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A REVIEW AND EVALUATION OF

WEATHER - CROP YIELD MODELS*

Joanne M. Geigel and W. B. Sundquist

Introduction

Concern has been voiced about the increased atmospheric loading of Carbon

Dioxide and the longer term climatic change which is expected from the so-

called “Greenhouse Effect”. One of the anticipated consequences of such

future cllmatic change 1s that the production environment for uJor crops

in the U.S. grain belt could be adversely impacted with significant

negative effects on both the crop production sector and the supply or farm

(food) products. This potential impact can only be adequately evaluated,

however, if one can (1) project a reasonably reliable scenario for expected

climatlc change, (2) describe the relationship which exist between crop

yields and those climatic variables which are expected to change in the future

and (3) develop a plauslble scenario ior the capabilities of future technologies

to modify crop production adversities associated with a more hostile climatic

environment. Each of these three tas}.sis a complex undertaking which can

probably only be achieved in degree.

The purpose of this paper is the relatively limited one of reviewing the

literature for models which develop specific relationships between climatlc

variables and crop yields. As a

of crop yields has utilized only

practical matter, however, most past modeling

short-term (intraseasonal) *’weather”and not

* This study was funded by a grant from the Hubert H. Humphrey Institute of
Public Affairs through a gift from the HEM fund of the Joyce Mertz-Gilmore
Foundation. Dean Abrahamson and Peter Ciborowski of the Humphrey Institute
assisted the authors in defining the objective of the study. The helpful
comments of Donald G. Baker and Gary H. Heichel are appreciated. The authors
alone, however, are responsible for the contents of this report.
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long-term “climatic” related variables. In order to fully explain changes in

crop yields, these models have also tried to account for the impacts of changing

production technologies. As a consequence, our review is mainly of these past

weather-technology-crop yield models.

Followlng a review of recent weather - crop yield modeling efforts we

evaluate these models and suggest some conceptual model and data base improve-

ments if we are to adequately prodect the impacts on crop production of expected

future clmatlc change. Our review and evaluation centers on weather-crop

yield models applicable to the central grdin belt of the U.S., mamly the

Corn Belt and Great Plains production regions.

The climate varies

regional changes, when

Longer-Term Climatlc Change

frOm year to year dnd frOm region to region. Small

averaged world-wide, become insignificant. An annual

mean fluctuation of

(Climate and Food)

An upward

in the middle

1940, average

trend

1-2°C on a global basis is a major change for agriculture.

of approximately 3°F (1.67° C) In mean temperatures occurred

latitudes from the end of the 17th century unt~l 1940. After

temperatures declineciabout 1°F (.56° C), The Great Plains of the

U.S. were warmer and drier from 1830 to 1930 than now, but fluctuations from

Year to year were greater than the century’s change. At one time, the Rocky

Mountains were 20-30% wetter in the summer, and bison herds might have dimi-

nished 50-75% even without overhuntlng as the weather became drier late in the

19th century. (Bryson, 1974)

Some researchers have observed cycles of dry weather. The grain

producing areas in both hemispheres experienced dry summers in the 1930’s

and 1950’s. Black and Thompson (1978) tested for nonrandom corn, soybean

and wheat yields based on 22-year drought cycles. They concluded that
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drought cycles do exist, although not every year In a drought cycle

exhibits below average yields.

McQuigg maintains that the period 1960-1973 was exceptionally favorable

for crop production, and such weather cannot be expected to continue. Drought,

defined as an insufficiency of moisture leading to yields 10% below normal, is

fairly common. (McQuigg, et al, 1973)

Different areas of the U.S. experience various degrees of dry weather

and for different periods

in the 1930’s and 1950’s,

decreased 15% In the last

of time. The Corn Belt experienced dry weather

and precipitation on the eastern seaboard has

100 years. (Thompson, 1975)

It i.s difficult to assess the impact of human activity on climatic

change. Some say the recent 40-year cooling trend may have been caused

by man, or, a natural cooling may have been partly offset by a carbon

dioxide induced warming trend. We already know chat

internal climate. They are warmer, less windy, less

(Chagnon, 1975)

Man’s activity could affect climatic change in a

three are as follows: by the accumulation of carbon

cities alter their

humid, and drier.

number of ways

dioxide in the

of which

atmosphere;

by smoke particles and dust screening out the sun’s energy; and by lead and

other particles providing nuclei for precipitation, thus redistributing

natural rainfall patterns, with the increased precipitation also resultlng In

decreased temperatures. In irrigated areas of western states, it is estimated

that 10% of the precipitation is that evaporated from irrigated fields. Removal

of vegetation

Increased

decreases humidity and exposes the SO1l. (Thompson, 1975)

The Greenhouse Effect and Agriculture

atmospheric loadings of carbon dioxide (C02) can be expected to



affect agricultural production In two ways: (1) the direct effect of C02 via

enhancement of photosynthesis in plants and (2) the indirect effect of C02 vla

climat~c change induced by the “greenhouse” effect. The latter results from

reduced reradiatlon of long wave energy by the earth’s surface because of its

absorption by C02 molecules. The latter effect can be expected to make present

production areas into more desirable or more hostile environments. Both effects

have implications for agriculture. If adequately severe, those impacts stemming

from the greenhouse effect could result in changes ~n areas of production, the

species and varieties produced, production technologies employed, and associated

problems.

C02 has a direct effect on growing plants. Using a controlled environment

study, Rosenberg found that water use eff~clency is enhanced by Increasing

levels ‘f c02’
within a certain range. Plants can be classified on the basis of

their photosynthetic mechanisms; C3 plants include small grains and legumes, and

the C4 classification contains corn and sorghum. Increasing C02 augments photo-

synthesis, but the effect is relatively more significant in C3 plants.

Photosynthetic activity 1s Increased in C3 plants; C4 plants reallze a decrease

In transpiration. This results In increased water use efficiency in both C3 and

C4 plants, but for different reasons (Rosenberg, 1981).

Increased levels of C02 are beneficial only If plant nutrients are

available in sufficient quantities. Therefore, in crop production areas

nutrients are limiting, the benefits of increased C02 would be less than

where

under

optimal conditions. Also, increased temperatures, an expected indirect effect

of increased C02~ decrease photosynthetic activity if optimum leaf temperatures

are exceeded. Photosynthesis is most rapid between 20° and 26° C. (Jolliffe

and Tregunna, 1968) Thus detrimental effects of higher temperatures could out-

weigh the benefits of Increased atmospheric C02. (MacDonald, 1982)
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Most scientists agree that increased levels of C02 would raise surface tem-

peratures, and likely redistribute rainfall patterns as they are presently

known. Exact estmates are not available, as “present models are not suf-

ficiently realistic to provide reliable predictions in the detail desired for

assessment of most impacts,” but *’theycan still suggest scales and ranges of

temporal and spatial variations that can be incorporated Into scenarios of

possible cllmatic change”. (National Academy of Sciences, 1983, p. 275)

The consensus expectation lS a 2 to 3°C Increase for a doubllng of C02. The

National Academy of Sciences supports this conclusion, and the generalization

that summer soil moisture will decrease in the middle and high latitudes of the

northern hemisphere. (1983). Some argue that a smaller increase in temperature

is a more likely magnitude. (Idso, 1982) Yield response to higher temperatures

depends on the crop, the geographical location, and available soil moisture.

The National Defense University (1980) conducted a study to estimate the

effects of global climate change on crop yields between 1976 and 2000. Clima-

tologists were surveyed to get probabilities of future cllmate scenarios. The

model was a “simple, discrete climate response model of apparently broad

dppllcabillty” . (p. 1) They found that a ‘“largewarmlng”~’ would have a

positive effect on Canadian Spring wheat and Soviet winter wheat, a neutral

effect on Soviet

U.S. corn yields

spring wheat, and a negative effect on U.S. spring wheat.

would decrease and become more variable.

1/ A large warming is defined as:

+.8oc subtropical latitudes
+1.OW lower middle latitudes
+1.4oc higher middle latitudes
+3.OoC polar latitudes.



Overall, the report

impact on crop yields in
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concluded that climate change would have the greatest

the northern higher middle latitudes, where global

temperature changes are amplified. “Small” yield changes are in the

2/
majority.- Canadian and Soviet wheat crops would have “large” or “moderate”

gains with a large warming (extreme scenario) and an equal loss with a large

cooling. All yield changes in U.S. crops would be “small”.

Bach (1978), on the other hand, estimated that some areas of the U.S.S.R.

would have wheat yields reduced as much as 20% for a 1°C increase in annual

nean temperature and a 10% decrease in annual precipitation. In the U.S. grain

belt, soybeans, llke corn, would benefit from Increased, not decreased, ?recip~-

tation.

Overall, it is dlfflcult to assess the effect of future temperature

increases on crop yields, because other factors will change too. A global

warming would not be uniform, even for a given latitude. Distance from the

ocean and mountains will affect the weather. (Cooper, 1982) Future clima-

tes may differ in windiness, cloudiness and frequency of severe weather,

all of which influence moisture availability. (Rosenberg, 1982)

Wheat yield response depends heavily on locallty. In dr~er areas, such

as Kansas, Oklahoma, South Dakota and North Dakota, yields would decrease

with a reduction in rainfall. But in Illinois and Indiana, precipitation

is already in excess of optimal levels for wheat production.

~/ Yield change magnitudes are defined for the change in expected annual
yield compared with the base period (which varies by crop according to the
length of available climate records), assuming no change from the level
of technology in 1976. They are:

small O-3% change in yield
moderate 3-6%
large 6-9%
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Increased average temperatures would, in general, also be expected to lead

to higher maximum temperatures and to a longer growing season. It has been

estimated that a 3°C Increase in July temperatures would move the 22”C July

isotherm (the top of the Corn Belt) from southern to northern Minnesota and

Wisconsin. (Benci, et. al., 1975) Corn production would be expected to increase

at the expense of crops presently north of the Corn Belt. In the process some

relocation costs would also be incurred.

Ramirez and Sakamoto (1975) estimated that wheat could be planted ten days

earlier than presently planted if the mean temperature were to increase 2°C.

Bach (1975) also found that a l°C increase would lengthen the entire growing

season by ten days. It is possible, though, that such a warming trend could

increase the incidence of freezing of crops when planted earlier.

There are other problems associated with higher temperatures. A north-

ward movement of the Corn Belt would place it on less productive soils.

because the northern land is, in general, lighter and shallower, more fertilizer

would be required to make it productive. Serious erosion problems could result.

Changes in production patterns will not come without changes in pest

problems. Cooper (1982) cites the example of okra, a food that is a weed

In southern cotton fields. Its range is limited by cold temperatures, buc

In laboratory experiments, increased C02 reversed the effects of cold

damage. If that is the case in open fields, this weed could spread to

northern production areas.

Pests are dependent on moisture conditions, temperature, and food quality,

all of which are subJect to change in a new climate. Species of pests can

be expected to change; some may be eliminated, but others will multiply.



In response to all of the possible Impacts resulting from climatic

change, technology WI1l also change. Irrigation may be required for crop

production where It was not previously necessary. In other areas, moisture

conserving management practices will be Increased and plant breeding, too,

w1ll be targeted at adaptzng crops to these climatic changes. For example,

it may be possible to

satllity of tolerance

Overall, it does

magnitude which could

genetically modify plants in order to extend the ver-

to an expanded range of weather conditions.

appear that future C02 induced changes may well be of a

slgnlflcantly alter adversely the climatlc environment

of the maJor gr:ln belt of the U.S. It IS not our purpose to predict such

an occurrence but to evaluate our modellng capability to assess the impact

on crop production should significant cllmati,cchange occur.

The General ProductIon Function for Crops

To accurately estimate (explaln) crop yields, all factors that influence

yields should be included In the

function for a speclflc crop can

explanatory model. A general crop yield

be described In the following way:

Y=

where Y =

A=

s =

P =

w=

f(A, S, P, W, E, M)~’

crop yield

crop acreage

soil (includlng both chemical and physical properties)

plant factors (including physical and biological properties and
environmental response capabilities)

weather

3_/ Several of the independent variables in this specification become meaningless
when averaged over all acres of a specific crop. As a result, for most
estimating purposes appropriate geographical dlsaggregation must be employed.
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k = economic environment

~1= management (including technology and cultural practices employed)

The econonic environment , which includes government programs, market

prices and other factors, influences yields by causing some management practices

to be more or less profitable. By some estimates, only 65% of available

yield-increasing technology is now being used. (Runge and Benci, 1975)

This situation occurs either becduse there has not been enough time or an

adequate information flow for adoption of all of the new technology, or

because some of the available technology is not economical at the present

time. Maximum yields are not synonymous with maximum profits.

The above listed variables are not simply d~screte nor are they strictly

independent of each other. For example, the economic environment influences the

level of crop acreage and a number of management practices. And, as crop

acreage changes upward or downward, average soil quality decreases or increases

as a consequence of changes In the quality of the marginal acres being cropped.

Biologically, yields are determined by soil fertility, soil t>pe, crop

variety, soil moisture, and croppiag practices such as row spacing ~nd the

incidence and control of weeds, insects, disease, and erosion. Modeling

all of these variables would require a very detailed and possibly inaccessible

set of data. Because available data are aggregated over many farms, it is

difficult to establish exactly when changes in technology occurred, or even what

percentage of farms adopted new management practices. As a consequence, most

weather-crop yield models have resorted to a “technology trend” to describe

changes in management and technology that account for yield variability not

related to the weather. Some variables easily fall under technological
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change. These include increased soil fertility due to additions of nitrogen

fertilizer, and genetic improvements in crop varieties. But the total tech-

nology system can be complex and difficult to formalize analytically. Soil

type is generally considered to remain unchanged over time but does, of course,

vary between geographical areas.

The dependent variable of most crop yield weather models, grain yield, is

measured in bushels per acre or kilograms per hectare. In the U.S. the former

unit of measure 1s easily and directly comparable over t~me and the price (value)

for maJor marketable crops 1s quoted almost exclusively on a per bushel basis.

The independent variables of crop yisld-weather models can be separated

into two broad categories, environmental and technological. Precipitation,

temperature, or a combination of the two n the form of a weather index are

the most commonly included environmental variables. These variables are

measured either in absolute physical units, or as a deviation from the long-

run average. Technology 1s frequently nodeled as a function of time due to

the complexity of defining measurable variables for the many cultural and

managsrlal factors that have Improved yields. Environmental and technological

variables are discussed in the followlng sections.

Environmental Variables

Precipitation

Precipitation is the fundamental determinant of yields in the U.S. grain

belt, water being the most limiting factor in grain production. Because of

its importance, rainfall, or preczpi.tation,appears in almost every weather-crop

yield model developed.

Precipitation has both a d~rect and an indirect effect on crop yields.

The direct effect is the water required for plant growth. Both inadequate and
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excessive water can adversely affect this growth process. The Indirect

effect appears in such forms as runoff and erosion, delayed harvest or planting,

and crop abandonment. Runoff and delayed cropping operations are often the

result of too much water, while crop abandonment is frequently caused by too

little moisture resulting in yields too low to be harvested economically. Most

existing models deal only with direct effects of rainfall.

Ceteris paribus, it is desirable to have precipitation variables describe

as accurately and precisely as possible the distribution of precipitation

4/
throughout the growing season. — Monthly averages are frequently used for

models utilizing long series of historical data, even though monthly measure-

ments are not very adequate descriptors of temporal rainfall distribution. An

alternative to monthly averages is weekly or daily precipitation. T,,i~esore

precise, such measures are typically not statistically feasible in a time-series

regression model due to the 10SS of degrees of freedom. Weekly or daily rain-

fall can, however, be used in those models which utilize more precise data

includlng smaller sample plots.

Rainfall has different effects on yields depending on how much moisture

is already in the soil. Two approaches have been used to deal with the effect

of previous precipitation. One is to measure soil moisture; this approach is

generally used with short, detailed data series. The other method 1s to add a

variable for ‘*preseason’*precipitation. Such a variable is really a proxy for

soil moisture. It is frequently used with historical time series data and often

includes rainfall for September through May or June for corn and soybeans, and

rainfall for August through March or April for spring wheat.

~/ There are stages of growth that require more moisture than other stages,
for example, tasseling is a critical stage in the development of the corn
plant that is very sensitive to moisture stress.
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Temperature

Most, but not all, weather-crop yield models include

variable(s). In addition to minimum and maximum daily or

temperature

weekly values, avera-

ges, deviations from average, and number of days over a specified maximum tem-

perature have been included in model specifications. Most past models, however,

have used only monthly average temperatures for the growing season period.

Air temperature is related to evapotranspiration which is the loss of water

in the form of vapor from plant and soil surfaces. And, high temperatures are

dssocia~ed with high moisture stress in plants when water is llmlting. As a

result, some models treat temperatures as a surrogate for evapotransplration

because It is the only related measure readily available. But, temperature is a

less than perfect substitute for evapotranspiration.

Weather Indices

Numerous attempts have been made to develop a weather Index to use as a

“deflator” to remove the effect of weather fluctuations on crop yields. It

describes the year to year variation in crop yields due to weather. A

value of 10~ indicates a year in which environmental factors were ne~ther

fdvorable nor unfavorable; that is, at a given ievel of technology, weather

had a neutral effect on yields. Generally, a trend IS fitted to a set of

time ser~es data on yield. The influence of weather is then measured by actual

yzeld as a percentage of computed trend yield. Both weather and aridity

indices have been used as proxy weather variables in crop yield models.

Stallings (1960) derived a weather index by first removing the trend in

yields with a linear regression line for each of seven individual crops in

individual locations. The annual local crop specifzc Index was then computed

as a ratio of actual yields to computed yields from the linear regressions.
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Indices for each crop at each location were weighted together Into an Index

for each particular crop for the U.S. Finally, indices for the seven crops

were weighted together into an aggregate index. Later studies, including that

of Lawrence Shaw (1965), also derived indices by calculating actual yield as a

percentage of trend yield.

R.H. Shaw (1974) developed a moisture-stress index using potential and

actual evapotranspiration:

1
ET

- — = stress
PET

where ET = actual evapotranspiratlon

PET = potential evapotranspiration

This index ranges from O to 1. It assumes that the yield reduction is

proportional to the percentage reduction in ET below PET. This method does

not directly utilize meteorological variables. Various weighting factors were

applied to five-ddy stress index sums during the growing season.

Oury (1965) recommended using an aridity index to account for wedther.

He tested those of Angstr’6mand De Martonne in regression equations. These

lndlces are functions of precipitation and temperature, and are calculated

for various periods. The indices he tested were fairly simple, but he

5/
suggested using the more complex Thornthwaite- lndex when the required time

series data were available, Oury wanted to capture the influence of weather

at planting time, during growth, at harvest time, and

case of winter crops).

Shaw (1964) recommended weather indices to avoid

winter effects (in the

problems arising from

spatial and temporal aggregation. Because weather indices measure a net effect,

5/ The Thornthwaite model computes evapotranspiration with reference to the
amount of available water remaining in the soil.
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timing of precipitation or temperature is not relevant. Also, the problem of

geographical aggregation is not as serious, because there 1s no mismatching of

weighting schemes, such as can occur when yield averages and meteorological

averages are constructed, and no loss of model sensitivity due to averaging out

of weather variation over border area (state-level) aggregation. Shaw

stressed that weather should be measured relative to the given level of

technology because the influence of weather on yield is not independent of

technology. The yield averages used to derive the indices were from test

plots that the used actual yield effect of weather.

allow decreasing returns to meteorological variables

and InteractIons among time periods.

Weather lndlces also

w~thln a time period

Although several weather indices were developed during the 1960’s,

interest in their use has faded. They were essentially attempts to determine

the efficiency of precipitation and have been largely superseded by the concept

of evapotranspiration.

Other Weather-Related Variables

Some of the more recent weather-yield models require more detailed environ-

mental Information than temperature and precipitation. S011 moisture, potential

and actual evapotranspiratlon, salar radidtion, depth of rooting, water-holdlng

capacity in the root zone, and pressure data have been included. With the

exception of pressure data, which is used mainly as a last resort when precipi-

tation data are lacking, these varlab.lesadd more precision and accuracy to

models by depicting smaller geographical areas.

Ravelo and Decker (1978) employed a soil

ratio of actual plant available soil moisture

moisture. The index was tested for the upper

moisture index which is the

to maximum plant available soil

three layers and the upper six
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layers of soil. Inches of

by Runge and Benci (1975),

available stored soil water at plantlng were used

and Leeper (1974) evaluated plant available stored

soil moisture on a weekly basis. Bridge (1976) used variations of soil

moisture such as daily values of surplus water and the soil moisture deficit

summed over the stages of plant growth. Available soil moisture is a more

precise measure than preseason precipitation to evaluate plant available water

at the beginning of the growing season.

Evapotransporation related measures were discussed briefly in a preceding

section and other variables are specific to certain models. Baier (1973) used

total sky and solar radiation (cal/cm2 - day), and Arkin (1980) implemented

insolation in his model. Leeper included depth of rooting and available

water holding capacity in the root zone.

Technological Variables

Yields of grains in the U.S. Great Plains and Cornbelt have shown an up-

ward trend since the late 1930’s. Most of the increase is due to technological

progress and favorable weather conditions. Technological improvements include

hybrid varieties, fertilizers, cultural practices, herbicides, pesticides,

machinery, timing of field operations, changes in row spacing and others.

Time series data often show a linear or quadratic trend in crop yields

due to technological advance. Linear trends are frequently used by time series

analysts. This is not truly accurate, as it assumes that technology increases

yields by a constant amount every year. Adoption of technology is an ongoing

process, with different farmers adopting innovations at different times and

at different levels. A linear trend assumes no leveling of yields.

Most wheat models show a change in the rate of technological adoption
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between 1945 and 1955. The LACIE~/-CCEA 11~/ model uses an exponential trend

with increasing rates of adoption followed by a leveling off of yxelds.

Thompsonls corn model has a linear trend from 1930-1960 and a quadratic trend

from 1960 on. His soybean model has a linear trend throughout.

Modelers attempting to use quadratic or cubic trends usually find these

terms statistically nonsignificant. Quadratic trends assume yields are

increasing at an increasing rate, while cubic trends show some levelin~ off.

Cubic trends seem reasonable, as a leveling of yields was expected in the

1970’s, but statistically they have not been si.gniflcant.

Mostek and Walsh (1981) removed trend by expressing each statefs yield

as a series of fractional departures from the n-year running mean yield.

Instead of using the annual average yield, a given year’s yield 1s subtracted

from the average yield of the eleven years around that year, and the deviation

from the mean iS used in the regression analysis. .4problem with using a

moving average is that if there is a cycllcal weather pattern, then the

weather trend becomes part of the technology trend. Also, to use such a

method, assumptions must be made about future yields in order to have a

moving average for the current year (Thompson, i966).

Cross-sectional data collected from experimental plots or farms should be

adJusted for “farm level” technology. Experimental units typically use high

levels of management, often adopting new practices before they are used by the

public . Thus models will overpredict yields if they are developed with

experimental data. Leeper’s model, for example, over-predicted yields for

6_/Large Area Crop Inventory Experiment - A Joint proJect of the United States
Department of Agriculture, the National .4eronauti.csand Space Administration,
and the National Oceanic and Atmospheric Administration.

7/ Center for Climatic and Environmental Assessment.
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this reason. Also, another study found experunental farm corn yields to be

13% and soybean yields 8.5% above the county average (Swanson and Nyankori,

1977).

The economic environment influences the type of technology that is used.

Government programs during the 19501s and 19601s removed land from production.

Many farmers took their marginal lands from production and increased the

intensity of input use on the acreage which they cropped. This was almost

certainly a contributing factor to increasing average yields during this

period.

Input and output prices also influence the use of technology. High Input

prices combined with low commodity prices can cause farmers to

level of technology. An obvious example of this phenomenon is

the amount of nitrogen fertilizer applied when its price rises

cut back on the

a reduction in

significantly.

In summary, the impacts of technology on crop yields are complex. Yet,

any independent effects of technology (those not functionally related to

weather variables) must be Isolated if the impacts of climate (or weather)

on crop yields are to be measured accurately.

Relationships Between Climatic Variables and Yields

Sensitivity to environmental stress depends on the stage of development

of the crop. Optimal weather conditions and reactions to stress during

different stages of growth, as well as the distribution of crop

relation to the weather are discussed in the following section.

The highest yields of grain in the Corn Belt usually occur

lower than normal temperatures, for two reasons. First, higher

yields in

in summers of

rainfall Is

associated with cooler than normal temperatures. Second, cooler weather

permits storage of photosynthate. Products of photosynthesis are lost to a
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greater extent in warmer weather due to higher rates of respiration (Thompson,

1975).

In the Corn Belt, the optimum daily average temperature for corn and

soybeans in June, July, and August is about 72°F (22.2”C). The optimum range is

not less than 50”F (10”C) at night to not greater than 86°F (30°C) during the

day. Temperatures above 90°F (32.2”C) are detrimental to corn and soybeans.

Highest corn yields result from normal precipitation for September through June,

and above average precipitation in July and August (Thompson, 1975). A cooling

trend would benefit corn and soybeans in southern

but couid reduce the length of the growing season

Development of Corn

latitudes of the Corn Belt,

in northern latitudes.

The development of corn is influenced by photoperiod and temperature

conditions. Moisture stress is most critical to yields during the reproductive

stage. Little effect of reduced moisure is evident in the early stages of

growth. Plants stressed during the vegetative growth stage can still produce

near normal yields if weather conditions are optimal during the reproductive

stages even though vegetation is reduced. Yield losses are attributable to a

failure of fertilization.

Temperature perturbations reducing corn production include late spring

or early fall frosts, consistently low spring temperatures, and unusually high

or low temperature departures in summer (Dale, 1983).

Severe early drought can result in stunting and delayed silking. Many

plants may fail to silk, and the tassels may be sterile (Leonard and Martin,

1963), Soil moisture conditions during flower~ng and early grain formation

are critical determinants of yield (Salter and Goode, 1967). Tasseling and

silking may be delayed by water stress (Claassen, 1970).
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Stress during early ear shoot and ovule development influence yield by

reducing the total number of kernels and the number of developed kernels. The

main effect of stress during ear development is a decrease in the kernel

weight (Claassen, 1970). Tasseling, silking, and pollination are most

sensitive to stress. Severe stress during the ten days around silking can

result in a complete crop failure. In the Corn Belt, rainfall is most impor-

tant in the first part of August, with temperature being more critical in the

second part of August. Most of the crop matures by the end of September

(Shaw, 1983).

Thompsonls model for Corn Belt states shows corn yields decreasing as

temperature increases. A 0.75°C increase, with no change in precipitation,

would decrease yields by about 8 percent. However, the influence of

temperature is not independent of solar radiation and the evaporative demand

of the atmosphere.

Bach (1978) estimated that a l°C increase in August temperature would

reduce corn yields 2 percent. A 2°C temperature increase would reduce

yields in most states, although wetter areas like Illinois or Indiana

could stand to benefit. Soybeans have a similar response, as higher

temperatures in Iowa are beneficial whereas Indiana would benefit from lower

temperatures.

Soybeans are sensitive to drought from flower-seed differentiation

until the end of fruiting (Salter and Goode, 1967). Stress during flower

formulation results in fewer flowers and fewer pods, and therefore fewer

seeds per plant. However, the seeds can be normal size (Sionit, 1977).
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Mederski (1983) reported that limiting water during early flowerlng can

decrease yields by up to 3% whereas restricted moisture during flowering to

maturity can decrease yields up to 50%. The pod-fill stage is most sensitive

to moisture stress. In Illinois, an extra inch of rain in July and August

increases yields by .92 and .7 bushels per acre respectively (Bach, 1978).

Ample water before flowering is not as important as after flowering

(Mederski, 1983). During vegetative growth, variable responses to soil moisture

conditions have been reported (Salter and Goode, 1967).

Germination requires temperatures in the range of 10 to 40”C. Maximum

rates occur at 25 to 30°C. Csing the SOYMOD I model, Curry and Baker estimated

that if the average annual temperature were to fall 2“C, soybean yields could

be limited by the fall frosts that would result. Thompsonfs model suggests

that increased precipitation in July and August increased yields. The

influence of changing temperature varies from state to state, but in general,

increased temperatures were beneficial in June and July but not in August

(Curry and Baker, 1975).

Climatic change affects soybean production by its impact on the length of

the growing season and the moisture availability. ?30thfactors are affected

by temperature. Lower average temperatures can be accompanied by reductions in

the length of the growing season, and high temperatures increase water loss by

transpiration.

Development of Wheat

There are two patterns of wheat production in the United States.

Winter wheat is sown in the fall and harvested in June-July the following

summer. Spring wheat is sown in the spring, and is normally harvested several

weeks later than winter wheat. Winter wheat is generally not grown where the
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monthly mean winter temperature is below -6°C. In the U.S. Great Plalns,

wheat yields increase with normal or above normal precipitation. Wheat grown

anywhere in the U.S. is hurt by above normal temperatures.

Wheat yields are highest when the growing season is cool and moist,

followed by a warm dry ripening period. The optimal preharvest mean tem-

perature is 16 to 22”C. The optimal temperature for germination is 18”C, with

a minimum of 1°C. At high temperatures, germination is irregular. High

temperatures are detrimental to yields except for emergence through jointing

when above normal temperatures increase yields (Ramirez and Sakamoto, 1975).

Most wheat varieties require a frost free season of 100 days or more.

Annual rainfall of 20 to 30 inches is sufficient if most of it falls

during the growing season. Even lower amounts can suffice when prior year

moisture can be stored by fallowing. Yield differences are more influenced by

the frequency of rainfall rather than the mean available soil moisture

(DesJardins, 1980).

The greatest reduction in yield is due to stress in the early earing

stage. Drought between ear emergence and heading reduces the number of

grains produced. Drought at the milk-ripe stage will reduce the weight of the

grain. Rapid filling of the grain before the onset of drought is important

for drought resistance. Losses from drought during earing are often irrevers-

ible (Salter and Goode, 1967).

Even though drought curtails kernel development, it can increase the

protein content of the wheat. The shorter the period between formation and

ripening of the kernel, the higher the percentage of gluten. The fruiting

period is prolonged when the weather is cool and soil moisture is adequate.

Under these conditions, more starch is deposited relative to gluten, so the
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wheat has a lower protein content than wheat produced under moisture stress

(Leonard and Martin, 1963).

Mzchaels (1977) achieved good weather-yield explanatory results for winter

wheat by defining 5 phonological periods during which consumptive moisture

use, particularly, differed substantially. They were (1) planting and ger-

mlnatlon, (2) overwintering, (3) vegetative growth, (4) flowering/filling and

(5) maturing/harvesting. These phonological periods were approximated by

monthly (or multlple month) specifications of calendar time.

Studies Illustrate that, on average, 1 inch (2.54 cm) of rainfall during

the growing season contr~butes 2.4 bu./acre to the tlnal yield for the Great

Plalns states. For a

~eason), wheat yields

South Dakota, Kansas,

will Increase yields,

10Z decrease In ra~nfall (1 to 2 Inches less than a normal

could be expected to fall 2.5 to 5 bu./acre. In North and

Illinols and Ind~ana, a .5 to 2°C temperature decrease

using Thompson’s model.

Dlstributlon of Yields and Randomness

An underlying assumption of using mean values in a regression model lS

that of a “normal” distribution. This is probably not a valid assumption In

crop yield models, especially In regard to the Influence of weather.

Gallagher (1983) provides empirical evidence of the skewness of crop

yields relatlve to conventional measures of central tendency (mean and mode).

He first develops a concept of “capacity”’yield which is obtained with “(l)

efficient use of technology for controllable inputs and (2) ideal weather.” He

then estimates the probability distribution for yield disturbances (deviations

from capacity yield) which are mainly attributable to environmental factors.

The general distribution of his corn yield estimates are shown in figure 1. Two-

thirds of the density function is contained between yield deviations from capa-
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city of about -8.2 and -0.9 bushels per acre respectively. Gallagher concludes

that (1) the probability function for corn yield disturbances is skewed heavily

to the left and (2) the current environment of the Corn Belt is very near opti-

mal for production of corn and soybeans since modal yields fall close to capa-

city yields.

Huff and Neill (1982) found that large negative deviations in corn yields

are more likely to occur than large poe.lcivedeviations. The same is true for

soybeans. Of the five corn belt states studied, year-to-ye~r variation in corn

yield 1s smallest in Ohio, where the variation ~n July rainfall is least. Year-

to-year variation In corn yield is largest in Missouri, where July rainfall

displays the greatest variability. Thus, July rainfall 1s an important

variable in explaining the var~ability in corn yields.

Crop sensitivity to weather may be more strongly related to varying SOI1

types than to climatic differences betwezn districts. In a recent study, Huff

and Johnson (1979) found that in northern Xlllnols, the multiple correlation

coefficient between corn yield and July rainfall and temperature and August tem-

perature was approximately .4, as compdred to .8 In southern Illlnols. In

southern Illlnols, SOIIS are such that y~elds depend on frequent rain, more so

than the soils of northern Illlnois. This implles a stronger yield dependence

on weather conditions in southern Illinois.

Day (1965) found field crop distributions to be generally non-normal and

non-lognormal, with the degree of skewness depending on the crop and the amount

of available nutrients. Mode or median estimates may be preferred to means.
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Three Generations of Crop Yield-Weather Models

Weather-crop yield models exist on different scales. They can be

described as first, second, or third generation models depending on the

complexity of the theory involved and the type and detail of data required.

~ yield models use average values for

discrete time periods, such as months or seasons, from historical data for

specific geographical areas. The yield equation is in a simple algebraic

form. Physiological relationships are impliclt, the soil type is a constant,

and management and technology are modeled as a static coefficient. Calendar

time is used to dellneate time periods. First generation yield models are

spatially oriented on state or crop reporting district levels (Stuff, et. al.,

1979).

Easily accessible data is the main advantage of this type of model.

However, its use is ordinarily limited to areas with long historical yield

records. First generation models are insensitive due to *’averagingout”; that

is, losing micro-level variability by using state and monthly data. These

models are also restricted by a llmlted number of parameters, lack of sen-

sitivity to crop calendar changes, and the use of surrogate variables, such as

technology trends.

An example of a first generation model is the work of Thompson (1969).

Hi~ model used 37 years of monthly temperature and precipxtatlon data for the

five Corn Belt states. A separate model was developed for each state. Linear

and curvilinear technology trends explained non-weather variance.
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All other sources of yield variance, like soil type, Improved varieties, and

increased SOI1 fertility are assumed to be either held constant or captured

in the technology trend.

Thompson’s model estmates the effect of weather and technology on crop

yields. Regression coefficients were developed from historical data series

for corn, soybeans, wheat, and grain sorghum in the midwest. Generally, the

models explain 80-92% of the variability in yields.

The corn yield model was developed using data from 1930-1(367from

Illinols, Indiana, Iowa, Mlssourz, and OhLo. Twelve weather variables and

three technological variables comprise the model. Similar variables were

used for the yield models of the other crops.

The weather variables are as follows:

1. Preseason precipitation (September through June)

2. June mean temperature

3. July precipztatlon

4. July mean temperature

5. August precipitation

6. August mean temperature

7-12 The squares of variables 1-6.

Departures from the “normal” monthly weather variables and the square of

the departures from normal were used rather than the original (unadjusted)

data. Thompson assumed that the deviations from normal were related to yield

in a curvilinear pattern (French, 1982).

Thompson developed technological variables on the agronomic evidence that

technology was introduced gradually until 1960 when it was adopted more

rapidly. Beginning in 1960, nitrogen fertilizer was applied to corn
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in increasing amounts. The three technological variables are:

1. A linear time trend which Increased by one unit each year from

1930-1960, and became constant after 1960.

2. A linear term which is equal to zero before 1961, one in 1961,

and increased by one unit per year.

3. The square of the second term.

The linear trend assumes ever-increasing yields. This model was

developed in 1969, when yields had not yet begun to level off. There

was not sufficient evidence to model a levellng off of technology.

For grains other than corn, the models are basically the same except

for the time points at which the slope of the technology trend changes, and

the months used for the weather variables.

Thompson modeled the time trends for wheat In a similar manner to that

of corn. The technology variables were a linear term for 1920 to 1945, a

llnear term for 1945 to 1968, and the square of the 1945 to 1968 term.

It is not clear when wheat yields started increasing due to improve-

ments in technology. There could have been some increase In the 1930’s,

but the long drought of that period obscured the technological gains.

Yields Increased rapidly after 1950.

The shape of the technology trend varied somewhat for different states.

North Dakota, South Dakota and Kansas were linear after 1945. Oklahoma,

Illinois and Indiana were linear from 1920-1945, and curvilinear after 1945.

This may be due in part to the use of nitrogen fertilizer in each state. In

1968, the percentage of acres in wheat receiving nitrogen fertilizer varied

from 97 percent in Indiana to 23 percent in South Dakota.
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The technology trend after 1945 was most closely related to fertilizer,

but also to improved, disease-resistant varieties, greater use of summer

fallow, and a reduction n acreage, which led to the use of better land, In

the 1940’s.

As in the case of the corn model, the weather variables entered the wheat

model as departures from normal. Preseason precipitation (August-March),

April, May and June rainfall and temperature were used. July rainfall and

temperature were included only for North and South Dakota.

Second generation yield models are characterized by ddily or weekly

input data derived from surveys or field experiments. Like first gen-

eration models, the yield equation is in simple algebralc form. However,

second generation models are more detailed in many aspects. Physiological

relationships are recognized, not implicit, and soils are specified by

their water-holdlng capacity and strata factors. Management and technology

variables can be either explicitly modeled or specified as constraints. Time

integration involves static biological phase weighting (Stuff, et. al., 1979).

A second generation model 1s capable of estimating yields for any

arbitrary unit of area. These models are more dccurate and responsive than

first generation models due to additional data applied at smaller spatial and

temporal scales. The difficulty in using a second generation model arises

when trying to locate the necessary data.

A typical second generation model is that of the LACIE proJect for hard

red winter wheat in North Dakota (LeDuc, 1979). Temperature and precipitation

variables are used but on a more detailed level than first generation models.

Average total weekly precipitation, maximum number of days in which .1, .2, and
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1 inch of precipitation fell, average weekly runoff, and soil moisture take

the place of precipitation; temperature information is given by average weekly

minimum and maximum temperatures, maximum number of days In the week when

the temperature is greater than 100”F or 90°F or less than 32*F, and the sum

of growing degree days.

The CCEA second generation wheat yield model is a more detailed model

than the first generation CCEA model. The yield equation of this multiple

regression model can be described as:

Y, =ci+YR+T7+f WIJ
J

where the WIJIS

n is the number

variable of the

T
J = 28* ‘lJ*

J
1

~ 1

are weather variables, Y
J

= yield for the Jth crop district,

of weather terms, YR = year - 1950, and Tj is a trend

form:

exp { {-.001* A2j* [(year - 1920) - (50* A311]}2}

This allows for an exponential rate of Increase In the mld-19501s and

a slowdown in the rate of change in the 1970’s.
‘1 ‘

A2 and A3 were deter-

mined from a nonlinear programming algorithm. The final variables were

selected using step wise regression procedures.

Although this model provides an improved estimate for two of the three

years of the proJect as compared to the first generat~on CCEA model, it is

operationally more difficult to use and a greater amount of precise data

is required.

Third generation models are more detailed than first and second

generation models. The data are obtained from controlled or designed

experiments. Daily or hourly values of environmental variables are required.

The yield equation can be anything from a simple algebraic representation to
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an extended series of differential equations. Instead of modeling a region or

a field, the level of detail is that of individual plants. Physiological

relationships, soils, and management and technology are explicitly modeled.

Time Integration is biological and dynamic (Stuff, et. al., 1979).

An advantage of using third generation models is the Increased precision

achieved as compared to geographically large-scale models. This is because

third generation models better describe plant growth and development processes,

are created from detailed weather and crop information, and are not Ilkely to

mix Input variables of different scales (size of geograph~cal area) (Strand,

1981). The disadvantages of third generation models are the high costs of

model development, the inadequacy of existing data bases and the extremely small

spatial representation.

Th~rd generation models are developed on a highly technical level of

plant physiology. SORGF, a grain sorghum growth-simulation model, is a

third generation model that forecasts crop status during the growing season

(Arkin, et al, 1976). The variables, lncludlng daily values of insolation,

rainfall, and minimum and maximum air temperature were collected from ten

fields m central Texas for one growing season. This is a dynamic growth

model on a plot-size scale.

SORGF was used by Arkln to forecast crop status within the growing

season. The probability that a certain yield might occur, the most likely

occurring yield, the greatest and smallest occurring yield, the probability

that yield may be greater or less than a particular value, the average yield

expected over many years, (50 years of simulated weather data were used in

this study) and the expected year-to-year variability in yields over many

years can be determined from the results of the simulation.
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This model used data collected during the season as feedback to increase

precision of the yield forecast. Feedback doesn’t ellminate errors, but it

does Increase the accuracy of predicted parameter values. Information

required for feedback includes leaf number,

weight, and the date of emergence.

Because the objective of this research

models for the purpose of assessing impacts

weight, and area, stalk and head

is to evaluate weather-crop yield

of long-term climatic changes,

third generation models are probably not appropriate. First and second

generation models are specified at a level of detail more reasonable for this

type of analysls. These models use weather data which are more highly corre-

lated with measurable changes in climate than is true for third generation

models.

Evaluation of Models

The following section 1s a general evaluation of crop yieLd-weather

models. Criteria for selecting models are discussed, as well as frequently

encountered problems. Desirable features necessary for estimating impacts

on crop production associated with climate changes are dlscus?ed. A table

summarizing characteristics of specific models is presented in the appendix.

A good model should meet several criteria. First, the model should

reflect the relationships expected from agronomic theory. We should have

reason to believe that a cause and effect relationship exists between

crop yields and weather events. The modeled relationship should result

in parameters of the correct sign and of reasonable magnitudes.
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Second, the model should be statistically sound. It is desirable

to find a model relatively free of statistical probleus. Selected variables

should be statistically significant, and the model should have good

predictive capabilities.

Third, the model should be economically feasible, both in the amount

and kind of required data, and in the cost of development and estimation.

Precise, detazled aodels are often prohibitively expensive to develop

and use.

If expected relationships from

has “appropriate structure”

rainfall to increase yields

would be detrimental. ‘1311s

(LeDuc,

up to a

type of

function of yields to rainfall. In

agronomic theory, Thompson’s model

precipitation at appropriate times.

agronoaic theory are present, the model

1979). We would expect an increase in

point, after which more precipitation

situation indicates a non-linear response

general, most models are in accord with

shows yield increasing with increased

Good representations of non-linear

response functions are more difficult to model.

Outllers in the data can influence the model when they are not repre-

sentative clfthe true relationship. Episodic weather events such as

flooding, untimely frost, or hail are probably the chief sources of outliers

in the data. Models that overestimate yields in 1970 and 1974 do so

because of the corn blight and delayed planting, followed by a dry summer

and an early frost respectively. Some crop yield-weather modelers dealt

with episodic weather phenomena by throwing out the bad data.
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The marginal value of precipitation is difficult to capture In most models.

For low levels of precipitation, water is scarce and additional precipitation

increases yields at an increasing rate. At higher levels, additional precipi-

tation increases yields at a decreasing rate and eventually decreases yields

(Shaw, 1964). Multiple linear regression models assume that each additional

inch of precipitation has the same effect on yield as the first inch

(Thompson, 1963).

Even if a model corresponds to agronomic theory, it must be evaluated for

its statistical validlty. Specifically, crop yield-wedther models must deal

w~th multi-collinearity, overaggregation of data, proxy variables and problems

in defining and modelling technology. Crop yield-weather models may encounter

the statistical problem of multicollinearity. Multicollinearity indicates that

the variables are correlated with each other, possibly even more than with the

dependent variable.
.

This condition can exist If individual variables share a

common time trend. Excessive rnulticolllnearlty results in large standard errors

for estimated coefficients and, consequently, unreliable estimates.

Independent variables in crop yield-weather models may be correlated

spatially or temporally. Katz (1979) found the followlng correlations between

total monthly precipitation and mean temperature:

Month

April

May

June

July

~/ Kansas State

8/
Correlation –

-0.14

-0.28

-0.69

-0.73

values, 1930-1980.
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The correlations between precipitation and temperature in June and July are

fairly high.

Starr and Kostrow (1978) maintain that the correlation is “quite weak”

between climatic variables. The strongest correlation in their study was

-0.613, between August precipitation and temperature. They also found a weak

tendency for temperature anomalizs to persist from one period to another.

Thompson observed that higher rainfall is associated with cooler than

normal temperatures. However, higher evapotranspiratlon rates and plant

moisture stress are associated with warmer weather. The influence of tem-

perature is intercorrelated with insolation and evaporative demand of the

atmosphere. As a result, the temperature-preclpitati.on interaction caused

Thompson’s regression equation to overestimate yields in poor weather years and

underestimate them In good weather years.

Most of the variability in crop yields is attributable to weather and

technological influences. Howev?r, technology is ambiguously defined and very

dlfflcult to measure. Despite tle difficulty in dealing with technological

variables, they are maJor determinants of yield variability and cannot be

overlooked. McQulgg <1975) estimates that 70 to 80 percent of the variability

in crop yields is due to technological factors. Few of the methods suggested

to deal with technological factors have been successful. Most modelers,

lncludlng Thompson, Steyaert, and Huff and Nelll, have used a time trend or

proxy variables. This approach assumes that the residual variance lS due to

weather. Other methods such as lagged research and development expenditures

and acres in hybrids have had only limited success.
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One of the problems with using proxy variables is that they pick up the

effect of all variables left out of the equation. This means that if the

weather variable also had a linear trend, it will be captured by the time

trend rather than the weather component. For example, a cooling trend which

has occurred over the last forty years may be a source of error when using time

trend to explain technological change. Actual measures of definable factors

are preferable to proxy variables, but the specification of technological

variables iS not easily accomplished. Another problem is uncerta~nty in the

rate of technological adoption. After most technological discoveries, the

change is not immediate. Few producers use state-of-the-art techniques. What

they choose to adopt and when they adopt it depends on economic circumstances.

Also, capital equipment is frequently not changed tint~l the old capital

reaches obsolence, rather than at the time of dxscovery of new technology.

.
Thus , technological change appears empirically only after a period of time

(Haigh, 1977). Even so, whether a linear, a quadratic or some alternative trend

best represents technology is uncertain.

Nelson and Dale (1978) felt technology could be modeled more accurately

without a time trend. They evaluated a Thompson model, a “modified” Thompson

model, Leeperls model, and a model by Dale and Hodges. The modified

Thompson model used the same twelve weather variables as the full

Thompson model, but only one variable, the average application of nitrogen on

corn land in Indiana, defined technology. The full Thompson model uses time

as a surrogate technology variable. Nelson and Dale found the other three

models to be superior to the full Thompson model. They concluded that ‘“models

in which some function of year is used to consider technology may provide
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inaccurate estimates of the effect on crop yields caused by changes in weather

or technology”.

In addition, weather and technological variables interact. Shaw (1964)

observed that in 1930, a two-inch (5.08 cm) deficiency of rain decreased yields

25 percent while in 1960, a two-inch deficiency of rain decreased yields 10 per-

cent. He concluded that an interaction between technology and weather may

exist. Part of this interaction is due to field practice decisions that are

based on the weather. Haigh (1977) estimated that 20 percent of the variability

In corn yields was attributable to the interaction of weather and technology.

Many models neglect this point.

As in all models, data manipulation and aggregation are important con-

siderations in crop yield-weather models. RegressIon ~lodelsdescribe the

variability of the dependent variable due to the change in the independent

variables. When data is averaged over space or over t~me, some of the

variability is lost, making the model insensitive to changes in the variables.

State and monthly averages are commonly used, especially in first-generation

models, and this aggregation of data appears to be exce$sive and thus

adversely affect the model’s performance. Eor example, many of the crop

yield-weather models use data from USDA crop reporting districts. Usually, a

weighted average of the districts is used for the state-level model. This may

not be a good representation when the weather varies among districts. One

district could have surplus rain while another is dry. The average is “normal’”

precipitation for the state yet this doesn’t accurately describe the geographi-

cal distribution of rainfall. Furthermore, crop yields and meteorological

factors are not monotonic; that is, crop yields do not always increase as

the amount of a meteorological factor increases. (Shaw, 1964)
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Aggregation of data over time poses similar problems to those encountered

in spatial aggregation. While it is convenient to use monthly variables

(calendar time), the development of a crop is better described by phonolo-

gical or biometerological time. They do not always coincide. Monthly data

impllcity assumes that particular phonological stages occur at the same time

each year (Strommen, 1979). However, most plant responses are not linear

(Haun, 1982). Most models using time series data are in calendar time; small-

scale plot models are usually based on phenologlcal stages. Even so, not all

models that use blomeoterological time work well. Feyerherm’s model performed

well, within one bushel per acre of USDA estimates, but Ravelo and Decker’s

model based on blometerological time was not as successful in predictive

abilzty.

Finally, monthly averages can be misleading. There could be 25 days of

.
no rain followed by five days of torrential downpours, with a monthly average

that is “normal” (Shaw, 1964). Weekly averages may be more representative but

smaller increments of time also have disadvantages, as degrees of freedom are

limited. Even though averages indicate whether the growing season had been

cool or warm, rainy or dry, they do not quantify episodic weather events.

That is, averages cannot capture the effect of a late spring or early fall

frost, both of which can significantly reduce yields.

Most crop yield-weather models do not include soil type as a variable.

This limits their applicability to the geographic region where the data

originates. Soil type varies by region and within regions, so the same

climatic conditions in different areas will result in different yields.

Most models assume soil type as constant.
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Even if a model meets all of the listed crzteria, it may not be feasible

to develop. Development of models that use a large amount of detailed data

may be limited by both cost and availability of information.

The most llmiting factor of existing second generation models is data

base inadequacy. These models require large amounts of detailed data, such

as varietal yield components, weekly or daily precipitation, daily tninlmumand

maximum temperatures and evapotranspiration, usually for each stage of develop-

ment.

First generation models don’t need detailed data, but they do need a

long sequence of historical data. Yield, temperature and precipitation data

are required. Most areas of the U.S. would have no problem obtaining this

Information, but the predictive capability of first generation models is

generally inferior to that of the second generation.

All models should be verified. First, we can ask quite simply, dG the

coefficients make sense? They should have the sign and magnitude expected

by agronomic theory. Second, they should be tested with independent data.

One way is to use all but 2 to 3 years of the data to develop the model, and

then use the remaining data to test the model’s performance.

Finally, none of the models examined dealt with multi-year cllmatic

variables except for limited preseason moisture variables. Increasingly,

more attention has been given to making accurate yield predictions by up-

dating ~nformation within the season. Predictions made close to harvest

should be more accurate as more information comes available. But, these

types of prediction do not address the issue of long term climatic change.
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Conclusions

A consensus appears to have developed relative to the likely global mpacts

of expected “greenhouse” induced effects on climate. For the major U.S. Grain

Belt the probable consequences are reduced rainfall and-increased mean tem-

peratures during the crop growing season. Given the generally fdvOrable current

climatic conditions of this region for grain production, the expected climate

changes appear likely, ceteris parlbus, to have negative net impacts on the

yields of the maJor crops of the region, corn, soybeans and wheat. But,

currently available cllruate-cropyield models are either (1) so global and so

general in their specification or (2) so lmi.tlng in their inclusion of func-

tional (and long term) climatic variables, so as to defy a comprehensive sta-

tlsti-calevaluation of their predictive accuracy. Any reliable estimates of

future impacts of climate change on crop yields, even abstracting from possibly

- different future technology interactions, will rec~uirea more comprehensive

climate-crop yield modeling effort which:

1) models separately each of the major economic crops,

2) utilizes key components of second generation crop yield-weather

models to specify climate-yield relationships which Include both

a) phonological time and

b) weather variables which include extreme (maximum and

minimum) temperatures and additional lnformatzon on the

distribution of precipitation within the phonological time

periods analyzed,

3) provides for an effective explanation of Inter-year climatlc

influences, particularly those incurred by the cumulative

effects of multi-year reductions in precipitation,



4)

5)
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permits independent estimation of models for substate-level

production regions and subsequent aggregation and,

provides for specification of technology-yield relationships

more complex than those of simple linear time trend.

Though the above set of modeling requirements are substantial, they

are by no means prohibitive. MaJor resource commitments are now being made

to model crop yields on an Lntra-seasonal basis in order to proJect short

term commodity supplies. Only some of these resources need to be diverted

to longer term modellng In order to upgrade substantially the qual~ty of

cllmatlc change-crop yield modeling efforts. If substantial climatlc

changes do occur in the future, technology developments (such as new crop

varieties, new soil moisture conservation techniques, etc.) w1ll be induced

to counteract the new climatic adversities. These technological changes

and their impacts on crop yields will need to be tracked over time in order

to evaluate their effects. But, again we should be able to learn from the past.

Counteracting the effects of any maJor reductions In precipitation (soil

moisture) may well be the most challenging technological issue of them all.
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