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A Random Coefficient Meat Demand Model

William F. Hahn

Abstract. The stabulity of the US consumer
demand for meat has been a popular topic for
journal articles I show that econometric models
tmply that demand is fundamentally unstable A
good way to build taste instability into econometric
demand equations s to specify them as random
coefficient models I estimate a random coefficrent
model of meat demand and find sigmificant evi-
dence that taste instability has caused fluctuations
tn the elasticities of demand for beef, pork, chicken,
and turkey

Keywords. random coefficients, demand systems,
meat demand, taste stability

The US consumer demand for meat has been a
popular topic for journal articles For example,
there were three articles on this topic in the May
1993 1ssue of the American Journal of Agricultural
Economics (AJAE) alone (Alston and Chalfant
(1993), Eales and Unnevehr, and Yong and Hayes)
Much of the interest in meat demand has been
driven by the contioversy over the stability of
consumer tastes for red meat Beef consumption
has diopped since the 1970’s while poultry con-
sumption has steadily risen Some have attributed
this diop 1n beef consumption to consumer health
concerns while others have attmbuted it to the
increase 1 beef prices relative to poultry prices
Each of the three articles just mentioned ad-
dressed the 1ssue of the stability of consumer
tastes for meats Alston and Chalfant and Eales
and Unnevehr concluded that the demand for
meats has been stable while Yong and Hayes
concluded that 1t has not

I take the view that the U S demand for meat has
been fundamentally unstable and estimate a
random coefficient model of meat demand In this,
I am actually being consistent with Alston and
Chalfant, Eales and Unnevehr, and Young and
Hayes, even though only Yong and Hayes actually
conclude that tastes have been unstable The
debate over the stabihity of meat demand 1s
muddled by the fact that there are actually two
different defimtions of stability, altheugh everyone
seems to act as if there were only one The first
defimition of stability requires stable consumer
tastes The second defimition 1s that consumer
demands can be 1epresented using econometric

Hahn 1s an agrnicultural economist with the Commercial
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demand functions with stable parameters Alston
and Chalfant and Eales and Unnevehr used the
stable parameter definition of demand stability
while Yong and Hayes used the stable taste
defimtion The random coeffictent meat demand
model 15 hased on the stable (or at least station-
ary) parameter definition but 1mphes unstable
tastes In fact, all econometric specifications of
demand \mply unstable tastes Alston and Chafant
and Eales and Unnevehr tested econometric mod-
els of meat demand and found that theiwr models’
parameters were stable However, the random
components of their models imply that tastes are
unstable

CGiven a set of tastes (meeting certain regularty
conditions), there will exist a set of demand
functions that relate what consumers want to buy
to the prices of goods and total expenditure
Econometric demand functions depend on prices
and expenditures, but have random components as
well The random components 1mply that demand
reacts to factors other than prices and expenditure
In theory, the only other factors left to explain
demand are tastes Econometric specifications of
demand functions 1mply that tastes are not stable

It 1s not too hard to come up with reasons why
tastes might fluctuate somewhat randomly Tastes
may be influenced by more o1 less random factors
1in the consumer's environment such as weather
There could be a stable demand relationship
between prices, expenditures, and random “en-
vironmental” factors, a “meta-utihity” relationship
The econometric demand specification could be
random with stable parameters and consistent
with utility maximization, but not consistent with
stable tastes

Data, Model Specification, and
Estimation Procedure

This study uses monthly data from USDA-ERS on
the US disappearance of beef, pork, chicken, and
turkey, the four major meats consumed within the
United States The quantities are the estimated,
per-capita, monthly disappearances of beef, pork,
chicken, and turkey Beef and pork disappearances
are measured on a retall weight basis, while
chicken and turkey consumption 1s measured on
the ready-to-cook basis The beef price 1s the retail
Choice beef price as reported in ERS price spreads
and the pork price 15 also the retaill price
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calculated for prices spreads Chicken and turkey
prices are national average prices for whole birds
The time period used consists of the years from
1980 to 1992 inclusive, 156 observations

I have assumed that the demand for these four
meats 1s weakly separable from the demands for
other goods This assumption allows one to model
meat demand conditional only on meat prices and
meat expenditures The assumption of separability
1s common 1n the analysis of meat demand
Moschimi, Mora, and Green (1994) have presented
evidence that meat demand 1s separable from the
demand for other goods

The Demand System

I speafied meat demand using Keller and Van
Driel’'s CBS system (CBS stands for the Central
Bureau of Statistics of the Netherlands, then
KeHer and Van DriePs employer ) The CBS system
has a number of advantages The system 1s linear
in 1ts parameters, which greatly simplifies 1ts
estimation The CBS system can be aggregated
across consumers to a market level demand The
fixed coefficient CBS model can be seen as a
special case of the random coefficient model, and
this allows testing of the random coefficient
version It 15 possible to impose all the restrictions
of demand theory on the coefficients

The CBS model resembles the Rotterdam model In
their 1991b and 1993 papers, Alston and Chalfant
found that U S meat demand estimated with the
Rotterdam model had stable coefficients Other
researchers that have used the Rotterdam model
for meat or food demand include Gao and Shonk-
wiler (1993) and Moschimi, Mora, and Green

The primary difference between the Rotterdam and
CBS model 15 that the CBS model has non-linear
Engle curves The CBS’s expenditure response 1s
identical to that of Deaton and Muellbauer’s
Almost Ideal Demand System (AIDS) in that the
budget shares are a function of the logarithm of
expenditures Deaton and Muellbauer noted that
cross sectional studies of consumer purchases
demonstrate that this type of expenditure response
provides a superior fit

Prior to the estimation of the random coefficient
system, I compared the performance of the Rotter-
dam and CBS model by specifying a model that
was a mixture of the CBS and Rotterdam models
and estimating 1t using the‘meat data (Alston and
Chalfant made a similar comparison of the AIDS
and Rotterdam model 1in their 1993 paper) The
model had a parameter that was 1 for the CBS
.specification, zero for the Rotterdam specification,
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and between zero and 1 for a mix of the two The
estimated coefficient was almost exactly 1 support-
ing the CBS mode The calculated test statistic for
this coefficient was not significantly different than
1 and sigruficantly different from zero However,
the test statistic 1s based on the assumption that
only the intercepts of the meat demand models are
random, and the true distribution of the test may
not conform to the hypothetical one

Like the Rotterdam model, the CBS model 1s based
on a set of partial differential equations The
CBS’s partial differential equations can be written
as

W, (aLn(qt) _s W,aLn(qJ)) = A, + I CaLn(p,)
4 z

+ B, (aLn(X)
~ 5 WaLap,) ) (1
J

where p,, q,, and X are the price of the 1'th good,
the quantity demanded of the 1’th good, and total
expenditure In the tables of this report where
estimates are presented, those variables sub-
seripted by b refer to beef, p 1s for pork, ¢ 1s for
chicken and t 1s for turkey The term W, 1s the
budget share defined by the following equation

w, = 2 (2)
X

The terms A,, B,, and C, are parameters of the
model Prices and expenditures affect demand
through the B, and C, coefficients The A,
represent those changes in demand caused by
changes 1n tastes A positive value of A, imphes
that the demand for good 1 will increase even 1If all
prices and expenditures do not change

The partial differential equation, (1), defines the
CBS model However, one does not observe the
derivatives of the demand function One observes
prices, quantities, and expenditures The CBS
model, hke the Rotterdam model, 1s estimated by
using the differential equation as the basis for
specifying a set of difference equations Usually,
these models are estimated 1n first difference form
However, the data used here 15 monthly data and
there 1s considerable seasonality in the demands
for meats To correct for this seasonality, the
model was estimated 1n twelfth differences Data
for one month were compared with those from a
year earher

I also allow the model's parameters to vary
randomly over time The typical CBS formulation
has fixed coefficients and an error term The error
term effectively makes the intercepts, the A,



random In the typical CBS maodel, taste changes
cause fluctuations in the level of demand The
Random Coefficient CBS, (RCCBS) used in this
paper will have random B, and C, as well In the
RCCBS taste changes will cause fluctuations 1n
the elasticities of demand as well as 1n the level of
demand

The RCCBS’s difference equations are specified
Yin = A!.n + X CeJ.nAlan(p_;,n)
J

+ B, (A?Ln(X,) - A2P,) (3)

Note that all the coefficients in the RCCBS have
an additional subscript so that their values can
vary over time period The terms A,,, B,,, and
C, n are the time varying values of A, B, and C,
The term P, 1s a price index, and there 15 a
quantity index Q, 1 the formula for y,, The
terms not yet fully defined are generated using the
following equations

Alan = Z W;,n—12 Alan’(p_; n)r (4)
J

w + W
Al2Q, = ¥ (L‘.}%J) A12Ln(q, ), (5)

J

(WL n-12 + W
y;.n - 9

"") (A2Ln(y, ,) - A12Q,), (6)

Note that (5) and (6) use the average of current
and lagged budget shares, while (4) uses lagged
budget shares only The use of average budget
shares should make the difference equation 1n (3)
better approximate the differential equation, (1)
However, the use of average budget shares intro-
duces the possibility of simultaneity bias 1n
making the price index P, a function of current
endogenous variables As a compromise, the lagged
budget shares appear on the right-hand side while
average shares appear on the left

The economic theory of consumer demand imphes
four sets of restrictions on consumer demand
functions Keller and Van Driel demonstrate how
these restrictions can be applied to the CBS Their
results are extended to the RCCBS and sum-
marized below

Three of these sets are equahlity restrictions One
set of equality constraints 1s the adding-up or
aggregation constramnts Consumer demand func-
tions need to be constructed so the sum of the
money spent all goods adds up to total expend:-
tures Adding-up implies the following restrictions
on the demand system’s parameters

ZA,=0Vn, (7

el
=
K

|

= 0,¥ n, and (8)
¥C,,=0vyn (9

As 15 the case with many demand systems, the
adding up restnctions for the RCCBS model hold
automatically When the y,, of the CBS are
summed over all “1”, that sum 18 zero The adding-
up constraints (7-9) cause the right-hand side of
(3) to sum to zero when summed across meats

Demand functions are also required to be homoge-
neous of degree 0 1n prices and expenditures Thas
condition 1s met through the set of restrictions
defined by

3C,,=0Y1n (10)
J

The last equality conditions are the symmetry
conditions on the compensated demand derivatives
The symmetry conditions 1mply

c,,=0C

e R

y.n Yyiu,nn (11
Note that given the symmetry conditions, the
restrictions implied by (9) and (10) are 1dentical, so
that one set of these equations becomes 1rrelevant

The mequality restrictions come into play through
the requirement that the matrix of compensated
demands be negative semi-definite Keller and Van
Driel demonstrate that these sign conditions 1mply
that each time period’s matnx of C,,, terms must
be negative semi-definite One implication of the
mnequality restrictions 1s that the C, , coefficients
cannot be positive

Stochastic Specification of the
Random Coefficient Demand System

At this point, I am going to switch the notation
that I use to specify the RCCBS The RCCBS can
be specified as a linear model with time-varying
coefficients

Y¥en = 2.0 en (12)

In (12) 2, , 18 an appropriately configured vector of
price and expenditure terms, the predetermined
variables of the model

Equation {12) could be any model with coefficients
that vary over time I had to specify the process
generating the coefficients prior to estimation I
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assumed that the coefficients are identically and
independently distributed over time I denote the
expected value of 8, by 6 and the covanance
matrix of the coefficients by X, The expected
values and varances of A, ,, B, ., and C, will be

10 109 ,n

denoted by An Bn C]J7 Oan Tpn Tcy

The restrictions that apply to the time-varying
coefficients also apply to their mean values These
restrictions also have 1mplications for the
covariance matnx, %, While there are 24 total
coefficients 1n the RCCBS for the four meats, the
equality restrictions allows one to ehiminate 12 of
the coefficients from the model one of the four
A, one of the four B,,, and ten of the sixteen
C,n Because of the equality restrictions, the
covariance matrix, %, has a rank of 12 at most If
only the intercepts are random, the covariance
matrix has a 1ank of 3 I have assumed that the A,
must be stochastic If not, then if prices and
expenditures do not change, demand changes will
be perfectly predictable

The Three-Stage Estimation Procedure

I estimated the model 1n three stages I used the
first two stages to estimate 3, and the last to
estimate 6 This type of meodel 15 difficult to
estimate with standard economeétric packages, so I
estimated the model using the mathematical
programming software, GAMS (Brooke, Kendrick,
Meeraus, 1988)

Note that.the random coefficient model specified 1n
{12} can be rewntten as fixed coefficient model
with heteroskedastic error terms as follows

Yon = 2..8 + e, (13}
where
e, =2, ,(6,-0), (14)
and
E(e, .2, ) = 2,0, 22, (15

When only the intercepts are random, the van-
ances and covariance imphed by (15) will be fixed
over all observations If other coefficients are
random, the (co)variances will be functions of the
prices and/or expenditures Because of the adding
up properties of the CBS model, the full covarniance
matrices of the e, terms 1s singular for both the
RCCBS and the CBS

For all three stages, I 1mposed the equality
restrictions directly estimating only the 12 of the
24 elements of the & vector I also only directly
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estimated the parts of the %, associated with the
12 estimated coefficients

In the first stage, I used the specification 1in (13)
and estimated 8 without correcting for the hetero-
skedasticity 1mplied by random elasticities of
demand The estimated values of § were those that
minirmzed the determinant of a three-by-three
sub-matrix .of the e , covariance matrix Barten
(1969) has shown that using this procedure for
demand systems that add up produces estimates
that are independent of the excluded good The
excluded vanable was turkey The first stage
estimates will produce consistent, though possibly
inefficient, estimates of the mean parameter vec-
tor Given the consistency of the 6 estimate, I then
have consistent estimates of the e,, Call those
estimates &, |

I used the error terms from the first stage to
estimate the covariance matrix in the second stage
The second stage 1s the most important of the
three, because as (13-15) show, the only difference
between the RCCBS and CBS 1s that the RCCBS
has heteroskedastic error terms

I estimated ¥, by finding the estimate, call 1t s,,
that mimimized the following relative sum of
squared errors (SSE)

£LED, (5 Gn=Zin 5o Zin) Z

SSE = (16)
SST

where

( Z ét,n.é_;,n)
SST=XXID, \ é,,6,- i (17)
it s 144

In (16) and (17), D, 1s a dummy vanable that
allows each covariance term to be used only once
For instance, 1t 1s 1 when 115 b and j 1s p and zero
when 113 p and J 15 b The estimates of the 3,
matrix from the second stage will be consistent

The objective 1n (16) 1s the equivalent of 1 minus
the R square of the regression imphed by (17)
This objective lies between zero and 1 The more
the heteroskedasticity, the lower the objective
function The objective 1n equation (16) could be
uded as a test statistic if one knew 1its distribution

To evaluate tlis test statistic, I used a Monte
Carlo technique 1 used the estimates of 6 and
covariance matrix for homoskedastic errors from
the first stage along with the data on the



predetermined vanables to generate new observa-
tions of the y , that were homoskedastic I then
ran these new y,, through the first two stages to
evaluate the distribution of the objective of equa-
tion (17)

It was 1n the second stage that I ran into some
anticipated and unanticipated problems The antic-
1pated problem was the need to force the estimate
s, to be symmetric and positive defimite Left
unrestricted, the estimated s, was not Ths
problem was easily handled by specifying the
matnx s, as the product of a matrx, K, and 1its
transpose

s¢ = K'K (18)

The unanticipated problem was that my first
estimated K matrix had a rank of only 6 For the
third stage of the estimation, 1t would have been
helpful, but not necessary, for the s, to have 1its
full rank of 12 To make the estimated matrix have
its full rank, I resorted to a version of ridge

regression I restricted the K matrix to be a six by
twelve matrx and then speafied s, as follows

sg = K'K + tM (19}

where r 15 a small positive weight and M a
positive, semi-definite matrix The usual procedure
1n ridge regression 18 to specify M as the identity
matrix or some other diagonal matnx However,
because of the equality constraints, the %, can not
be a diagonal matrix I used an M matnx that
could be a X,, consequently, M was also consistent
with the equality constraints The M matrix 1s
block diagonal in the A, B and C coefficients Its
values can be seen n table 1 The M matnx
actually used 1n the program was taken from Table
1, but reduced to a 12 by 12 matrix The value of r
I used was 10-8

In stage 3, I estimated the mean value parameter
Swamy and Tinsley (1980) developed a procedure
that 1s useful for estimating linear, random-
coefficient regression models such as specified by

Table 1—The non-zero elements of the “M” matrix, times 3!

Ay Ay Ac A

Ay 3 -1 -1 -1
A, -1 3 -1 -1
A, -1 -1 3 -1
A, -1 -1 -1 3
B, B, B,
B, 3 -1 -1
B, -1 3 -1
B, -1 -1 -1
B, -1 -1 3
Cbb Cbp Cbc Cht Cpp C Cpt Ccc Cc-t Ctt
Cp 3 -1 -1 -1 -1 1 -1 -1
Cop -1 3 -1 -1 -1 -1 -1 1 1
Cpe -1 -1 3 -1 1 -1 1 -1 -1 1
Che | -1 -1 -1 1 -1 -1
C.o -1 -1 1 1 -1 | -1 1 -1
C,. 1 -1 -1 1 -1 -1 -1 -1 1
C.. 1 -1 1 -1 -1 -1 1 -1 -1
C.. -1 1 -1 1 -1 -1 1 3 -1 -1
C.. 1 -1 -1 1 -1 -1 -1 3 -1
Cu -1 1 1 -1 -1 -1 -1 -1 3

1Symmetry conditions have been used to ehiminate non-unique Cu
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(12) They presented their technique for a single
equation model, but the generalization to a.-system
specified as i1n (12) 18 trivial Their model also
allows one to specify the error terms as an
integrated autoregressive/moving average (ARIMA)
process, so the RCCBS 1s a rather simple random
coefficient model Given,an estimate of %, which I
had from the second step, their techmigque will
produce estimates of the time path of 6, and an
estimate of the mean value of the coefficient
vector, 0

Basically, their procedure 15 to find estimates of 0
and 0, call them T, and T, that solve the following
problem

Minimize Y (T, - T) sgt (T, - T) (20)

subject to v, , =2, ,T, Vin

Up to this point I have not addressed the problem
of insuning that the C,, estimates are negative
defimmte These inequality constramnts can be 1m-
posed 1n general by adding a set of non-linear
inequalities to the mimimization problem 1n (20) A
less complex method 1s to force all the off-diagonal
C,n to be positive Given the homogeneity and
symmetry constraints, this simple sign constraint
18 enough to insure that all the C, matrices are
negative, semi-defimite The sign constraint also
forces all the meats to be substitutes for one
another, which 1s consistent with my pror
expectations

I tried the Swamy-Tinsley specification, but 1t did
not converge even after 50,000 iterations I there-
fore decided to use the specification impheit 1n
equation (13) and estimate the value of 8 using
generahized least squares 1 estimated the co-
variance matrix of the error terms using equation
(15), replacing X, with 1ts estimate, s,

The GLS type specification does not allow me to
directly estimate the time path of the random
coefficients However, the primary variables of
interest are their means and covariance matrix
Also, as Swamy and Tinsley demonstrated, the
estimated time path of the coefficients will not be
accurate They demonstrated that specification of
the problem in (20) insures that the estimated
time path of the coefficients will tend to be
“smoother” than the actual, unobserved time path
Further, 1t 1s possible to show, that without the
iequality restrictions 1mposed on the C, , est-
mates, the estimated mean vector for the GLS and
for the Swamy-Tinsley procedures will be 1dentical
See the appendix '

As noted above, because of the adding-up features
of the CBS model, the error term covariance
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matrix for all four meats will be singular To get
estimates of the coefficients, I performed GLS on a
three-meat group The excluded meat was turkey

Evaluating the Properties of the Estimates

The three-stage procedure will produce consistent
estimates of ¥, and 6, given the usual conditions
for consistency However, an evaluation of the
model requues estimates of the “accuracy” of the
estimates 1n small samples The three-stage proce-
dure 15 nonlinear, and asymptotic approximations
may be 1naccurate given the sample size

To estimate standard errors for the estimates, I
used the nonparametric procedure called jackkmf-
ing Efron and Gong (1983) discussed jackknmifing
in their review article This procedure 1s straight-
forward I created 144 alternative subsamples of
the data by dropping a different observation from
each I ran the three-stage procedure on each of
the subsamples, and used the s, and T from each
subsample to calculate standard errors for the
estimates using the. full sample

Following Efron and Gong, suppose that X 15 some
statistic generated from a sample of size N and
that X,,, 1s the same statistic generated from the
sample with observation n dropped The jackknife
standard error of X, denoted s, 1s

N 2 Xoy \2\ %
s, = (N_—I_ 3 (Xrn) - L) ) 21)
N n=1 N

One of the interesting features of the jackknife and
related nonparametric methods that Efron and
Gong note 15 that they can gmive accurate estimates
of the distribution of estimators even when the
estimators come from misspecified models

Results

The objective value from the second stage was 81 4
percent, and R squared of just under 19 percent
At first glance, this 1s not a great fit However, |
ran 200 Monte Carlo 1terations of a homoskedastic
model with the parameter and covariance matnx
estimates from the first stage The smallest
objective from the Monte Carlo trials was 852
percent

If 81 4 percent were 1n fact not significant at the 5
percent level, 1t would be extremely unhkely that
none of the 200 1terations would come up with an
objective value less than 81 4 Also, the estimated
fifth percentile from the Monte Carlo tral 1s 89 1,
and the jackknife standard error of the fifth
percentile estimate 1s 003 The objective value



from the second stage 1s more than 200 standard
deviations below the estimated fifth percentile,
further proof that the objective 1s sigmficant at the
5 percent level Consequently, I reject the CBS
mode! 1n favar of the RCCBS model Fluctuations
1n tastes have caused fluctuations 1in the

elasticities of demand for meats

Table 2 has the estimates of the mean values of
the parameters and estimates of the standard
deviations of the random coefficients 1mphed by
the s, from the second stage along with the
jackkmfe standard errors of the estimates Table 3

Table 2—Selected parameter estimates and their jackknife standard errors

Jackknife

Estimate of .. dard error

Estimate divided

Jackknife

standard error Estimate divided

Estimate of

mean of by jackknife standard error by jackknife
coefficient estlrrz‘;a;; for standard error of coefficient s f:;g:::;eefﬁ_zr standard error

(1) () 1)/(2) (3) (4) (3)/(4)
Ay -0 006 0 002 -2775 0004 0 002 1704
AIJ -0 001 0 002 -0 477 0005 0002 2 589
A 0 005 0001 5703 0 005 0001 6 929
A, 0 002 0 001 3093 0003 0001 3186
By 0 053 0038 1381 0154 0036 4232
B, -0 017 0027 -0612 0108 0033 3282
B, -0014 0024 -0 579 0 068 0015 4 541
B, -0 022 0012 -1841 0024 0015 1593
Chy -0 154 0 025 -6 165 0 054 0019 2 844
Cop 0114 0021 5 407 0078 0 022 3 498
Che 0027 0012 2 211 0036 0015 2 348
Chp. 0013 0014 0922 0 049 0011 4 500
Coo -0 123 0024 -5 054 0 088 0021 4 263
Cpe 0001 0 009 0 061 0022 0 007 3201
C.. 0 008 0011 0738 0 036 0 009 3 798
Ceo -0 024 0 009 -2 683 0025 0 007 3432
Ce: -0 003 0 008 -0395 0011 0 005 2293
C. -0018 0010 -1751 0022 0007 3043

Table 3—Conditional! elasticities (and standard errors) implied by mean coefficient estimates and mean

budget shares

Regular elasticities of demand

Beef Pork Chicken Turkey Meat
price price price price expenditure
Beef quantity -0 869 -0 095 -0117 -0 020 1101
(0 264) (0 123) (0 043) {0 103) (0 301)
Pork quantity -0 090 -0 699 -0 143 -0 010 0941
(0 470) {0 224) (0 040) (0 128} (0 396)
Chicken quantity -0 298 -0 256 -0 299 -0 058 0911
(0 468) {0 075) {0 123) (0 049) (0 433)
Turkey quantity 0 080 0 070 -0 147 -0 459 0 456
(1511) (0 651) {0 176) (0 548) {0 832)
Compensated elasticities of demand
Beef quantity -0 296 0219 0052 0025
(0 120) (0 158) (0 072) {0 094)
Pork quantity 0 400 -0 431 0002 0029
(0 289) (0 309) (0 074) (0 115)
Chicken quantity 0177 0 003 -0159 -0 021
(0 246) (0137) (0 159) (0 051)
Turkey quantity 0 317 0199 -0 077 -0 440
(1198) (0 794) (0 189) (D 554)

1Elasticities are conditional on a given level of meal expenditure
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shows the elasticities of demand implied by the
mean coefficient estimates Because the B, and C,
are random, these elasticities will vary randomly
over time Table 3 also shows the standard
deviations of the elasticities of demand 1mplied by
s, estimates

The estimated mean A, values for beef, chicken,
and turkey are statistically significant The rmean
A, measure the general drift in tastes over time
The estimated A, for beef 1s negative, which
suggests a genetal decline 1n beef demand over
time, while the pesitive intercepts for the poultry
meats suggests increases 1n poultry demand over
the time period

The B, coefficients show an 1nteresting pattern
None of the mean estimates 15 significant at
conventional levels When the B, are zero for the
CBS system, the implied expenditure elasticities
are exactly 1 With the exception of turkey, the
expenditure elasticities of demand imphed by the
mean coefficient values 1n table 4 are all close to
one

While the mean values of the B, are relatively
close to zero, the standard deviations of these
random coefficients are among the largest of any of
the random coefficients The B, for beef and pork
have the two largest estimated standard dewvia-
tions These large standard deviations imply that
the expenditure elasticities are particularly unsta-
ble over time

The uncompensated demand elasticities are func-
tions of the B, and C,, The instability of the B, also
affects all the regular price elasticities The
instability of the B, could be a sign that taste
variations has a great 1mpact on expenditure
elasticities and, consequently, on the expenditure
effects of price changes

On the other hand, values of B, other than zero
imply non-linear Engle curves As Deaton and
Muellbauer noted in their article on the AIDS
system (which has the same type of expenditure
effects as the CBS system), consumer demand
systems with this type of nonlinear Engle curve
require nonhnear aggregation to market level
demands Some of Lthe instabihity of the B, could be
the result of aggregation problems in estimating
changes in meat expenditures over time

I made no effort to constrain the estimated mean
C,, coefficients to meet the inequalty restrictions
of demand theory As i1t turned out, the mean
estimates meet the restrictions without con-
stramts The coefficient of the cross price effects
between chicken and turkey 1s negative, though
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small i1n absolute value and not significant The
sign 1mples that chicken and turkey are on
average complements This coefficient also has a
large standard dewiation relative to the mean
value of the coefficient, suggesting that the
chicken/turkey cross price effect 1s not stable and
these two could be substitutes for much of the time
period Other goods are on average substitutes
with one another Beef and pork have the largest
cross price coefficient This coefficient and the
elasticity estimates 1n table 4 suggest that beef
and pork are {on average) better substitutes with
one another than any other pair of meats

Summary and Conclusions

Previous work (Chalfant and Alston, 1988, Alston
and Chalfant, 1991a) has shown that 1t 15 possible
to test for the stability of consumer tastes
However, econometric models of demand are 1m-
plicitly based on the assumption that consumer
tastes fluctuate randomly Consequently, evidence
that tastes are not stable does not rule out the
possibility that econometric models are
appropriate

I have estimated a random coefficient model for
this paper, using US meat demand data for the
1980’s and early 1990°s The one disadvantage of
the random coefficient approach 1s that i1t 1s quite
computer-intensive Rather than specify the model
as a “classic” random coefficient model, I ended up
specifying 1t as a problem 1n generalized least
squares This approach lmits the choices of
stochastic specification for the model In theory,
one can specify random coefficient models with
rather complex autocorrelation processes generat-
ing the coefficients However, even with the use of
high quality hardware and software, I was unable
to get a “classic” random coefficient model without
autocorrelation to converge Future improvements
m computational technology may solve some of
these problems

Technical problems aside, there are real advan-
tages to using the random coefficient model 1n this
instance Hypothesis tests demonstrate that a
general, random coefficient specification 18 superior
to the more typical specification for modeling U S
meat demand The random coefficient specification
implies that meat demand elasticities have fluctu-
ated over the sample period because of fluctuations
in consumer tastes

The results also show that the general trend in
consumer tastes had tended to favor poultry
demand over beef demand Pork demand appears
to be relatively stable The estimates support the
views of those that believe that shifts 1n consumer



tastes have hurt the demand for beef relative to
the demand for poultry
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Appendix: Proving the Equivalence
oF the Swamy-Tinsley and GLS
Estimates of the RCCBS

The first step 1n this proof 15 setting up (16) as a
Lagrangian

Minimize % (T, - T) 81 (T, - T) (22)

+AY, - Z,T) A,

In (23), the term Y, 1s three by 1 vector consisting
of three of the four y,, terms (the fourth 1s
irrelevant because of adding up) and Z, a stacked
matnx of the z,,, vectors Taking the first deriva-
tive with respect to T, gives

2571 (T, - T)—2Z, \, =0 (23)
which gives the following solution for T,
T,=T+ sy Z,'N\, (24)

Now, take the derivative with respect to the
multiplier, substituting (25) for T,

2Y, -Z, (T + 84 Z,'\,)) =0,

N, =(Z, 82,01 (Y,-Z, T) (25)
Note that the term (Z.s,Z,) m (26} 15 the
econvariance matrix for the heteroskedastic error
terms Equation (26) can be substituted into (25) to

give the following solution for T,
T, =T+ Z,(Z,5,2,)2 (Y, -2, T) (26)
Now, take the dernivative of (23) with respect to T
-23Y 5,0 (T,-T) =0, (27)
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and substitute (27) for T, and solving for T gives

-1
T = (S 2, (Z.sZu) Z,)
(5 2, (ZsoZa 9L Y,) . (28)

which 158 the GLS estimator of T
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