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Computing an Asymmetric 
Competitive Market Equilibrium 

Wen-Yuan Huang, K. Eswaramoorthy, 
and S.H. Johnson 

AbstracL Demand and supply are often asymmetric, 
that IS, cross-prIce effects are not equal over all com­
modities Because ofasymmetry, conventIOnal surplus 
maxImIZatIOn formulatIons cannot be employed to 
compute a competitIVe market eqUIlibrium ThIS artI­
cle compares alternatIVe formulatIOns under a system 
ofequatIOn, optImIzatIOn, and IteratIVe procedures for 
computatIOn A general strategy for selectmg an ap­
proprIate procedure IS presented The IteratIVe pro­
cedure IS recommended for structural or complex 
nonlinear demand systems or for extremely large (sIze) 
problems The optimIZatIOn procedure IS suggested for 
large and medIum (SIze) problems because of the 
avaIlabIlity of a computer solutIOn package The 
system ofequatIOn formulatIOn IS fluggested for model­
mg varIOUS types of economIC behaVIOr because of Its 
(/exlblilty 

KegUJOrds. Asymmetric demand and supply, market 
eqUIlibrium 

For measuring socIal welfare as affected by farm 
policy, economIsts use SOCIal surplus or net SOCIal 
payoff. whIch 18 the Bum of the consumer surplus and 
producer surplus (28) I The SOCIal surplus IS the area 
below the demand functIon and above the supply 
functIon Samuelson (28) shows the eqUivalence of a 
mW<lmlzatlOn of socIal welfare problem to the general 
non-nonnatIve problem of market eqUilibrIum among 
spatIally separated markets as formulated by Enke 
(6) Takayama and Judge (33) reformulate 
Samuelson's model Into a quadratIc programming 
problem and suggest an effiCIent algOrIthm to 
compute competItIve eqUlhbrlUm Because of 
advances In computatIOn, the maxImIzatIon of the 

Huang 18 an agTicultural economIst With the Resources and 
Technology DIV181on, ERS, Eswaramoorthy IS a graduate aSSIstant 
In the Department of Agricultural Economics at Iowa State 
Umverslty, and Johnson 18 the director of the Center of Agncul. 
tUfal and Rural Development at Iowa State Umverslty 

IltalIclzed numbers In parentheses refer to Items In the 
References at the end of thiS artIcle 

socuil surplus method has become a powerful tool In 
policy analYSIS 

Many quadratIC programmIng models and, In some 
SItuatIOns, nonhnear programmIng, models of hIgher 
order, WIth maxImIzatIon of the SOCIal welfare as the 
objectIve functIon, have been apphed to agrIcultural 
pohcy analYSIS CHAC (5), USMP (J 2), and CARD (22) 
are three large-scale nonlinear programmIng models 
that are used extenSIvely Numerous other small­
scale models are found In the economIc literature 

The welfare functIOn used In these models IS derIved 
from a symmetrIc demand or supply functIon that sat­
Isfies the IntegrabIlIty condItIon ThIS assumptIon of 
a symmetrIc demand and supply functIon Implies 
that the cross-prIce effects are equal over all commod­
ItIes That IS, the effect of Income on consumptIOn IS 

IdentIcal across all Included commodItIes or IS zero 

The demand functIon IS often not symmetrIc (16), 
therefore, It IS not Integrable 2 Under thIS SItuatIOn, 
the welfare functIOn cannot be formulated 3 Thus, for­
mulatIOn of the welfare maxImIzatIOn problem cannot 
be establIshed' The convement eqUivalence between 
the market eqUIlIbrIUm problem and the surplus 
maXImIzatIOn problem, therefore, IS not avaIlable 

2Tbe Integrablhty used here dIffers from that commonly used In 
consumptIOn theory In which the demand functions are saId to be 
Integrable If they can be derrved from a utlhty functIOn (17, 37) 
Integr!lbillty here 19 concerned mainly With the mathematIcal rela 
tIon from the demand functions to the welfare function It IS 1m 
phed that the order of Integration of a Bum of defimte Integrals IS 

"path Independent '0 A umque solution 18 found regardless of the 
path selected Mathematically 0 we can find a umque welfare fune 
tIon W(p) from demand function D.(p) by bW(P)lbP. = D.(P) If the 
follOWing condition eXists bD.(P)lbP. = bD.(P)/bP. ThiS condition 
Imphes that the demand functions are symmetrIc and an cross 
price effects are equal over all commodities 

3Some asymmetric demand systems can be mtegrated Carey (2) 
showed that some asymmetric demand functions are "factor mte 
gra91e " That IB, they are Integrable on being multIphed through 
by some nonzero factor so that the resultIng functions become mle 
grable However, there IB no test that can be applIed to discover 
whether It 18 pOSSible to transform a set of nomntegrable functIOns 
mto a set of Integrable functJOns 

4Many excellent articles s!tow conditions of derIVIng the surplus 
function from observable ordinary CMarshalhan) demand functIOns 
that are asymmetnc Two representatIve articles are'by ChIpman 
and Moore (3) and by Hausman (9) 
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(10) Alternative methods of computmg the com­
petitive equlhbrlUm solutIOn should be employed We 
compare several methods here 

Problem 

An Illustrative surplus model can be defined as prob­
lem 1a • Choose Q to maximIZe 

Z = W(Q) 

subject to 

CG :s B 
Q«O (1) 

where W IS a surplus functIOn that IS the,sum of W, 
(q" ,q,.), Q IS a n x 1 vector with elements q" ,q" G IS a 
m x n techrucal mputoutput matnx, and B \8 a m x 1 vec­
tor with elements b" b.. representmg available fixed 
resources By assummg that the mverse demand 
functIOn P, =, D.(Q), 1=1, ,n, and the inverse supply 
functIOn P, = 8,(Q), 1=1, ,n are symmetric, we can 
express the surplus function as 

W(Q) = E ID,(Q)dq, - E J 8,(Q)dq, (2) 

where J means hne mtegratlon 

The supply functIOn 8~Q) IS frequently not used m 
practical apphcatlOn Instead, an actiVity model IS 
used to represent the supply functIOn A surplus 
model m such SituatIOns may be defined as problem 
Ib Maximize 

Z = E ID,<Q)dq, - C'X 

subject to GX :s B, HX = Q, Q« 0, (3) 

where X' and Care k x 1 vectors of productIOn ,actiV­
Ities and their correspondmg costs, respectively, and 
H IS an m x n transfer matnx relatmg productIOn 
actlvtles X to final output Q The formulatIOn ofprob­
lem 1a often appears m trade analYSIS, whereas the 
formulation of problem 1b appears mostly m produc­
tion and resource allocation studies Here, we use 
pnmanly the formulatIOn of problem 1a to develop 
alternative computatIOnal methods We mc1ude the 
formulation of problem 1b mamly for exposItion 

If one IS to denve the surplus function equatIOn, the 
demand functIOn D,(Q) and the supply function 8,(Q) 

&fo slmphfy the diSCUSSion, we use only less-than or equal-to con 
stramts Additional equahty and greater than constraInts can be 
Included., If deSired 

must meet mtegrablhty conditIOns We consider the 
followmg two sets of hnear demand functions:' 

~)(I = VnXI + VnxnPnxl (4) 

Pnxl = dnx1 + DnxnQnxi (5) 

where Q IS a vector of quantities of commodities 
demanded, P IS a vector of the price of commodities, 
and v, d, D, and V are parameters of the duect de­
mand function (equatIOn 4) or the mverse demand 
functIOn (equation 5) 7 

We also assume that the supply functIOn can be ex­
pressed as a marginal cost functIOn MC 

(6) 

where sand 8 are parameters of supply functIOns If D 
and 8 are symmetric matr{ces, the objective functIOn 
m equation 1 can be expressed as-

W(Q) = A'Q + 112 Q'EQ (7) 

where A' = (d-s)' and E = (0-8) Note that by sub­
stltutmg equatIOn 7 for the objective functIOn m equa­
tion 1, we have a quadratic programmmg problem 
that can be solved readIly by a nonhnear program­
mmg solver (such as Mmos, 5 0) (29) or by the use of 
gnd hnearlZation aV81lable m the ffiM-MPSX370 
system 

The conditIOn for a symmetric demand functIOn can 
be stated as 

o'W(Q) oD,(Q) OD,(Q) o'W(Q) 
= (8)= 

A Similar condition can be expressed for symmetric, 
supply functions The condition (equation 8) IS called 
the mtegrablhty condition When It IS Violated, the 
surplus functIOn (equation 2) cannot be formulated as 
equatIOn 7 Thus, we need alternative methods to 
derive a competitive equlhbrlum solutIOn from'sets of 
asymmetnc demand and supply functIOns 

We review and dIscuss three categories of alternative 
fonnulatlons that one can use to find the competitive' 
equlhbrlum solution for asymmetric demand and sup­
ply functions. (1) a system of equations, (2) optimIZa­
tIOn, ,and (3) Iterative procedures 

6For SimplICity, we use hnear demand and 8upply, functions and 
assume that demand and supply substitution matrices are defimte 

7Note that the set,of equatIons 4 and 5,caD be estImated Inde­
pendently of each other, or one can be dened from the other, If the 
tnyerse of V or D eXIsts 
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System of Equations 

Problem 1a can ,be formulated as a system of equa­
tions from which the competitive eqUlhbnum can be 
solved The Lagrangian method and the complemen­
tary formulation are presented 

Lagrangian Method 

The Lagrangian method formulates a surplus maxI­
mIZation problem by a system of equatIOns and obtams 
the competitive solution by solvmg thiS system Ex­
press ,the surplus maximization problem 1a 

MaXimize 

Z = E W,(q,) 

subJect to E g. 'I. :S b, and 'I. '" 0 (9) 
, 

The Lagrangian function of thiS maximization prob­
lem IS expressed by 

L = E W,(q,) + E I'-,(E g. qj + t, - b,) 
, j ' 

+ E ,,(n - y 2) + E 8 (t - u,2) (10)
I "'It I J J , , 

The first-order conditions of the Lagrangian functIOn 
gives the followmg system of equatIOns (see 24 for 
derivation) as problem 2 

W',(q,) + E p.,g. + '!, = 0 for I = I, ,n (11) , 

Egoq, +t, -b, =0 for J = I, ,m (12) 

",'I. = 0 1 = 1," ,D and (13) 

I'-,t, = 0 J = I, ,m (14) 

where 1'-" ", and 8, are Lagrangian multlphers, and 
where t" y" and u, are slack variables Thus, solvmg 
problem 1a IS eqUIvalent to solving the system of 
equations m problem 2 

First, we enote that W',cq,), which IS a partial 
derivative ofW,(q,) With respect to 'I., m equatIOn 11 IS 
a marginal net return function, which IS the dif­
ference between demand price (p,) and supply pnce 
(marginal cost, mc,) 

W: ('I.) = p, - mc, (15) 

Thus, Ifp, and mc, are available regardless ofwhether 
they are m a nonlinear or asymmetnc,structure, we 
can formulate equation 11 as 

22 

P,(q" ,qn) - MC,(q" ,qn) + E p.,g. + ", = 0 (16) 

1 = 1, ,n 

By,solvmg,the system of equatIOns 12, 13, 14, and 16 
we can find the exact competitive eqUlhbrlUm solu­
tIOn (q,., p,.) 

Second, to solve the, system of equations IS to solve 
n + m equatIOns 12 and 16 With 2n + 2m unknowns 
(n q's, n a's, m p.'s, and m t's) However, n+m of these 
variables have a zero value from equatIOns 13 and 14 
Thus, equatIOns 12, 13, 14, and 16 prOVide 2n+ m sets 
ofn+m linear equations m n+m vanables, and one of 
these sets Will Yield the solutIOn The computa­
tion can get out of hand very qwckly, even for problems 
With a modest number of variables Nevertheless, for 
a smaller number of vanables (fewer than five) thiS 
procedure IS a useful tool, espeCially when a computer 
package for the solution IS not available 

Complementarity Formulation 

Takayama and Uri (35) Illustrated that quadratic pro­
grammmg (QP) models are a subset of hnear comple­
mentary programmmg (LCP) models, and they sug­
gested the use of LCP formulation when the coeffi­
cient matnx of ,the demand or supply function IS 
asymmetric For a certam class of LCP models, the 
prmclpal pivoting method or the Lemke method (19) 
leads to a solution We now construct a LCP problem 
usmg Kuhn-Tucker conditions for,a competitive eqw­
hbrlUm solution of the surplus model, With Imear 
asymmetnc demand and supply functions 

Given the demand and the supply equations 5 !lnd 6, 
the Kulin-Tucker condition for problem 2 can be ex­
pressed as 

(d + DQ) - (s + SQ) + G'I'- :S 0 
(margmal revenue"; margmal cost) 

(17) 

GQ - B:s 0 

(resource use :S resource available) 
(18) 

By usmg " and t as vectors of slack vanables, we can 
formulate an LCP problem as problem 3 

(19) 



We can solve the LCP equatIOn by usmg Lemke's 
algorithem descrIbed by Zangwt11 and GarcIa (38) By 
mcludmg both G and G' matrIces, the LCP formula­
tIon mcreases the sIZe of the problem to be solved 
ThIS method may not be an effiCIent tool for solvmg a 
large-scale problem 

Because the matrIX 10 the LCP formulatIon IS gener­
ally sparse, effiCIent computatIOn methods to explOIt 
the sparsIty have been developed (19, 21, 36) Ruther­
ford (27) has reported on the apphcatIon of the LCP 
formulatIon and algOrithm to a large emptrlcal model 
of the NorwegIan economy Furthermore, because 
market behaVIOrs can be formulated as problems of 
complementarIty, researchers have made conSIder­
able progress 10 developmg an effiCIent algOrithm (18, 
23) 

Optimization Formulation 

We deSCrIbe three alternatIves for bUlldmg an optImI­
zatIon model eqUIvalent to problem la the average, 
the Plessner-Heady, and the mInImum rent methods 

Average Method 

Carey (2) has,suggested the average (AV) method, If 
the off-dIagonal elements of matrIces D and S are 
SImIlar or the off-dIagonal elements are relatIvely 
small, 10 comparIson wIth the dIagonal elements 
That IS, Income effects are SImIlar or small for all 
goods The A V method mvolves averagmg the off­
dIagonal elements (du, d" for an I * J), that IS 

(d" + d,,)/2 = if" and (s" + s,,lI2 = B" (20) 

and entermg the average values ofd" and 8" 10 the off­
dIagonal POSltIOits d" a,!!d s" ~ matrices D 'and S to 
form the new matrIces D and S 

The newly constructed symmetric matrIces Ii andS then 
replace D and S 10 the welfare functIOn (equatIOn 7) 
The problem becomes a quadratIc programmmg prob­
lem and can be solved ThIs method alters the margInal 
cost and price relatIonshIp, so the Kuhn-Tucker first­
order condItIons of the problem are no longer vahd 
Thus, the solutIOn from thIS method can only roughly 
approxImate the competItIve eqUlhbrlUm solutIOn 

Other methods, such as Imposed mtegrablhty as a condI­
tIon 10 estlmatmg the demand functIon, are used by 
Pressman (26) and by Llttlechlld and Rousseau (20) 
The ImposItIOn of symmetrIc condItIOns 10 estImatmg 
the systems of the demand functIOn IS also popular 10 

economIcs to reduce the number of parameters to be 
estImated 

Plessner-Heady Method 

Analysts have extenslvelyused Ple8sner and Heady'8 
(PH) primal-dual formulatIon (25) to find the com­
petItIve eqUlhbrium solution ThIs formulatIon does 
not reqUIre u8mg the surplus function, whIch cannot 
be formulated under the asymmetric condltIon_ TheIr 
objectIve functIOn 18 formulated Instead as maxImIZa­
tIon of the dIfference between net return and Imputed 
costs of fixed, bmdmg resource8 The constramts In­
clude both the primal and the dual formulatIOn of an 
optImIzatIOn model 

The PH formulatIon eqUIvalent of problem la can be 
expressed as problem 4 (see 22 for detal\) 

MaXImIZe 

Z = P' (v+VP) - QXs+SQ) - B'!, 

subject to 

v+VP-Q:$ 0 

(supply 2: demand), 

-B + GQ :$ 0 
(resource use :$ resource avaIlable) and 

P - (s+SQ) - G'!, :$ 0 

(margInal revenue :$ margInal cost) (21) 

When the competItIve equlhbnum IS reached, the 
value of the objectIve functIon becomes zero_ Taka­
yama and Judge (32, 34) also use the pnmal-dual 
method for spatIal mal ket equlhbrlUm problems_ 

The PH formulatIOn mcludes pnmal and dual com­
ponents and thereby mcreases the 81Ze of the modeL 
For large-scale problems, the pnmal-dual formula­
tIon becomes expensIve to solve For a medIum-scale 
problem, however, thIS formulatIon IS a practIcal tool 
and has been apphed extensIVely (Stoeker (31) and 
Bhlde (1) are two tYPIcal apphcatlOns) 

Minimum Marginal Rent Method 

The mmlmum margInal rent (MR) method IS derIved 
from the PH method GIven a PH formulatIon as 
deSCribed 10 problem 4 and assummg Q > 0 (thl8 as­
sumptIOn IS vahd, especIally If Q 18' referred to as 
aggregate natIOnal productIOn of mBJor commoditIes), 
we have 

P - (s + SQ) - G'!, = 0 (22) 

Further, because demand IS equal to 8upply when a 
competItIve eqUlhbrium solutIon IS reached (10 the 
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sItuatIon of lImIted resource, the market prIce > 
margInal cost, but demand = supply), we have 

(23)v + VP -Q =° 
SubstItutmg 

(24) 

m the objectIve functIOn of equatIon 21 we have 

z = P'(v + VP) - Q'(s + SQ) - Q'G'!, (25) 

By combmmg equatIons 22, 23, and 25 and by asslgn­
mg R = G'!" we can formulate, the MR problem as 
problem 5 

z = P'(v + VP) - Q '(s + SQ) - Q'R 

subject to v + VP - Q = 0, -B + GQ :$ 0, 

P - (s + SQ) - R = 0, (26) 

Problem 5 IS a nonlInear programmmg problem If we 
further use {3R to replace the term Q'R m the obJec­
tive functIOn and we 'assIgn an arbItrarIly large con­
stant number for {3, whIch should be greater than the 
Q* of optimal solutIon, we WIll have a nonlmear 
separable programtrung formulatIOn that can be solved 
by a linear programmmg techmque We use a large 
constant value for {3 the objective functIOn to 
mmlmlze rents while maxlmlZmg the returns. ThIS 
method has been applIed m land use study (15) 

Because the MR formulation does not mclude the pro­
ductIOn technology data matrIx G, ItS size can be 
much smaller than the PH,formulatlOn However, It 
IS dtflicult to apply th,s method to the actIVity model 
(problem Ib) m whlch,the supply functIon IS not ex­
plICItly formulated 

Iterative Procedure 

The Iterative procedure IS a computatIOnal method of 
solvmg a market eqUilIbrIUm model To use the pro­
cedure, one dIVIdes the surplus model mto demand 
and supply submodels An Iterative procedure IS then 
used to mteract between these two submodels untIl 
the process converges To Illustrate the procedure, we 
reformulate problem Ib as problem 6 ' 

aWe use problem lb, Instead of problem la, because the Iterative 
procedure 19 apphed to the activity model In most practical 
applications 

Demand submodel Q= v + VP 

Supply submodel - choose X to mmlmlze 

Z = C'X 

°
subject to HX = Q, GX:$ B, X ~ (27) 

EqUIlIbrIUm conditIOn -P = MC 

where MC IS an optImal dual-varIable vector (shadow 
prIce vector) correspondmg to the demand balance 
constramt HX = Q We can start an Iterative proce­
dure by asslgnmg an ImtIal value for P m the demand 
submodel and by obtammg Q, which IS then used as 
the rIght-SIde value of the demand balance constramt 
m the supply submodel We then solve the supply 
component for'the value of MC If P = MC, we 'reach 
the eqUilIbrIum solut;on OtherwIse, we use MC as P 
m the demand submodel for the next IteratIOn 

One can use IteratIve procedures to deal WIth non­
computable surplus functions m two ways The first 
way apprOXImates the value of the surplus at each 
IteratIOn and locates the eqUilIbrIum through the 
IteratIve process The second way uses the assumed 
market adjustment process or search techmque In 

Iteration untIl the market price m a demand sub­
model IS equal to the supply price m the supply sub­
model Th,S method thereby aVOIds direct formulatIon 
of the surplus functIon 

A typIcal example of the first method IS the Iterative 
procedure descnbed m the PrOject Independence Eval­
uatIOn (PIES) algorithm (11) At each IteratIon, the 
algonthm dIagonalIZes the asymmetnc demand matnx 
to'approxlmate the surplus functIOn Another example 
of the first method IS deSCrIbed by Carey (2) A tYPIcal 
example of the second method IS the use of the tatonne­
ment procedure WhICh adjusts the prIce m response to 
the excess demand (7, 8, 30) Another example IS the 
use of search algonthms, such as fixed-pomt, JacobIan, 
Gauss-SeldaI, and gradient methods (see 3 for a 
diSCUSSIOn of these methods) One maJor problem WIth 
the tatonnement procedure IS uncertamty :n converg­
ence of the IteratIve process The maJor dIsadvantages 
With the search method are mefficlency (fixed pomt), 
uncertamty m convergence (Jacobian and Gauss­
Selda\), and dIfficulty m the apprOXImatIon of derIva­
tIOn (gradient) m each IteratIOn Huang (13) d,scusses 
convergence conditIons for some of these procedures 
Another problem IS In the applIcatIOn of these 
methods to find the eqUilIbrIum of problem 5 when 
resources are lImited Huang and Heady (14) suggest 
an Iterative procedure to locate the eqUilIbrIum by us­
mg dusl vanable mfonnatlOn obtaIned In the solutIOn 
at each IteratIon ExtenSIOn of th,s method to large­
scale models has not yet been developed 
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Suggestions 
s= r201G= [05 09J andB = 

Table 1 summanzes the alternative formulatIOns [:~L16J 07 05
dIscussed In three categories (1) systems of equa­
tIOns, (2) optImIzatIOn models, and (3) Iterative proce­
dures. We compare these three formulations ID general 
terms We use the LG method ID the first group, the 
MR method ID the second group, and the PIES proce­
dure ID the tlurd group as t~elr respectIve group rep­
resentatIVe to solve tne followlDg examples 

rlO~ [-0 4 0 2 ] 

v= ~OJV = 0 15 -025 

In thIS example, S IS a null matrIX and H IS an IdentIty 
matrIx The eqwhbrlum solutIOn for thIS problem 18 

q.. = 26 32 p! = 311 26 p,,. = 55 39 

lb· = 63 16 p,. = 25411 p,o,* = 37652 


To solve thIS problem by the LG method, we use 16 
(24) possIble sete of SImultaneous equatIOns One set 
Ylelde the eqwhbrlUm solutIon, the rest of the solu­
tions are eIther IDfeaslble or suboptImal 

Table 1 Problem size and solution method 

Type of Row 
formulation 

1 System of 
equatIOns 

LG 2n+2m 

LCP 2n+m 

2 optImlZatlOn 
models' 

AV m+l 

PH 2n+m+l 

MR 2n+m+l 

3 Iterattve 
procedures 

PIES m+l 

Tatonnement 

and search m+l 


Column 

n+m 

n+m 

n 

2n+m 

3n 

n, 

n 

Slack 
v8r1ables 

Method 

m 

2n+m 

2n+m 

m 

m 

Total 
varIables 

2n+2m 

2n+m 

n+m 

4n+2m 

5n+m+l 

n+m 

m+n 

SolutIOn 
method 

Solve at most 
2n + m sets of 
sImultaneous 
systems of 
equatIons 

Lemke's algOrithm 
by solVing at most 
n +m set of systems 
of equatlOns 

Separable 
programming or 
gradIent method I 

Separable 
programmIng or 
gradIent method 

Separable 
programmmg or 
gradIent method 

Each IteratIOn 
solves an LP model 

Each IteratIOn 
solves an LP model 

lAV, PH, MR, and PIES wdl have additional rows and columns for quadratic terms lethe separable programmmg techmque 18 used 

Source. (29) 
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In usmg the MR method, we assIgn (3 = 100,000 and 
obtam r,' = 343 16 and r2' = 341 89 USIng 

2 

r = r; q 1', I = and 2, we compute the value for 1'1" 
I J-l IJ I 

and 1'2'.9 The PIES method takes three IteratIOns to 
converge to the optimal solutIOn At each IteratIOn, 
we formulate a dlagonahzed demand system qk = 
D.(P.) by substltutmg the ImtIal value (or the I'h 
value computed m the prevIOUS IteratIOn) P" I=k, mto 
the demand D.(P" .. ,p., Po) and then express the m· 
verse demand matrIX as p. = Dk(qk) Usmg p., we for· 
mulate a surplus functIOn Th,S surplus functIOn and 
the resource constramts are used to set up a quadratIc 
programmmg problem that IS then solved by a 
separable programmmg techmque A new set of 
values of P" 1=1, ,n, IS obtamed from the mverse 
demand functIOn 10 ThIS set of P, values IS used as the 
mItlal values for the next IteratIon 

9tn thiS case, the G 18 a square matrix If not, computmg umque 
III and "2 from rl and r2 values may not be pOSSible 

lCTor problem 6, the prices are the shadow prices of the demand 
balance constraInts HX = Q 

The LG method gIves the exact competItIve 
eqUlhbrlUm solution. The MR method and PIES pro­
cedure (and other methods we have mentioned here) 
only approxImate the exact solutIOn In thIS example, 
the dIfference between the exact and the approxImate 
solution IS mSlgnlficant In general apphcatIOns, the 
dIfference IS probably due to preCISIon of computatIOn 
rather than to the method used 

SelectIOn of an optimal method of solvmg a gIven prob­
lem IS decIded by the three factors. (1) economIc m­
terpretatlon of the formulatIOn and solutIOn process, 
(2) avallablhty of a computatIOnal package for each 
method, and (3) SIze of the problem. The Justification 
of the optImIzation model rests on the meanmgful. 
ness of the objective functIOn, whereas for the system 
of equatIOns, ItS JustIficatIOn rests only on the set of 
condItions stipulated because eqUlhbrlUm does cor· 
rectly reflect market operatIon The Iterative proce­
dure prOVIdes a dynamIC process of market a<IJustment 
toward the eqUlhbrIum 

Strategy for selecting optimal method of deriving competitive equilibrium from an asymmetric 
demand system 

Demand system 

t 
Is It expressed 
as 0= D(P) 
or P = D(O)? 

tYes 

Is number of total 
vanabies < 5? 

t No 
Are cross-elasticities 

Inslgmflcant 
compared With own 

elastlcllies? 

• No 
Is number of 

vanables < 1O.000? 

t No 
Does computer 

storage become a 
problem because the 
number of variables 

IS too large? 

• Yes 
PIES or 

tatonnement 
Iterative procedure 

No Tatonnement 
Iterative 

procedure 

Yes 
LG 

Yes 
AV 

Yes Is It an activity 
formulation? 

t 
IpH,MRI 

Yes 
PH 

No ,.-. 

If H ' eXists. 
use MR, otherwise 
use PH for activity 

model 

26 



"'~"I'" 

SelectIOn IS frequently determIned by the accessl­
blhty of a computer'package The computer software 
for'the first group (system of equations) and the thIrd 
group (IteratIve procedure) IS generally not nch, but 
the software for the second group IS avaIlable com­
mercIally SolutIOn technIques for solVIng a large­
scale programmIng model have recently become more 
advanced. Thus, optImIZatIon (programnung) formula­
tIon IS WIdely used In apphed research 

From a computatIonal VIeWpOInt, the optImIZatIon 
model and the system of equatIOns formulatIOn are 
eqUIvalent Carey (2) showed that the objectIve func­
tIon of the PH method IS redundant By droPPIng the 
objectIve functIOn, the PH method becomes the LCP 
method and, therefore, can be handled wIthIn the 
scope of eXIstIng LCP algorIthms Furthermore, from 
a practical VIewpOInt, the LCP IS a natural way to for· 
mulate a model to reflect speCIfic market behaVIOrs 
For these reasons, conSIderable research efforte are 
currently underway at varIOus umversltIes to develop 
an efficIent algonthm for solVIng the LCP models 

The Iterative procedures are market sImulatIOn solu· 
tIon algorIthms They prOVIde a computatIOnal alter· 
natIve even when the other two approaches are avaIl· 
able Because of the IteratIve process, the procedures 
are relatIvely expensIve In terms of computatIOnal 
tIme They are often used In sItuatIons where the de­
mand system cannot be stated as P = f(Q) or Q = f(P), 
and the programmIng and the LCP formulatIOns are, 
therefore, ImpossIble When the demand system IS ex­
pressed In a structural form or by a system of com· 
puter language, IteratIve procedures are especIally 
useful There are many ways ~f developIng an Itera· 
tIve procedure for solVIng a partIcular problem There 
are many examples of USIng the tatonnement proce· 
dure, for whIch convergence has not been proven 
theoretIcally, several researchers have reported fast 
convergence (4) FInally, when deahng WIth an 
actIvIty model as defined by problem 1b, one can 
choose between the PH and the MR method, dependIng 
on the relatIOn HX = Q In equatIOn 3 The MR 
method IS apphcable only If H IS a square and Invertl· 
ble matrIX. If so, we obtaIn X = H-'Q and substItute 
It Into the objectIve functIon In problem 1b In reahty, 
H IS most hkely to be a rectangular matnx Under 
th,s case, the PH method should be used Because the 
PH method Includes the prImal and dual components, 
sIZe may become too large for prevalhng computer 
computatIon In a large-scale modehng problem If so, 
one would need to deSIgn an IteratIve procedure The 
figure suggests a general strategy for selectmg a proper 
method 
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If you are convinced that we have adequate pro­
cedures for measunng pnce elastiCities of consumer 
demand, you Will not develop a better method If you 
beheve that eXisting theory of cooperative behavIOr IS 
.adequate, you Will not develop a better theory If you 
'beheve that all' eXisting theones, models, and meas­
ures are adequate, you Will not develop anything bet­
ter If you beheve all slgruficant questIOns have been 
properly asked, you will never ask a new Important 
questIOn. If you do_not doubt something, you Will have 
nothing to research, If you doubt notiung, you are not 
Justified In dOing research because you are dOing un­
needed work Some people doubt only what they have 
been taught to doubt It can prove fruitful to doubt 
what no one else has doubted You will never solve a 
problem that you are unaware of "NeceSSity IS the 
mother of inventIOn"· IS an,old saying My reading of 
hiStory leads me to beheve that dissatisfaction also 
has been the mother of many inventIOns 

George Ladd 
Imagination In Research, 1987 

(See reVieW, p 32) 
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