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Computing an Asymmetric

Competitive Market Equilibrium

Wen-Yuan Huang, K. Eswaramoorthy,
and S.R. Johnson

Abstract. Demand and supply are often asymmetric,
that 18, cross-price effects are not equal over all com-
modities Because of asymmetry, conventional surplus
maximzation formulations cannot be employed to
compule a competitive market equiltbrium This arti-
cle compares alternative formulations under a system
of equation, optimization, and iterative procedures for
computation A general strategy for selecting an ap-
propriate procedure ts presented The iterative pro-
cedure s recommended for siructural or complex
nonlinear demand systems or for extremely large (size)
problems The optimization procedure ts suggested for
large and medium (size) problems because of the
avatlability of a computer solution package The
system of equation formulation 1s suggested for model-
tng various types of economic behavior because of its

fexibility

Keywords, Asymmetric demand and supply, market
equilibrium

For measuring social welfare as affected by farm
policy, economsts use social surplus or net social
payoff, which 18 the sum of the consumer surplus and
producer surplus (28) ! The social surplus 15 the area
below the demand function and above the supply
function Samuelson (28) shows the equivalence of a
maximization of social welfare problem to the general
non-normative problem of market equilibrium among
spatially separated markets as formulated by Enke
(6) Takayama and Judge (33) reformulate
Samuelson’s model into a quadratic programming
problem and suggest an efficient algorithm to
compute competitive equihibrium Because of
aedvances in computation, the maximization of the
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social surplus method has become a powerful tool 1n
policy analysis

Many quadratic programming models and, 1n some
situations, nonlinear programmng.models of higher
order, with maximization of the social welfare as the
objective function, have been applied to agricultural
policy analysis CHAC (5), USMP (12), and CARD (22)
are three large-scale nonlinear programmng models
that are used extensively Numerous other small-
scale models are found 1n the economic literature

The welfare function used 1n these models 18 derived
from a symmetric demand or supply function that sat-
18fies the integrability conditron This assumption of
a symmetric demand and supply function implies
that the cross-price effects are equal over all commod-
ities That 1s, the effect of income on consumption 1s
identical across all included commodities or 18 zero

The demand function 13 often not symmetric (16),
therefore, 1t 18 not 1ntegrable 2 Under this situation,
the welfare function cannot be formulated 2 Thus, for-
mulation of the welfare maxymization problem cannot
be established ¢ The convenient equivalence between
the market equihbrium problem and the surplus
maximization problem, therefore, 1s not available

2The integrability used here differs from that commonly used in
consumption theory in which the demand functions are said to be
integrable if they can be derived from a utility function (17, 37)
Integrability here 18 concerned mainly with the mathematical rela
tion from the demand functions to the welfare function It 18 1m
phied that the order of integration of a sum of defimte integrals 1s
“path independent * A umque solution 18 found regardless of the
path selected Mathematically, we can find a unique welfare func
tion Wip) frem demand function D{p) by sW(PVeP, = D(F) 1f the
following condition exists 3D (PVsP, = $D(PVP, This condition
implies that the demand functions are symmetric and all cross
price effects are equal over all commodities

*Some asymmetric demand systems can be integrated Carey (2)
showed that some asymmetric demand functions are "factor inte
grable " That 15, they are integrable on being multiphed through
by some nonzero factor 50 that the resulting functions become inte
grable However, there 1s no test that can be apphed to discover
whether 1t 15 possible to transform a set of nomintegrable functions
into a set of integrable functions

“Many excellent articles show conditions of deriving the surplus
function from observable ordinary (Marshallian) demand functions
that are asymmaetric Two representative articles are‘by Chipman
and Moore (3) and by Hausman (9)
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(10) Alternative methods of computing the com-
petitive equilibrium solution should be employed We
compare several methods here

Problem

An illustrative surplus model can be defined as prob-
lem la ® Choose Q to maximize

Z=WQ
subject to

CG
Q

IV 1A

B
0 (1)

where W18 a surplus function that 1s the sum of W,
(q, ,g.), @188 nx1vector with elementsq;, 9. G1sa
m x n technical mput-cutput matrix, and Bisamx 1 vec-
tor with elements b;,, bn representing available fixed
resources By assuming that the inverse demand
function P, = D(Q), 1=1, ,n, and the inverse supply
function P, = §(Q), 1=1, ,n are symmetric, we can
express the surpius function as

W(Q = Z{D(QMq, — £ S(Q)q, (2)
where | means line integration

The supply function S{Q) 1s frequently not used 1n
practical application Instead, an activity model 18
used to represent the supply function A surplus
model 1n such situations may be defined as problem
15 Maximize

Z=cC|D(Qdq - C'X

subjecttoGX = B, HX=Q, Q = O, 3

where X' and C are k x 1 vectors of production activ-
ities and their corresponding costs, respectively, and
H 18 an mxn transfer matrix relating production
activties X to final output @ The formulation of prob-
lem 1la often appears in trade analysis, whereas the
formulation of problem 1b appears mostly 1n produc-
tion and resource allocation studies Here, we use
primarily the formulation of problem 1la to develop
alternative computational methods We nclude the
formulation of problem 1b mainly for exposition

If one 1s to derive the surplus function equation, the
demand function D{Q) and the supply function 5,(Q)

5T sumplify the discussion, we use only less-than or equal-to con
straints Additional equality and greater than constraints can be
included, if desired

must meet integrability conditions We consider the
following two sets of linear demand functions:®

Quax1 = Vaxt + VixnPoxa 4)
P = dnxl + annanl (5)

where Q 1s a vector of quantities of commodities
demanded, P 18 a vector of the price of commodities,
and v, d, D, and V are parameters of the direct de-
mand function (equation 4) or the mverse demand
function (equation 5) 7

We also assume that the supply function can be ex-
pressed as a marginal cost function MC

Mcnx1=3nxl +Snannx1 (6)

where s and S are parameters of supply functions If D
and S are symmetric matrices, the objective function
1n equation 1 can be expressed as-

WQ =A'Q+12Q'EQ )

where A’ = (d—s)'and E = (D—S8) Note that by sub-
stituting equation 7 for the objective function 1n equa-
tioh 1, we have a quadratic programming problem
that can be solved readily by a nonlinear program-
ming solver (such as Minos, 5 0) (29) or by the use of
grid linearization avalable in the IBM-MPSX370
system

The condition for a symmetric demand function can
be stated as

FWQ D@ D@  FW@ o

5qq, &g, b,  &qg8q,

A similar condition can be expressed for symmetric.
supply functions The condition (equation 8) 15 called
the integrabihity condition When 1t 1s violated, the
surplus function (equation 2) cannot be formulated as
equation 7 Thus, we need alternative methods to
derive a competitive equilibrium solution fromsets of
asymmetric demand and supply functions

We review and discuss three categories of alternative
formulations that one can use to find the competitive '
equilibrium solution for asymmetric demand and sup-
ply functions. (1) a system of equations, (2) optimiza-
tion, .and (3) iterative procedures

8For sumpheity, we use linear demand and supply. functions and
assume that demand and supply substitution matrices are definite

TNote that the set.of equations 4 and 5.can be estimated 1nde-
pendently of ezch other, or one can be dened from the other, if the
mverse of V or D exists
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System of Equations

Problem la can be formulated as a system of equa-
tions from which the competitive equilibrium can be
solved The Lagrangian method and the complemen-
tary formulation are presented

Lagrangian Method

The Lagrangian method formulates a surplus maxi-
mization problem by a system of equations and obtains
the competitive solution by solving this system Ex-
press the surplus maximization problem la

Maximize

Z=LW(q)

subjecttoL g, q, < bandg = 0 9

The Lagrangian function of this maximization prob-
lem 18 expressed by

L=ZWi()+ZLuZg,q+t—-b)
1 i ]

+LZalg —~y)+EL ot - u)z) am
' 3

The first-order conditions of the Lagrangian function
gives the following system of equations (see 24 for
derivation) as problem 2

Wig)+Zug +a=0 fori=1 ,n (11)
J -

Zgyjq+t—-b=0 fory=1, m (12)

g =0 1=1"',n and 13)

p.JtJ =0 J=1 m (14)
where 4, o, and ©, are Lagrangian multipliers, and
where t, y,, and u, are slack variables Thus, solving
problem la 18 equivalent to solving the system of
equations 1n problem 2

First, we"note that Wi(q,), which 1s a partial
derivative of W (q,) with respect to q,, 1n equation 11 1s
a marginal net return function, which 18 the dif-
ference between demand price (p) and supply price
(marginal cost, mc)

W, (q) =p, —me, (15)
Thus, 1f p, and mc, are available regardless of whether

they are 1n a nonlinear or asymmetric:structure, we
can formulate equation 11 as

22

P(q, ,a,) - MC(q, ,q)+Zpg, +a=0 (16)

By.solving the system of equations 12, 13, 14, and 16
we can find the exact competitive equilibrium solu-
tion (q,* p*)

Second, to solve the system of equations 18 to solve
n + m equations 12 and 16 with 2n + 2m unknowns
(ng’s,na’s,m u's,and m t’s) However, n+m of these
variables have a zero value from equations 13 and 14

Thus, equations 12, 13, 14, and 16 provide 2" * ™ gets
of n+m linear equations 1n n+m variables, and one of
these sets will yield the solution The computa.
tion can get out of hand very quickly, even for problems
with a modest number of variables Nevertheless, for
a smaller number of variables (fewer than five) this
procedure 18 a useful tool, especially when a computer
package for the solution 1s not available

Complementarity Formulation

Takayama and Uri (35) 1llustrated that quadratic pro-
gramming (QP) models are a subset of linear comple-
mentary programming (LCP) models, and they sug-
gested the use of LCP formulation when the coeffi-
cient matrix of the demand or supply function 1s
asymmetric For a certain class of LCP models, the
principal pivoting method or the Lemke method (19)
leads to a solution We now construct a LCP problem
using Kuhn-Tucker conditions for a competitive equi-
librium solution of the surplus model, with linear
asymmetric demand and supply functions

Given the demand and the supply equations 5 and 6,
the Kuhn-Tucker condition for problem 2 can be ex-
pressed as

d+DQ) - +5SQQ+Gr=0 amn
(marginal revenue < marginal cost)

GQ-B=<0 (18)
(resource use < resource available)

By using « and t as vectors of slack variables, we can
formulate an LCP problem as problem 3

’_- B
o d-s D-§S G’ Q
= +
t] |B G o u
1

- - . (19)
a Q o Q

:‘ =0, = 0, =0
1 X g




We can solve the LCP equation by using Lemke’s
algorithem described by Zangwill and Garcia (38) By
including both G and G’ matrices, the LCP formula-
tion increases the size of the problem to be solved
This method may not be an efficient tool for solving a
large-scale problem

Because the matnx in the LCP formulation 1s gener-
ally sparse, efficient computation methods to exploit
the sparsity have been developed (19, 21, 36) Ruther-
ford (27) has reported on the application of the LCP
formulation and algorithm to a large empirical model
of the Norwegian economy Furthermore, because
market behaviors can be formulated as problems of
complementarity, researchers have made consider-

able progress 1n developing an efficient algorithm (18,
23)

Optimization Formulation

We describe three alternatives for building an optimu-
zation model equivalent to problem la the average,
the Plessner-Heady, and the minimum rent methods

Average Method

Carey (2) has,suggested the average (AV) method, if
the off-diagonal elements of matrices D and S are
similar or the off-diagonal elements are relatively
small 1n comparison with the diagonal elements
That 1s, income effects are similar or small for all
goods The AV method involves averaging the off-
diagonal elements (d,, d, for all 1 # )), that 1s

d,+d)y2=d, and (s, +8)2 =5, (20)

and entering the average values of Eu and Eu 1n the off-
diagonal positions d, and s, of matrices D 'and S to
form the new matrices D and S

The newly constructed symmetric matrices D and S then
replace D and S 1n the welfare function (equation 7)
The problem becomes a quadratic programming prob-
lem and can be solved This method alters the marginal
cost and price relationship, so the Kuhn-Tucker first-
order conditions of the problem are no longer valid
Thus, the solution from this method can only roughly
approximate the competitive equilibrium solution

Other methods, such as 1imposed 1ntegrability as a conda-
tion 1n estimating the demand function, are used by
Pressman (26} and by Littlechild and Rousseau (20)
The 1mposition of symmetric conditions 1n estimating
the systems of the demand function 18 also popular in
economics to reduce the number of parameters to be
estimated

Plessner-Heady Method

Analysts have extensively used Plessner and Heady's
(PH) primal-dual formulation (25) to find the com-
petitive equilibrium solution This formulation does
not require using the surplus function, which cannot
be formulated under the asymmetric condition. Thewr
objective function 18 formulated instead as maximiza-
tion of the difference between net return and 1mputed
costs of fixed, binding resources The constraints in-
clude both the primal and the dual formulation of an
optimization model

The PH formulation equivalent of problem la can be
expressed as problem 4 (see 22 for detail)

Maximize
Z=Pw+VP)-Q(s+5Q) — B
subject to

v+VP-Q =0
(supply = demand),
-B+GQ =0

(resource use =< resource available) and
P-6+8Q-Gu =<0

(marginal revenue < marginal cost) 21

When the competitive equilibrium 158 reached, the
value of the objective function becomes zero. Taka-
yama and Judge (32, 34) also use the primal-dual
method for spatial mai ket equilibrium problems.

The PH formulation includes primal and dual com-
ponents and thereby increases the size of the model.
For large-scale problems, the primal-dual formula-
tion becomes expensive to solve For a medium-scale
problem, however, this formulation 15 a practical tool
and has been applied extensively (Stoeker (31) and
Bhide (1) are two typical applications)

Minimum Marginal Rent Method

The maimamum marginal rent (MR} method 15 derived
from the PH method Given a PH formulation as
described 1n problem 4 and assuming @ > 0 (this as-
sumption 18 valid, especially if Q 1s: referred to as
aggregate national production of major commodities),
we have

P-+8Q-Gu=0 (22)

Further, because demand 18 equal to supply when a
competitive equalibrium solution 18 reached (in the
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situation of limited resource, the market price >
margingal cost, but demand = supply), we have

v+VP-Q=0 : (23)
Substituting
Bu=QGu (24)

in the objective function of equation 21 we have
Z=P(v+VP-Q'G+3Q -QGx (25)

By combining equations 22, 23, and 25 and by assign-
mg R = G'u, we can formulate. the MR problem as
problem 5

Maximize
Z=Pv+VP)-Q'e +5Q - QR

subjecttov + VP -@ =0, -B+GQ = 0,
P-(+5Q)-R=0, (26)

Problem 5 18 a nonlinear programming problem If we
further use SR to replace the term QR 1n the objec-
tive function and we assign an arbitrarily large con-
stant number for 8, which should be greater than the
Q* of optimal solution, we will have a nonlinear
separable programmuing formulation that can be solved
by a linear programming technique We use a large
constant value for 3 the objective function to
minimize rents while maximizing the returns. This
method has been applied 1n land use study (15)

Because the MR formulation does not include the pro-
duction technology data matrix G, its size can be
much smaller than the PH formulation However, 1t
18 cifficult to apply this method to the activity model
(problem 1b) 1n which the supply function 13 not ex-
phcitly formulated

Iterative Procedure

The iterative procedure 15 a computational method of
solving a market equilibrium model To uge the pro-
cedure, one divides the surplus model into demand
and supply submodels An iterative procedure 1s then
used to interact between these two submodels until
the process converges To illustrate the procedure, we
reformulate problem 1b as problem 6 8

8We use problem 1b, instead of problem 1a, because the iterative
procedure 18 applied to the activity model in most practical
applications

24

Demand submodel @ = v + VP

Supply submodel — choose X to minimize
Z=C¥X
subjectto HX =Q, GX < B, X =0 @M

Equilibrium condition —P = MC

where MC 18 an optimal dual-variable vector (shadow
price vector) corresponding to the demand balance
constraint HX = Q We can start an iterative proce-
dure by assigning an imitial value for P 1n the demand
submodel and by obtaining Q, which 15 then used as
the right-side value of the demand balance constraint
in the supply submodel We then solve the supply
component for the value of MC If P = MC, we reach
the equilibrium solution Otherwise, we use MC as P
1n the demand submodel for the next iteration

One can use iterative procedures to deal with non-
computable surplus functions 1n two ways The first
way approximates the value of the surplus at each
iteration and locates the equilibrium through the
iterative process The second way uses the assumed
market adjustment process or search technique in
iteration until the market price i1n a demand sub-
model 18 equal to the supply price 1n the supply sub-
model This method thereby avoids direct formulation
of the surplus function

A typical example of the first method 1s the 1terative
procedure descnbed 1n the Project Independence Eval-
uation (PIES) algorithm (11) At each iteration, the
algorithm diagonalizes the asymmetric demand matrix
to approximate the surplus function Another example
of the first method 18 described by Carey (2) A typical
example of the second method 18 the use of the tatonne-
ment procedure which adjusts the price 1n response to
the excess demand (7, 8, 30} Another example 13 the
use of search algorithms, such as fixed-point, Jacoban,
Gauss-Seidal, and gradient methods (see 3 for a
discussion of these methods) One major problem with
the tatonnement procedure 18 uncertainty :n converg-
ence of the 1terative process The major disadvantages
with the search method are 1nefficiency (fixed point),
uncertainty in convergence (Jacobian and Gauss-
Serdal), and difficulty in the approximation of deriva-
tion (gradient) 1n each 1teration Huang (13) discusses
convergence conditions for some of these procedures
Another problem 18 in the application of these
methods to find the equilibrium of problem 5 when
resources are imited Huang and Heady (14) suggest
an terative procedure to locate the equilibrium by us-
ing dual varable information obtained 1n the solution
at each iteration Extension of this method to large-
scale models has not yet been developed



Suggestions

Table 1 summarizes the alternative formulations
discussed 1n three categories (1) systems of equa-
tions, (2) optimization models, and (3) 1terative proce-
dures. We compare these three formultations in general
terme We use the LG method 1n the first group, the
MR method 1n the second group, and the PIES proce-
dure 1n the third group as their respective group rep-
resentative to solve the following examples i

100 -04 02

B0 615 -025

Table 1—Problem size and solution method

Lo T

20 05 09 70
B = G= and B =
16 07 05 50

In this example, S 1s a null matrix and H 1s an 1dentity
matrix The equilibrium solution for this problem 1s

q*=2632 p*=31126 ux*= 5539
Q" = 6316 p*=25411 p*=

*

To solve this problem by the LG method, we use 16
(2+) possible sets of simultaneous equations One set
yields the equilibrium solution, the rest of the solu-
tions are erther infeasible or suboptimal

Type of ‘ Slack Total Solution
formulation Row Column variables variables method
Method
1 System of
equations

LG 2n+2m n+m 2n+2m Solve at most
2n + m gptg of
simultaneous
systems of
equations

LCP 2n+m n+m 2n+m Lemke's algorithm
by solving at most
n+m set of systems
of equations

2 Optimization
models!

AV m+1 n' m n+m Separable
programming or
gradient method!

FH 2n+m+1 2n+m 2n+m 4n+2m Separable
programming or
gradient method

MR 2n+m+1 3n 2n+m 5n+m+1 Separable
programming or
gradient method

3 Iterative
procedures
PIES m+l n: m n+m Each iteration
solves an LP model
Tatonnement
and search m+1 n m m+n Each iteration
golves an LP model

1AV, PH, MR, and PIES will have additional rows and columns for quadratic terme if the geparable programmng techmque 18 used

Source. (29)
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In using the MR method, we assign 8 = 100,000 and
obtain r,* = 343 16 and r,* = 34189 Using

2
r, =]_E1 q, #, 1= and 2, we compute the value for >

and p,*.? The PIES method takes three iterations to
converge to the optimal solution At each iteration,
we formulate a diagonalized demand system g, =
D, (P,) by substituting the initial value (or the 1t
value computed 1n the previous iteration) P, 1=k, into
the demand D(P, ..,.P,, P,) and then express the in-
verse demand matrix as P, = D,(q,) Using P,, we for-
mulate a surplus function This surplus function and
the resource constraints are used to set up a quadratic
programming problem that i1s then solved by a
separable programming technique A new set of
values of P,, 1=1, ,n, 18 obtained from the inverse
demand function 2 This set of P, values 18 used as the
mutial values for the next iteration

9In this case, the G 18 a square matrix 1f not, computing unique
#1 and p, from r; and ry; values may not be possible

10y problem 6, the prices are the shadow prices of the demand
balance constraints HX = @

The LG method gives the exact competitive
equilibrium solution, The MR method and PIES pro-
cedure (and other methods we have mentioned here)
only approximate the exact solution In this example,
the difference between the exact and the approximate
solution 18 1nsignificant In general applications, the
difference 18 probably due te precision of computation
rather than to the method used

Selection of an optimal method of solving a given prob-
lem 18 decided by the three factors. (1) economic 1n-
terpretation of the formulation and solution process,
(2) availability of a computational package for each
method, and (3) s1ze of the problem. The justification
of the optimization model rests on the meaningful-
ness of the objective function, whereas for the system
of equations, 1ts justification rests only on the set of
conditions stipulated because equihbrium does cor-
rectly reflect market operation The iterative proce-
dure provides a dynamic process of market adjustment
toward the equilibrium

Strategy for selecting optimal method of deriving competitive equilibrium from an asymmetric

demand system

l Demand system _]

Is 1t expressed No Tatonnement
as Q = D(P) -l iterative
or P = D{Y”? procedure
' Yos
Is number of total Yes :
variables < 572 LG
' No
Are cross-elasticiies
insignihcant Yes L~
compared with own AV
elasticthes?
’ No
Is number of Yes Is it an actwvity Yes
p—————— p——(—
vanables < 10,0007 formulation? PH
¥ No y
Doses computer PH. MR
storage become a !
problem because the
number of vanables No ]
I too large? HH ' exists,
use MR, otherwise
{ Yes use PH for activity
PIES or model
tatonnement
terative procedure

26



3

Selection 18 frequently determined by the accessi-
bility of a computer package The computer software
for'the first group (system of equations) and the third
group (iterative procedure) 18 generally not rich, but
the software for the second group 18 available com-
mercially Solution techniques for solving a large-
scale programming model have recently become maore
advanced. Thus, optimization (programmng) formula-
tion 18 widely used in applied research

)
L]

From a computational viewpoint, the optimization
model and the system of equations formulation are
equivalent Carey (2} showed that the objective func-
tion of the PH method 18 redundant By dropping the
objective function, the PH method becomes the LCP
method and, therefore, can be handled within the
scope of existing LCP algorithms Furthermore, from
a practical viewpoint, the LCP 1s a natural way to for-
mulate a model to reflect specific market behaviors
For these reasons, considerable research efforts are
currently underway at various universities to develop
an efficient algorithm for solving the LCP models

’

The iterative procedures are market simulation solu-
tion algorithms They provide a computational alter-
nattve even when the other two approaches are avail.
able Because of the iterative process, the procedures
are relatively expensive 1n terms of computational
time They are often used 1n situations where the de-
mand system cannot be stated as P = Q) or Q = f{P),
and the programming and the LCP formulations are,
therefore, impossible When the demand system 18 ex-
pressed 1n a structural form or by a system of com-
puter language, iterative procedures are especially
useful There are many ways of developing an itera-
tive procedure for solving a particular problem There
are many examples of using the tatonnement proce-
dure, for which convergence has not been proven
theoretically, several researchers have reported fast
convergence (4) Finally, when dealing with an
activity model as defined by problem 1b, one can
choose between the PH and the MR method, depending
on the relation HX = Q 1n equation 3 The MR
method 18 applicable only if H 18 a square and invert:-
ble matrix. If so, we obtain X = H-1Q and substitute
1t 1nto the objective function 1n problem 1b In reality,
H 13 most hikely to be a rectangular matrix Under
this case, the PH method should be used Because the
PH method 1ncludes the primal and dual components,
size may become too large for prevailing computer
computation 1n a large-scale modeling problem If so,
one would need to design an iterative procedure The
figure suggests a general strategy for selecting a proper
method
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Doubt

If you are convinced that we have adequate pro-
cedures for measuring price elasticities of consumer
demand, you will not develop a better method If you
believe that existing theory of cooperative behavior 13
-adequate, you will not develop & better theory If you
'believe that all existing theones, models, and meas-
ures are adequate, you will not develop anything bet-
ter If you believe all significant questions have been
properly asked, you will never ask a new important
question. If you do not doubt something, you will have
nothing to research, if you doubt nothing, you are not
justified 1n doing research because you are doing un-
needed work Some people doubt only what they have
been taught to doubt It can prove fruitful to doubt
what no one else has doubted You will never solve a
problem that you are unaware of “Necessity 1s the
mother of invention’ 18 an old saying My reading of
history leads me to believe that dissatisfaction also
has been the mother of many 1nventions

George Ladd

Imagination in Research, 1987

(See review, p 32)
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