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Estimation of Transition Probabilities
Using Median Absolute Deviations

C.S. Kim and Glenn Schaible

Abstract. The probabuuty-constrained mmmum abso-
tute demations (MAD) estumator appears to be superior
to the probabiity-constraimed quadratic programming
eshimator 1n estimabing transition probabilities unth
limated aggregate fime series data Furthermore, one
can reduce the number of columns n the probability-
constramned MAD svmplex tableauw by adopting the
median property

Keywords. Minamum absolute devations, transition
probatulities, medwan absolute devations, quadraiic

programming

Markov processes are a special class of mathematical
models that.are often apphed to economic decisionmak-
Ing 1n stochastie dynamic programming (5), structural
changes of an industry or changes In size economes (23),
or international trade (6) ! To estimate a meanmngful
transition matnx, researchers need time-ordered data
that reflect intertemporal changes of micro units over
states (or classifications) However, time-ordered
changes of mieroeconomie units are generally not avail-
able for most economc vanables, therefore, researchers
must often work with aggregate time series data In
an ingenous article, Lee, Judge, and Takayama (13)
showed how one can estimate transition probabilities
for a Markov process reflecting the behavior of micro
units with only aggregate time sertes data They con-
cluded from a hmited tnal, based on the assumption of
normality of the error terms, that the probability-
constrammed quadratic programmng (QP) estimator 1s
superior to the probability-constramed mimimum abso-
lute deviations (MAD) estimator m estimating transi-
tion probabilities In a subsequent article, Lee, Judge,
and Zellner concluded from their samphng experiment
that the probability-constramed MAD estimator 1s
mferior to the probability-constrained QP estimator (14,
p 135)

We prove here that the probability-constrained MAD
estimator 18 superior to the probability-constramned QP
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TC Lee at the Unversity of Connecticut, and GG Judge at the
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estimator when estimating transition probabilities with
limited aggregate time series data Second, we present
an alternative model, mmimization of median absolute
deviations (MOMAD), based on the assumptions that the
error terms are nonnormally distributed and that the
researcher has a priort information about the dynamie
nature of the Markov process Third, we prove that the
MOMAD estimator 1s 1dentical with the probabhty-
constrained MAD estimator, which Bassett and Koenker
(3) concluded 1s a more efficient estimator for any error
distmbution for which the median 1s superior to the mean
as an estimator of location Moreover, the constrant
matrix assoclated with the MOMAD model mnveolves
fewer columns mn the simplex tableau

Notation and Minimization of Absolute
Deviations

The stochastic process of a {fimite Markov Chain can be
expressed as

Pr(Sy, S;+0 = Pr(Sy) « PA(S 11| Sy, Sit1, S

= Pr(S) PT(SJ,HI | Sit) (1)
{(for all 1 and )

where Pr(S,;) represents the probability that state S,
oceurs on tral t, Pr(S;, S;;.1) 1s the joint probability
of Sy and 8,1, and Pr(8;;,1 | S¢) represents the con-
ditional probability for the state S, Equation 1, pre-
sented by Kemeny and Snell (72}, explains that the
probability of going to each of the states depends only
on the present state and 1s independent of how we
arrived at that state

Summing beth sides of equation 1 over all possible out-
comeés of the state 8, may be represented by

PrSyt+1) = 3 Pr(8y) « Pr(Sys.q | Sy) 2

E Pr(Sy) Pl]
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where P, represents the transition probability and has
the following properties

Py = 0 for all 1 and ) 3)

EPU =1 (4)
]

By replacing Pr(S, .1} and Pr(S;;) with the observed
proportions y; and X, 1, respectively, we can write
equation 2 1n the following conventional notation for
regression analysis

r
th = Exl,t-l . PU + E]t. (J = 1, 2; » I') (5)
1

where y;; reflects the chserved proportion 1n state j in
time t, X, 1 15 the observed value of the proportion
In state 1 1n tmme t-1, and ¢ represents a random
disturbance

In estimating models of the type deseribed in equation
5, researchers have made extensive use of the methods
of mummizing the sum of absolute and/or squared errors
Although the method of least squares 1s superior to the
MAD procedure 1If the random events being considered
are normally distrabuted, Bassett and Koenker (3) and
Hill and Holland (9} demonstrate that the MAD
estimator 1s a superior robust method, especially for
nonnormal error distributions Bassett and Koenker
show that, for any error distribution for which the
median 1s superior to the mean as an estimator of loca-
tion, the MAD estimator 15 preferable to the least
squares estimator, in the sense of having strictly smaller
asymptotic confidence regions Bassett and Koenker
note that this condition holds for an enormous class of
distrbutions that either have peaked density at the
median or have long tails

The observed proportions for each time period 1n equa-
tion 5 are multinormally distributed, and the multinomal
reduces to the binomial when the mdividual 1s consid-
ered either to be or not to be in state 1 The bmomal
probabilities increase. monotomcally until they reach a
maximum value and then decrease monotomeally One
can show whether or not the binomal 1s symmetrically
distributed by proving that ag = Us/e3 equals zero
where Uz 1s the third moment about the mean of the
bmomial distribution For the bmomual distribution, with
the probabihity 8 of being n state 1, the components of
a3 can be denived as Uz = nd(1-6)(1-28) and o3 =
[n8(1-6)]132, where n 1s the sample size Therefore, for
the binomial distnbution, the measure of skewness can
be wntten as

Us 1-28

B me(-o)]z ©
From equation 6, the bmormual 15 symmetric if § =1/2
and/or the sample size n becomes exceedingly large
Because aggregate time series data are used to estimate
transition probabilities, it 15 reasonable to assume that
the sample size 1s not large When there are more than
two states, so that the probability of the individual bemg
in state 1 cannot be 0 5 for each state because of con-
straint 4, the binomial 18 asymmetrically distributed and
the probability-constrained MAD estimator would be
superior to the probability-constrained QP estimator.

a3 =

Consider the problem of estimating an r2 dimensional
vector of unknown parameters Py from a sample of
independently observed proportions for each time perod
on the random varables Y11, , Y, with the following
probahility distmbution

PriYy < ypl = Flyye - Exl,t—l s Py) N

i=1

where ) = 1,2, ,r,andt =12, ,T

The probabiity-constramed MAD estimator P 1s a solu-
tion to the following problem

r

r T
Mmmze (35 3 1y~ X Xia+Pyll @
P € Rrxr )=1 t=1 1=1

Following Barrodale and Young (2), Lee and others (14),
Sposito (20}, 21), and Spyropoulos and others (22), the
probability-constramned MAD estimator 1s then a:solu-
tion to the problem

r T
Mimmize 3, 3, (Uyg + Vy) 9
J=1 t=l

r
subject to Y Py =10for1=1,2 ,r (10
J

r
E Xl,t—l.P\} - U_]t. + V]t =Y (11)
1

fory=1,2 ,rnt=12 ,T
Uy, Vi, and Py = 0 (12)
for all 1, ), and t
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Minimization of Median Absolute Deviations

Since Hazell (8) introduced the munimuzation of total
absolute deviations (MOTAD) model, several economusts
have 1dentified the MAD enterion as “mmmzing the
mean absolute deviations” (see 4, 10, 11, 24) However,
the median property has not recerved sufficient atten-
tion among econormists A number of authors have dis-
cussed the concept.of the median property Andrews
(1), Bassett and Koenker (8), Harvey (), and Hill and
Holland (9} showed that.the minimum absolute devia-
tions estimator 15 superior to the least-squares estima-
tor, when the median 15 superior to the mean as an
estimator of location for nonnormal distrmbutions Fur-
thermore, Spyropoulos and others (22) showed that a
median property ean be used to improve the rate of con-
vergence of linear programming solutions associated
with mimimum absolute deviations {see (16) for the case
of nonconvergence) Fmnally, Parzen (18) and Sposito (21)
show that, for a random varable e, the quantity

E | e, — ¢ | achieves,its mmimum value when ¢ 15
1
equal to the median

Following Bassett and Koenker (3), we assume that P,
for all 1 and j are located so that the probability distn-
bution funetion F 1n equation 7 has median zero Because
the median 15 the point that divides the area under the
probabiity density function, we have the following
equality

r r
Pr(Yy X1+ Py>y,) = Pr Y Xo10 Py <y
1 1
=172 (13)

In several situations, researchers have a priom know!-
edge about the dynamuc nature of transition probabil-
ties As energy costs have risen and wrigation water
has become more scarce, for example, ungation tech-
nology adopted by farmers has changed from high-
pressure, water-intensive systems to low-pressure,
energy- and water-efficient systems Recent irmgation
technology shifts in the Southern High Plains have
involved a transition from hgh-pressure center-pivot
systems to low-energy precision application (LEPA) sys-
tems, whereas Southwest umgation of tree crops has
been shifting from gravity-fed to drip rmgation systems
The proportion of energy- and water-efficient imgation
systems has been increasing, suggesting positive median
deviations As an example suggesting negative devia-
tions over time, we have observed that the number of
smokers among professionals has decreased, and that
this trend 1s likely to continue
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In these cases,-researchers may be interested in the
positive or negative median deviations 1n equation 13,
depending.on whether the dynamic nature of transition
probabilities moves toward positive or negative devia-
tions These cases suggest an alternative’ specification
for the probability-constrammed MAD model based on
minimizing only the sum of the absolute values of the
negative median deviations or the sum of the absolute
values of the positive median deviations We ean mim-
mize the sum of ‘the absolute values of the negative
median deviations by solving the following lnear
programmung model

Model 1

r T

Y Yz 14

j=1 t=1

Mirumze

r
subject to Y P, =10for1=1,2 ,r (15
]

r
Y Xe1oPy +Zp 2y U6
1

foryj=12 ,r,t=12 ,Tand

r T
where E E Z,+ 15 the sum of the absolute values of
1=1 t=1
the negative median deviations

An alternative model can be specified that minimizes
only the sum of the absolute values ofthe posttive
median deviations as follows

Model 11

T
Mimmize i E Z;t (18)
=1 t=1

r

subject to E Py =10 for1=1,2 ,r (19
]

r
Y. Xy1Py, -2} = Vit (20)
1

, Lt =12 ,Tand
Z), and Py = 0 @1)




r T +
where E E Z;¢ 15 the sum of the absolute values
=1 t=1

of the positive median dewviations

For any error distmbution for which the median 1s
superior to the mean as an estimator of location, the
MOMAD estimator for both model I and model II is
1dentical with the probability-constrained MAD estima-
tor We can easily prove the 1dentity by first convert-
ing equations 9 through 12 into matrix notation as
follows

Mmimize (U + V)’ err (9"

subject to GP = e, k (10
XP -U+V =Y (11"
PU V=10 (129

where U and V are (rT x 1) column vectors of surplus
and' slack variables, respectively, epr 15 an (rT x 1)
column vector with all elements 1, X 18 an.(rT x r2)
block diagonal matrix, P 1s an (r2 x 1) column vector,
Y 15 an (¢T x 1) column vector, and G 18 an {r X r2)
coeffient matrix, such that G=[1;, Iz, , I;] with each
I, an (r x r)identity matrnx Now define vanable Z as
follows

Z=0U+V) (22)
where Z 15 an (rT x 1) column vector

Rearranging equation 22, we have the equation

V=2-1U (23)
or equivalently
U=2-YV 24)

Inserting equations 22 and 23 into equations 9’ and 11",
respectively, the probability-constramned MAD model can
be rewritten as follows

Mimmize Z’ et (25)
subject to GP = e, (26)
Xp+Z-20=Y 27
P,Z,U=0 28)

or equivalently as

MOMAD Model I

Mimimize Z' epr (29)
subject to GP = e, (30
XP+Z =Y (31)
P,Z=0O (32)

which 15 1dentical with the MOMAD Model I given in
equations 14 through 17, where Z = 727

In cases where equations 22 and 24 are inserted into
equations 9’ and 11°, respectively, the probability-
constrained MAD model can be rewritten as follows

Minimize Z' eer (33)
subject to GP = e, (34)
XP-2+2V=Y (35)
P,Z, V=0 (36)

or equivalently as

MOMAD Model I1

. Mimmze Z e,-T 3D
subject to GP = e, (38)
XP-Z <Y (39)

P,Z =0 (40)

which 1s 1dentical with the MOMAD model IT given m
equations 18 through 21, where Z = z*

Consequently, the probabiity-constrained MAD estima-
tors are 1dentical with the probabihty-constrained
MOMAD estimators However, the MOMAD procedure
reduces rT varables from the probability-constrained
MAD procedure to estimate the transition probabilities
of the finite Markov Process

Properties of the MOMAD Estimator

Properties of the QP and MAD estimators associated
with the probability constraints in equation 10 are
unknown Therefore, we restrict our discussion to the
QP and MAD estimators without the probabihty con-
straints Since the MOMAD estimator 18 conceptually
1dentical with the probabihty-constrained MAD estima-
tor when the median 1s supenor to the mean as an esti-
mator of location, we shall concentrate our drscussion
on the properties of the MAD estimator only

Let m represent the population median For a continu-
ous random variable e, the sample median 18 asymptot:-
cally normal with mean m and variance [4rTf2 (m)]-1,
where f(+) 15 the population density function Under
the assumption that Py 1s located so that the distrbu-
tion function F in equation 7 has. median zero,
VYT(P - P) converges In distribution to an r2 dimen-
sional Gaussian random vector with mean zero and
covariance matrix W2+ Q-1 (3) Here P 1s a vector of
the MAD estimator 131u , P13 a vector of the parameter
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Py, W2 = [4f2 (0)]-1, and Q = lim (*T)-1X'pX,1 In
other words, the MAD estimator 15 consistent as well
as asymptotically Gaussian for a large sample, with a
covariance matrix [ W2 » Q-1] Thus, the MAD estima-
tor has strictly smaller asymptotic confidence regions
than the QP estimator for linear models from any dis-
tribution function F for which the sample median 1s a
more efficient estimator of location than the sample
mean

A Numerical Example

To ilustrate the MOMAD procedure as well as to
demonstrate that the MAD estimator 1s superior to the
QP estimator, we use the numerical example used by
Lee, Judge, and Takayama (18) In matrnx notation form,
the transition probabilities to be estimated are as
follows

81 B B3 By
S; 06 04 0 0

P=S | 01 05 04 0 (41)
Ss 0 01 07 02
S 0 0 01 09

Table 1 shows the synthetic data relating to the sample
proportions in each'state As Lee, Judge, and Takayama
experimented, we assumed that we do not know the
transition probability matrix (equation 41), but have only
the mformation contaned in the aggregate data in table
1 Under this assumption, we estimate the transition
probabilities by the probability-constramned QP, MAD,
and MOMAD procedures (tables 2 and 3) Table 2 con-

Table 1—Synthetic data relating to the sample proportions

in each state
I;I;'_}:)ed Proportion 1n state (1)
Sy S Sa S,

8 00815 0 1890 03999 0 3296

9 0678 1671 3885 3766
10 0574 1495 3765 4166
11 0494 1354 3650 4502
12 0431 1239 3546 4784
13 0333 1147 3457 5013
14 0345 1072 3380 5203
15 0314 1012 3315 5359
16 0290 0963 3261 5486
17 0270 0924 3216 5590
18 0254 0892 3180 5674

Table 2—The probability-constrained QP, MAD, and MOMAD estimates of the transition matrix from different ascending
portions of the aggregate data for-a Markov process

Estimators
Time penod QP MAD | MOMAD!
] [0753.02370  0010] [0598 04020 0 (0698 04020 0
t =89, I8 0 624 376 0 101 508 3910 101 508 3910
016 071 716 197 0 094 706 200 0 094 706 200
L0 004 095 901] 0 002 098 900 K} 002 098 900
[ 755 2450 o0 [ 597 4030 0 | [ 597 4030 ¢
t = 9,10, ,18 0 595 405 0 101 509 390 0 101 509 390 0
016 086 699 199 0 093 707 200 0 093 707 200
0 0 099 901 | 0 002 098 900 10 002 098 900
[ 754 2460 0 (0608 3920 o0 ] [ 608 3920 o0
t = 10,11, ,18 0 589 411 0 097 524 379 0 097 524 379 0
016 083 698 198 0 089 712 199 0 089 712 199
0 o 099 901 0 004 096 900 0 004 096 900
749 0 251 0 765 2350 0 | [ 766 2350 0 |
t = 11,12, ,18 0 728 272 0 0 596 404 0 0 596 404 0
017 068 718 197 015 086 699 200 015 086 699 200
0 0 098 902 0 0 100 900 0 0 100 900
[ 860 o 144 | 687 0 313 0 (0687 0 3130 |
t = 12,13, ,18 0 58 242 0 057 1736 207 0 057 1736 207 0
0 059 776 165 005 086 1729 200 005 066 729 200
| 004 0 083 913, 0 o 100 900 ] 0 o ' '100 %00]
[ 8240 o0 017] 608 0228 164 0 [ 608 228 164 0
t = 13,14, 18 0 856 0 144 097 600 303 0 097 600 303 0
0 0 923 077 0 086 TI3 201 0 086 713 201
| 006 018 038 938 0 0 101 899 | o 0 101 899

1 Estimators for MOMAD models I and I
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Table 3—The probability-constrained QP, MAD, and MOMAD estimates of the transition matnx from different descending

portions of the aggregate data for a Markov process

Estimators

Time period QP | MAD I MOMAD?
[0752 02480 0 ] [0600 04000 0 (0599 04010 0

t =89, ,17 0 615 3711 014 100 503 390 007 101 504 388 007
016 073 720 191 0 098 ‘706 196 - |o 097 707 196
0 004 093 903 ] 0 0 098 902 0 0 098 902 |
[ 750 2500 o0 | [ 613 3870 0o [ 613 3870 o0 ]

t =89, ,16 0 612 371 017 091 516 388 005 091 516 388 005
017 075 719 189 002 094 T08 196 002 094 708 196
0 003 093 904 | 0 001 097 902 ] 0 001 097 902
[ 749 2280 023 | 509 4010 0 | [ 598 4020 o0 |

t =89, 15 0 631 369 0 101 503 388 008 101 502 389 008
017 070 721 192 '0 098 707 195 0 098 707 195
0 004 093 903 0 001 097 902 ] 0 0 098 902
[ 746 216 0 038 [ 699 3010 0 ] [ 699 3010 o0 |

t =89, ,14 0 631 369 0 032 574 389 005 032 574 389 005
017 074 721 188 012 085 707 196 012 085 1T0T 196
0 002 093 905 0 001 098 901 0 001 098 901
[ 72 2280 0 [ 756 243 0010 | [ 756 243 0010 |

t =89, 13 0 632 368 0 0 608 385 007 0 608 385 007
008 069 722 201 014 080 710 196 014 080 710 196
005 004 092 899 | 0010 097 902 | | 0010 097 902
" 767 0 2330 | [ 598 396 0060 | [ 598 306 006 0

t = 89, 12 0 784 216 0 101 505 380 014 101 505 380 Ol4
014 047 735 204 0 099 711 190 0 099 TI1 190
0 o 104 896 0o o 096 904 | 0o o 096 904

! Estimators for MOMAD models I and IT

tains the estimators of the transition matrix from differ-
ent ascending portions of the aggregate data, while table
3 used different descending portions of the aggregate
data The probability-constrained QP estimator, using
the tnals (t = 8, 9, , 18) in table 2, differs from that
presented by Lee, Judge, and Takayama (13) Simularly,
the probability-constrained QP estimator for the tmals
(t =8,9,, 12) 1n table 3 differs from that presented
by Lee, Judge, and Zellner (14) These authors used a
simplex algorithm developed by Wolfe (25), whereas we
used Minos, developed by Murtagh and Saunders (17),
which uses the reduced-gradient algorithm, also devel-
oped by Wolfe (25)

Tabtes 2 and 3 show that the probability-constrained
MAD and MOMAD estimators are i1dentical Further-
more, the MOMAD estimator 18 more efficient than the

prebability-constrained QP estimator However, the effi-
clency between these two estimators needs further
study

Comparison of the QP and
MOMAD Estimators

The sample median 18 asymptotically. normal with mean
(m) and vamance [4rTf2 (m)]-1, where (m) 18 the
population median and f( « ) 1s the population probal-
ity density function Because the probabiity density
function f(m) 1s unknown, there are no meanmngful
statistical test procedures based on the sample median
Therefore, a nonparametric statistical method (the
binomial test) 1s used to check the sigmificance of the
differences in the dispersion of the estimators about the
true parameters (14)

17



The null hypothesis to be tested 15 as follows
Hy Pri| Py - Py| > 1By - Py 1 =12
relative to the alternative
Hy Prl | P, - Pyl > | Py =Py 11> 12

where Py, P, and P are the probabiity-constramed
QP estimator, the MOMAD estimator, and the true
parameter, respectively

The procedures of the binomial test and its statistical
table can be.found 1in Siegel (19) We applied the test
ustng only those paiwrs in which there 1s no tie (see 15)
The results of the binormal test show that the MOMAD
estimator 1s at least as efficient as, or more efficient
than, the probability-constrained QP estimator in
estimating the transition’ probabilities (table 4)

+

Table 4—The binomal tests for H,

Pr({P, -P,7| >|Py -P,|] =12

vs

Hy Pr[| Py ~Py| > [Py -P,il> 172

Probabilities Supertor estimator
associated based on the
with values 1n the binomial test at

Time period binomual test a =005
t==819 ,18 0 MOMAD
t =910 ,18 194 QP and MOMAD
t =10, 11, , 18 275 QP and MOMAD
t=11,12, , 18 006 MOMAD
t =12, 13, , 18 046 MOMAD
t =13 14, , 18 0 MOMAD
t=28129 ,17 0 MOMAD
t=2829 ,16 0 MOMAD
t=2819 ,15 001 MOMAD
t=2819 ,14 001 MOMAD
t=2829 ,13 212 QP and MOMAD
t=829 ,12 033 MOMAD
Conclusions

We have proposed the use of the minimzation of median
absolute deviations (MOMAD) to estimate transition
probabilities of a fimte Markov chan with hmited
aggregate time series data The MOMAD model 1s con-
ceptually 1dentical wath the MAD model However, the
MOMAD model 1s simpler to use than the probability-
constrained MAD procedure, while using a lnear
programming algorithm We also showed that the
MOMAD estimators are more efficient than the QP est:-
mators by demonstrating that (1) the MOMAD and
MAD models are conceptually identical, and (2) the MAD
estimators and, therefore, the MOMAD estimators are
more efficient than the QP estimators
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