1) 

(for all I and J) 

where Pr(S,t) represents the probabIlIty that state S, 
occurs on mal t, Pr(S,t. SJ,I+I) IS the JOint probabIlIty 
of s,t and SJ,t+I, and Pr(SJ,t+ 1 I Sid represents the con­
rutlOnal probabIlIty for the state SJ EquatIOn 1, pre­
sented by Kemeny and Snell (12), explainS that the 
probabIlIty of gomg to each of the states depends only 
on the present state and IS Independent of how we 
arnved at that state 

Summmg both SIdes of equatIOn lover all pOSSIble out­
comes of the state S, may be represented by 

r 

Pr(SJ,t+l) E Pr(S,t) • Pr(SJ,t+1 I s,t) (2) 
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where P ~ represents the transitIOn probablhty and has 
the followmg properties 

p~ "" 0 for all I and J (3) 

Ep~ = 1 (4) 

By replacmg Pr(8:J,t+ I) and Pr(S,t) With the observed 
proportIOns YJt and X',t-1. respectively, we can wnte 
equation 2 m the folloWing conventional notatIOn for 
regressIOn analysIs 

r 

YJt = E X"t_1 • p~ + EJt (j I, 2, ,r) (5) 

where YJt reflects the observed proportIOn m state J m 
time t, X,t_1 IS the observed value of the proportIOn 
m state I' m time t-l, and E represents a random 
dIsturbance 

In estlmatmg models of the type descnbed m equatIOn 
5, researchers have made extensive use of the methods 
of IlIIIllITUZlI1g the sum of absolute and/or squared errors 
Although the method of least squares IS supenor to the 
MAD procedure If the random events bemg considered 
are normally dIstnbuted, Bassett and Koenker (3) and 
HilI and Holland (9) demonstrate that the MAD 
estimator IS a supenor robust method, especially for 
nonnormal error dlstnbutlOns Bassett and Koenker 
show that, for any error dIstnbutlOn for which the 
median IS supenor to the mean as an estnnator of loca­
tIOn, the MAD estimator IS preferable to the least 
squares estnnator, m the sense of havmg stnctly smaller 
asymptotic confidence regIOns Bassett and Koenker 
note that this condItIOn holds for an enormous class of 
dIstnbutions that either have peaked denSity at the 
median or have long tails 

The observed proportIOns for each tnne penod m equa­
tion 5 are mwtmorrually dIstnbuted, and the mwtmonual 
reduces to the bmorrual when the mdIvldual IS consid­
ered either to be or not to be m state I The bmorrual 
probabilities mcrease.monotorucally until they reach a 
maximum value and then decrease monotorucally One 
can show whether or not the bmorrual IS syrrunetncally 
dlstnbuted by provmg that "3 = U3/03 equals zero 
where Ua IS the third moment about the mean of the 
bmonual dIstnbution For the bmonual rustnbutlOn, With 
the probability 9 of bemg m state I, the components of 
"3 can be denved as U3 = n9(l-8)(1-29) and 03 = 
[n8(1-8)]3/2, where n IS the sample SIZe Therefore, for 
the bmomlal dlstnbutlOn, the measure of skewness can 
be wntten as 

U3 1 - 28 
(6)"3 = -;;a = [n8(l-8)]112 

From equatIOn 6, the bmorrual IS syrrunetnc If 8 = 112 
and/or the sample SIZe n becomes exceedmgly large 
Because' aggregate tnne senes data are used to estunate 
tranSitIOn probabilities, it IS reasonable to assume that 
the sample sIZe IS not large When there are more than 
two states, so that the probability of the mdlVldual bemg 
m state I cannot be 05 ,for each state because of con­
stramt 4, the bmorrualls asyrrunetncalJy dlStnbuted and 
the probability-constramed MAD estnnator would be 
supenor to the probabllity-constramed QP estnnator_ 

Consider the problem of estnnatmg an r2 dImensIOnal 
vector of unknown parameters P ~ from a sample of 
mdependently observed proportions for each time penod 
on the random vanables Y 11. ,YrT With the followmg 
probability dIstnbutlOn 

r 

Pr[Y]t < y]tl F(Y]t - E X"t_1 • P~) (7) 
1=1 

where J = I, 2, ,r, and t = I, 2, ,T 

The probabillty-constramed MAD estnnator PIS a solu­
tion to the follOWing problem 

r T r 

M=e [E E ,I YJt - E X"t-I • P~ I] (8) 
P E Rrxr J=I t=1 1=1 

FolloWIng Barrodale and Young (2), Lee and others (14), 
SPOSito (20), (21), and Spyropoulos and others (22), the 
probabllity-constramed MAD estunator IS then a'solu­
tion to the problem 

r T 
Mlrurruze + VJt) (9)E E (UJt 

J=I t=1 

r 

subject to Ep~ 10 for I I, 2, ,r (10) 

r

E X"t_I·P~ - UJt + VJt = YJt (11) 

for J = I, 2, , r, t = 1,2, ,T 

(12)UJb VJb and P ~ "" 0 

for all I, J, and t 
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Minimization of Median Absolute Deviations 

Smce Hazell (8) mtroduced the I!llIUIDIZatlOn of total 
absolute deVIatIOns (MOTAD) model, several econonusts 
have Ident}fi'ed the MAD cntenon as "mnumlZing the 
mean' absolute deVIatIOns" (see 4, 10, 11, 24) However, 
the median property has not received sufficient atten­
hon among econonusts A number of authors have rus­
cussed the consept, of the meruan property Andrews 
(1), Bassett and Koenker (3), Harvey (7), and HIll and 
Holland (9) showed that, the mlrumum absolute devla­
hons estimator IS supenor to the least-squares estima­
tor, when the meruan IS supenor to the mean as an 
estimator of locatIOn for nonnonnal dlstnbutlOns Fur­
thennore, Spyropoulos and others (22) showed that a 
median property can be used to, Improve the rate of con­
vergence of lmear programmmg solutIOns associated 
With numlT\um absolute deViatIOns (see (16) for the case 
of nonconvergence) Fmally, Parzen (18) and SpOSito (21) 

show that, for a random vanable e, the quantIty 

E I e, - c I achieves, ItS mm\ffium value when c IS 
I 

equal to the meruan 

FollOWing Bassett and Koenker (3), we assume that P g 
for all I and J are located so that the probability dlstn­
butlOn functIOn F m equatIOn 7 has mernan zero Because 
the median IS the pomt that ruvldes the area under the 
probabihty denSity functIOn, we have the follOWing 
equabty 

r r 

Pr( E X"t_IO Pg>YJt) = Pr E X"l_lo Pg <YJl) 

= 112 (13) 

In several SituatIOns, researchers have a pnon knowl­
edge about the dynarruc nature of tranSitIOn probabili­
tIes As energy costs have nsen and trngatlOn water 
has become more scarce, for example, trngatlon tech­
nology adopted by farmers has changed from high­
pressure, water-mtenslve systems to low-pressure, 
energy- and water-effiCient systems Recent trngatlOn 
technology shifts m the Southern High Plams have 
mvolved a tranSitIOn from Iugh-pressure center-pivot 
systems to low-energy preCisIOn applJcatlOn (LEPA) sys­
tems, whereas Southwest trngatlOn of tree crops has 
been slnftmg from graVity-fed to dnp trngatlon systems 
The proportIOn of energy- and water-effiCient trngatlOn 
systems has been mcreasmg, suggestmg poSItIve mernan 
deViatIOns As an example suggestmg negative deVIa­
tions over t\ffie, we have observed that the number of 
smokers among profeSSIOnals has decreased, and that 
tlus trend IS likely to contmue 

14 

In these cases" researchers may be mterested m the 
poslhve or negative meruan deViatIOns m equatIOn 13, 
dependmg,on whether the dynarruc nature of tranSitIOn 
probabilities moves toward posItive or negative deVia­
tions These cases suggest an alternative' specificatIOn 
for the probabillty-constramed MAD model based on 
mmnmzmg only the sum of the absolute values of the 
negatIve meruan deViations or the S\\ffi of the absolute 
values of the positive meruan deViatIOns We can 1!llIU­

IDIZe the S\\ffi of ' the absolute values of the negative 
meruan deViatIOns by solvmg the follOWing lmear 
programmmg model 

Modell 

r T 

MnuffilZe E E Z;l (14) 

J=I t=1 

r 

subject to E p'J = 1 0 for I = I, 2, ,r (15) 

r 

E X"t_1 ° p'J + ZJt 2: YJt (16) 

for J = I, 2, ,r, t = I, 2, ,T and 

(17) 

r T 

where E E Z;t IS the sum of the absolute values of 
J =1 t= 1 

the negative meruan deViatIOns 

An alternatIve model can be specified that rrumIDIZes 
only the sum of the absolute values of'the positive 
median deViatIOns as follows 

Model II 

r T 
MlmffilZe 

+ 
(18)E E Z J t 

J=I t=1 

r 
subject to E Pg = 1 0 for I 1, 2, , r (19) 

(20) 

for J = 1, 2, ,r, t = 1, 2, ,T and 
+ZJt, and Pg 2: 0 (21) 



r T + 
where E E ZJ t IS the sum of the absolute values 

J=1 1=1 

of the posItive median deVIatIOns 

For any error dlstnbutlOn for which the median IS 
supenor to the mean as an estimator of locatIOn, the 
MOMAD estimator for both model I and model II IS 
Identical With the probablhty-constramed MAD estima­
tor We can easily prove the Identity by first convert­
mg equatIOns 9 through 12 Into matnx notatIOn as 
follows 

MnumlZe (U + V)' erT (9') 

subject to GP = er (10') 

XP - U + V Y (11 ') 

P, U, V "" 0 (12') 
where U and V are (rT x 1) colnmn vectors of surplus 
and' slack vanables, respectively, erT IS an (rT x 1) 
column vector With all elements 1, X IS an ,(rT x r2) 
block dIagonal matnx, P IS an (r2 x 1) column vector, 
Y IS an (rT x 1) column vector, and G IS an (r x r2) 
coeffiCient matrIX, such that G= [II, 12, ,Ir1With each 
I, an (r x r) Identity matnx Now define vanable Z as 
follows 

Z = (U + V) (22) 

where Z IS an (rT x 1) column vector 

Rearranging equatIOn 22, we have the equatIOn 

V=Z-U ~ 

or eqUivalently 

U=Z-V ~ 

Insertmg equatIOns 22 and 23 Into equatIOns 9' and 11', 
respectively, the probability-constraIned MAD model can 
be rewntten as follows 

MmlmlZe Z, erT (25) 

subject to GP = er (26) 

xp + Z - 2U = Y (27) 

P, Z, U "" 0 (28) 

or eqUivalently as 

MOMAD Model I 

MlIumlZe Z, erT (29) 

subject to GP = er (30) 

XP+Z"" Y (31) 

(32)P, Z '" 0 

which IS Identical With the MOMAD Model I given m 
equatIOns 14 through 17, where Z = Z-

In cases where equatIOns 22 and 24 are Inserted Into 
equations 9' and 11', respectively, the probablhty­
constrained MAD model can be rewntten as follows 

MmlIllize Z, erT (33) 

subject to GP = er (34) 

XP-Z+2V=Y (35) 

P, Z, V'" 0 (36) 

or eqUivalently as 

MOMAD Model II 

MinimIZe Z' erT (37) 

subject to GP = er (38) 

XP-Z:sY (39) 

P, Z, "" 0 (40) 

which IS IdentICal With the MOMAD model II given In 
equatIOns 18 through 21, where Z = Z+ 

Consequently, the probablhty-constraIned MAD estnna­
tors are Identical With the probability-constramed 
MOMAB estnnators However, the MOMAD procedure 
reduces rT vanables from thee probability-constrained 
MAD procedure to estImate the transitIOn probabilities 
of the flmte Markov Process 

Properties of the MOMAD Estimator 

Properties of the QP and MAD estImators assocIated 
With the probablhty constraInts III equatIOn 10 are 
unknown Therefore, we restnct our diSCUSSIOn to the 
QP and MAD estnnators Without the probability con­
straints Since the MOMAD estimator IS conceptually 
Identical With the probablhty-constraIned MAD estima­
tor when the median IS supenor tQ the mean as an esti­
mator of locatIOn, we shall concentrate our diSCUSSIOn 
on the properties of the MAD estnnator only 

Let m represent the populatIOn median For a contInU­
ous random vanable e, the sample median IS asymptoti­
cally nonnal With mean m and vanance [4rTf2 (m)l-I, 
where f(.) IS the populatIOn denSity functIOn U.nder 
the assumptIOn that P~ IS located so that the dlstnbu­
tIon functIOn F m equatIOn 7 has, median zero, 
v'iT(P - P) converges In dlstnbutlon to an r2 dimen­
sIOnal Gaussian random vector With mean zero and 
covanance matnx W2. Q-l (3) Here P IS a vector of 
the MAD estimator P~, P IS a vector of the parameter 
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Pu , W2 : [4f2 (0)]-1, and Q : tun (rT) -IX'rTXrT In Table 1 shows the synthetic data relating to the sample 
other words, the MAD estunator IS consistent as well proportions m each'state As Lee, Judge, and Takayama 
as asymptotically Gaussian for a large sample, Wlth a expenmented, we assumed that we do not \mow the 
covanance matnx (W2 • Q-I] Thus, the MAD estima­ transItion probability matrot (equation 41), but have only 
tor has stnctly smaller asymptotiC confidence regIons the InformatIOn contaIned In the aggregate data In table 
than the QP estimator for Imear models from any dis­ 1 Under tins assumption, we estimate the tranSitIOn 
tnbutlOn functIOn F for winch the sample median IS a probabilities by the probabIlity-constrained QP, MAD, 
more effiCient estunator of locatIOn than the sample and MOMAD procedures (tables 2 and 3) Table 2 con­
mean 

Table I-Synthetic data relatmg to the sample proportion.
A Numerical Example m each state 


Time 
 ProportlOn In state (1)To Illustrate the MOMAD procedure as well as to penod 
demonstrate that the MAD estimator IS supenor to the S, S, S, S,
QP estunator, we use the numencal example used by 

8 00815 01890 03999 03296Lee, Judge, and Takayama (19) In matrot notation form, 9 0678 1671 3885 3766 
the tranSitIOn probabilities to be estimated are as 10 0574 1495 3765 4166 
follows 11 0494 1354 3650 4502 

12 0431 1239 3546 4784 
~ S3 13 0383 1147 3457 5013 

14 0345 1072 3380 520304 o 
15 0314 1012 3315 535905 04 (41) 
16 0290 0963 3261 5486

01 07 17 0270 0924 3216 5590 
o 01 18 0254 0892 3180 5674 

Table 2-The probabIlity-con.tramed QP, MAD, and MOMAD estimate. of the transItion matnx from dIfferent ascendmg 
portion. of, the aggregate data for' a Markov proce •• 

EstImators 

TIme penod QP MAD MOMAD'I I 
0753. 0237 0 0010] 059804020 0 ] 069804020 0 ] 

t = 8,9, ,18 o 624 376 0 101 508 391 0 101 508 391 0 
016 071 716 197 o 094 706 200 o 094 706 200[ [ [o 004 095 901 o 002 098 900 o 002 098 900 

7552450 0 ] 5974030 0 ] 5974030 0 ]
t = 9,10, ,18 o 595 405 0 101 509 390 0 101 509 390 0 

[ 016 086 699 199 [ o 093 707 200 [ o 093 707 200 
o 0 099 901 o 002 098 900 o 002 098 900 

754 2460 0 ] 0608 3920 0 ] 60839200]
t = 10,11, ,18 o 589 411 0 097 524 379 0 097 524 379 0 

016 088 698 198 o 089 712 199 o 089 712 199[ [ [o 0 099 901 o 004 096 900 o 004 096 900 

7490 251 0 ] 7652350 0 ] 7652350 0 ]
t = 11,12, ,18 o 728 2720 o 596 404 0 o 596 404 0 

[ 017 068 718 197 [ 015 086 699 200 [ 015 086 699 200 
o 0 098 902 o 0 100 900 o 0 100 900 

856 0 0 144] 6870 313 0 ] 0687 0 313 0 ]
t = 12,13, ,18 o 758 242 0 057 736 2070 057 736 207 0 

o 059 776 165 005 066 729 200 005 066 729 200[ [ [
004 0 083 913 o 0 100 900 o 0' I 100 900 

824 0 0 0176] 608 0 228 164 0 ] 608 228 164 0 ]
t = 13,14, ,18 o 856 0 144 097 600 303 0 097 600 303 0 


[ o 0 923 077 [ o 086 713 201 [ o 086 713 201 

006 018 038 938 o 0 101 899 o 0 101 899 


1 Est1mators for MOMAD models I and II 
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Table a-The probabIlIty-constrained QP, MAD, and MOMAD estimates of the transItion matnx from different descending 
portIons of the aggregate data for a Markov process 

Estlmators 

TIme penod QP MAD MOMAD'I I 
1075202480 0 ] 0600 0400 0 0 ] .0 599 .0 4.01 .0 .0t = 8,9, ,17 o 615 371 014 100 503 390 007 1.01 504 388 007 

016 .073 72.0 191 o 098 '706 196 .0 097 707 196[ [ [o 004 093 903 o 0 098 902 .0 .0 098 9.02 

750 613
2500 0 387 .0 0 613 387 0 .01 1 1t = 8,9, ,16 612 371 017 091 516 388 005 091 516 388 005 

[ : 017 .075 719 189 [ 002 094 708 196 [ 002 094 708 196 
003 093 904 .0 001 097 902 o 601 097 902 

599749 
228 0 023] 401 0 0 ] 598 4020 .0 ]

t = 8,9, ,15 0 631 369 .0 101 503 388 008 101 502 389 008 
.017 070 721 192 '.0 098 707 195 o 098 7.07 195[ [ [o 004 093 903 .0 001 097 902, o .0 098 902 

746 216 .0 038] 699 301 0 0 ] 699 301 .0 0 ]
t = 8,9, ,14 0 631 369 0 032 574 389 005 032 574 389 005 

017 .074 721 188 .012 085 7.07 196 012 085 7.07 196[ [ [o 002 093 905 o 001 098 901 .0 .001 098 901 

756 243 -756 243
7722280.0] 001 0 ] 001 0 1t = 8,9, ,13 o 632 368 0 .0 608 385 007 o 608 385 007 
008 069 722 201 014 080 710 196 .014 080 71.0 196[ [ [
005 004 092 899 001 0 097 902 001 .0 097 902 

7670 2330 598 396 006 0 598 '396 006 01 1 1
t = 8,9, ,12 .0 784 216 0 101 505 380 014 1.01 505 380 014 

014 047 735 204 o 099 711 190 o 099 711 190[ [ [o 0 104 896 .0 .0 096 904 o 0 096 904 , 

1 Estunators for MOMAD models I and II 

tams the estimators of the transitIOn matnx from dJffer­ probability-constramed QP estunator However, the effi­
ent ascending portIons of the aggregate data, wlule table ciency between these two estunators needs further 
3 used different descendmg portIOns of the aggregate study 
data The probabllity-constramed QP estunator, usmg 
the tnals (t = 8, 9, , 18) m table 2, dJffers from that Comparison of the QP and 
presented by Lee, Judge, and Takayama (13) Sumlarly, MOMAD Estimators 
the probabllity-constramed QP estunator for the tnals 
(t = 8, 9, , 12) m table 3 dJffers from that presented The sample median IS asymptotically, normal With mean 
by Lee, Judge, and Zellner (14) These authors used a (m) and vanance [4rTf2 (m) ]-1, where (m) IS the 
simplex algonthm developed by Wolfe (25), whereas we populatIOn median and f( • ) IS the populatIOn probabil­
used Mmos, developed by Murtagh and Saunders (17), Ity denSity function Because the probability denSity 
which uses the reduced-gradient algonthm, also devel­ functIOn f(m) IS unImown, there are no meanmgful 
oped by Wolfe (26) statistical test procedures based on the sample median 

Therefore, a nonparametnc statistical method (the 
Tables 2 and 3 show that the probabllity-constramed bmomlal test) IS used to check the sigruficance of the 
MAD and MOMAD estunators are Identical Further­ dJfferences In the dispersIOn of the estimators about the 
more, the MOMAD estunator IS more effiCient than the true parameters (14) 
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The null hypothesIs to be tested IS as follows References 

Ho' Pr[ 1P~ - PI] 1 > 1PI] - Pu 11 ~ 112 1 	Andrews, David F "A Robust Method for Multiple 
relative to the alternatIVe 

HA Pr[ 1Pu - Pu 1 > 1 Pu - Pu 1 1 > 112 

where PI]' Pu' and Pu are the probability-constrained 
QP estimator, the MOMAD estimator, and the true 
parameter, respectively 

The procedures of the binormal test and Its statistical 
table can be,found In Siegel (19) We applied the test 
uSing only those parrs In whICh there IS no tie (see 15) 
The results of the blnomlartest show that the MOMAD 
estimator IS at least as effiCient as, or more efficient 
than, the probability-constrained QP estimator In 

estimating the transItion' probabilities (table 4) 

Table 4-The bm..omlal tests for Ho 

Pr[ 1 P" - P" -I > 1 P" - P" 1 I = 112 
vs 

ProbabthtIes 
associated 

WIth values m the 
TIme pel}od bmoriual test 
t = 8,9, , 18 0 
t = 9, 10. , 18 194 
t = 10, 11, , 18 275 
t = 11, 12, , 18 006 
t = 12, 13, , 18 046 
t = 13, 14, , 18 0 

t = 8, 9, , 17 0 
t = 8, 9, , 16 0 
t = 8, 9, , 15 001 
t = 8, 9, , 14 001 
t = 8,9, , 13 212 
t = 8, 9, , 12 033 

Conclusions 

Supenor estimator 
based on the 

bmorrual test at 
'" = 005 

MOMAD 
QP and MOMAD 
QP and MOMAD 
MOMAD 
MOMAD 
MOMAD 
MOMAD 
MOMAD 
MOMAD 
MOMAD 
QP and MOMAD 
MOMAD 

We have proposed the use of the mmnruzatlOn of medtan 
absolute deViatIOns (MOMAD) to estimate tranSitIOn 
probabilities of a firute Markov chain With lirmted 
aggregate tnne senes data The MOMAD model IS con­
ceptually Identical With the MAD model However, the 
MOMAD model IS simpler to use than the probabllity­
constrained MAD procedure, while uSing a linear 
progrannning algonthm We also showed that the 
MOMAD estnnators are more efficient than the QP esti­
mators by demonstrating that (1) the MOMAD and 
MAD models are conceptually IdentICal, and (2) the MAD 
estimators and, therefore, the MOMAD estimators are 
more efficient than the QP estimators 
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