

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Staff Papers Series

```
Staff Paper P91-53
```

TECHNICAL EFFICIENCY AND FARM SIZE:
A NON-PARAMETRIC FRONTIER ANALYSIS

by
Christos T. Papadas
and
Dale C. Dahl
\section*{4}

Department of Agricultural and Applied Economics

University of Minnesota
Institute of Agriculture, Forestry and Home Economics
St. Paul, Minnesota 55108

TECHNICAL EFFICIENCY AND FARM SIZE:

A NON-PARAMETRIC FRONTIER ANALYSIS

by
Christos T. Papadas
and
Dale C. Dahl

Staff papers are published without formal review within the Department of Agricultural and Applied Economics. The authors wish to acknowledge the guidance and thoughtful comments of Professors Yacov Tsur and Willis Peterson during the course of this analysis.

The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, religion, color, sex, national origin, handicap, age, veteran status, or sexual orientation.

ABSTRACT

This study examines the argument that farm size is associated with technical efficiency. A non-parametric, frontier analysis method is used, together with some additional statistical analysis. Although some gains in efficiency appear as we move toward larger farms, they do not seem to be significantly large. The input/output ratios are indeed smaller for larger farms and the difference is statistically significant. It can be attributed however to the fact that smaller farms operate on a smaller scale and not inside the production frontier.

INTRODUCTION

Three types of efficiency are usually distinguished in the literature: Technical efficiency, price (allocative) efficiency, and economic efficiency (Farrell, 1957). A technically efficient farm is one which produces the maximum quantity of output for given quantity of inputs, given the production function. A price efficient farm applies that quantity of inputs which maximizes profits, given of course the production function and the prices it faces. An economically efficient farm is one that is both technically and price efficient. We deal here with the argument often made, that larger farms are more technically efficient than smaller farms. If the efficiency gains of larger farms can be established as a general rule, the structural changes in the farm sector, which include changes in the farm size distribution, will have an important impact on the overall performance of agriculture. This is also important for policy makers. They can assess better the impact of policies that affect farm structure, on efficiency. It is also important to know how far a given industry, in this case agriculture, can be expected to increase its outputs by simply increasing its efficiency without utilizing more resources (Farrell, 1957).

The purpose of this study is to examine if and how technical efficiency is affected by the farm size. Some statistical evidence concerning input/output ratios is initially examined and a non-parametric frontier analysis method is used. An explanation of this type of frontier analysis and how it can be used for our own purposes is also presented. We conclude with an analysis of our results, factors that affect them, and some inferences.

It would be more accurate to measure farm size in terms of value added. Given the data limitations however, we have adopted as the best alternative the value of sales. The source of our data was the U.S. Census of Agriculture for 1987 issued by the U.S. Department of Commerce.

SOME EMPIRICAL EVIDENCE
Using Census data, we aggregated all farms into three different sales classes. Class A included farms with value of sales of more than $\$ 100,000$, Class B farms with sales of $\$ 40,000$ to $\$ 99,999$ and Class C farms with sales of less than $\$ 40,000$. This was done for 31 states of the U.S. ${ }^{1}$ For every one of these states and for every sales class, we selected data on aggregate agricultural output and on farm production expenses for several agricultural inputs. We estimated then the corresponding input/output ratios, where both input and output were originally expressed in monetary terms. Therefore, for each input/output ratio we established three distributions (one for each size class) with 31 observations (one for each of the 31 states). Generally speaking, in every observation (state) the input-output ratio was declining as we were moving from distribution (sales class) Co C . We performed a z-test for the means of these distributions, where the observations for every state were the ratios of total farm production expenditures over the total value of agricultural products sold. The mean of distribution C was significantly higher than the mean of distribution B at 5% level of significance. The mean

[^0]of distribution B was also larger than the mean of distribution A although the difference was not statistically significant at 5% level of significance. The above results are influenced by expenditures on relatively fixed factors. When disaggregated farm inputs are used in the input/output ratio, the results appear much stronger. For example, when the ratio machinery ${ }^{2} /$ total sales is considered, the mean of distribution A is smaller than the one of B and the latter smaller than the mean of A at all levels of significance. The results were similar when the distributions concerned the ratio of agricultural chemicals over the total value of agricultural sales. When the ratio was fertilizer/total sales the mean of distribution B was significantly smaller than the mean of C, at 5% level of significance, and the mean of A smaller than the one of B at 10% level of significance. When the ratio, however, included physical units of fertilizer and lime (tons) instead of monetary values the results were similar and significant at all levels of significance. Hence, "on the average" (and as a general rule) the input/output ratios are significantly smaller for larger farms than for smaller ones.

There are two other reasons - besides the fixity of some inputs - that when total production expenditures are used in the input/output ratio, the above results are less significant than when individual inputs are considered. One may have to do with the way we aggregated the sales classes into the three that we used here. Another classification of small, medium, and large farms could provide perhaps stronger results. The second is related to farm labor. Total farm production expenditures include expenditures on hired and contract farm labor. Family labor on which medium and small farms rely heavily is not

[^1]included in their production expenses. We shall discuss this issue later again, in the frontier analysis model. ${ }^{3}$ Although the input/output ratios of smaller farms were found to be significantly higher than those of the large farms in several occasions, no conclusions should be derived about their technical efficiency. Considering the scale on which they operate, small farmers can still be producing the maximum possible output for the given amount of inputs or using the minimum amount of inputs given their output. To examine the issue of technical efficiency we employ below a non-parametric frontier analysis method.

FRONTIER ANALYSIS

Background

Frontier analysis, as a method of measuring production efficiency and estimating production frontiers, increased its popularity rapidly during the 80's. Two major "types" of frontier analysis have been developed simultaneously but so far, in general, proceeded independently from each other (A.Y. Lewin, C.A. Knox Lovell, 1990). One is the econometric approach, mostly popular among the economists, and the other is the operations research and management science approach which uses mathematical programming techniques. The second approach is mostly popular among industrial engineers, managers and many others concerned with optimization behavior and the evaluation of its performance. The mathematical programming approach is also known as DEA (Data Envelopment Analysis). Both approaches attempt to obtain information from a body of data and have a common interest in extreme

[^2]observations. Despite their different methodologies and separate developments, recent efforts have begun to reconcile them, (Sengupta 1990, Varian 1990) and combine them for empirical studies. In our analysis of the efficiency and relative efficiency of different farm sizes we use a DEA model. The DEA methodology is considered non-parametric because it does not assume and impose a particular form of the production function as parametric techniques do. Instead of estimating the production function with the assumed form and proceed to efficiency computations relative to this frontier (Lovel and Schmidt, 1988), DEA imposes the simple restriction that all firms, Decision Making Units (DMU) - lie on, or "below" the efficient frontier. L.M. Seiford and R.M. Thrall (1990) who have tried to put together and present the last developments in the DEA, characterize it as a methodology directed to frontiers rather than central tendencies. Contrary to regression techniques that fit a plane or hyperplane through the center of the data, the DEA "floats" a piece-wise linear surface to rest on top of the observations. This characteristic, permits the DEA to discover relationships that parametric or other methodologies would not. A rapidly increasing literature has been enriching the possibilities of frontier analysis and DEA in particular. But the empirical applications are noteworthy too. An example that Seiford and Thrall (1990) emphasized, is the study of Banker, Conrad, and Strauss (1986) which estimated a production function for hospitals in North Carolina. Comparing the results of both, regression techniques and DEA, the second outperformed the first, utilizing the same information.

The Model

M.J. Farrell (1957), who presented a classic paper on the measurement of productive efficiency, argued that efforts to estimate a production frontier, usually produce careful measurements but they fail to combine the measurements of the multiple inputs into any satisfactory overall measure of efficiency and proposed an activity analysis to overcome this problem. Based on his ideas, Charnes, Cooper, and Rhodes (1978) proposed a non parametric linear programming DEA model (CCR). Later models related to that were the ones of Banker, Charnes, and Cooper (BCC), in 1984 and of Charnes, Cooper and Thrall in 1986. We use here the CCR linear programming model as presented in Seiford and Thrall (1990).

Assume that there are n firms (DMU's) to be evaluated and each of them uses m inputs to produce s outputs. Each firm j uses $n_{j i}$ amount of input i and produces amount $y_{j r}$ of output r. It is also assumed here that $x_{j i} \geq 0$ and $y_{j r} \geq 0$. The main characteristic of the CCR model is that it reduces the multiple-output and multiple-input situation to that of a single "virtual" output and "virtual" input. Their ratio provides a measure of efficiency as a function of multipliers. The mathematical programming problem of each firm is:

$$
\begin{align*}
& \max h_{0}(u, v)=\frac{\Sigma_{r} u_{r} y_{r 0}}{\Sigma_{i} v_{i} x_{i o}} \tag{1}\\
& \{u, v\}
\end{align*}
$$

where the variables are the u_{r} 's and v_{i} 's while the $y_{r o}$ ' s and $n_{i o}$'s are the values of outputs and inputs for the firm $D M U_{0}$. The objective function given by (a) is, however, unbounded. A set of normalizing constraints can be added, expressing the condition that the "virtual" output to "virtual" input ratio
for every DMU is less than or equal to 1 . Hence, the problem can be expressed as:

$$
\begin{array}{ll}
& \max \frac{\Sigma_{r} u_{r} y_{r o}}{\boldsymbol{\Sigma}_{1} v_{1} x_{10}} \\
\text { s.t. } & \{u, v\} \\
\frac{\Sigma_{r} u_{r} y_{r y}}{\boldsymbol{\Sigma}_{1} v_{1} x_{1 j}} \leqslant 1 & \text { for } j=0,1, \ldots, n \quad(I R) \\
u_{r}, v_{1} \geq 0 &
\end{array}
$$

The above model is called input-oriented (IR), as opposed to the output oriented model where the inputs appear in the nominator of the objective function which in this case is to be minimized. The (IR) model yields infinite solutions. For a solution ($u *, v^{*}$), ($\alpha u^{*}, \alpha v^{*}$) is a solution too, as long as $\alpha>0$. Charnes and Cooper (1962), proposed a transformation for linear fractional programming which selects a representative solution (i.e., the ($u *, v *$) for which $u^{T} X_{0}=1$ where X_{0} is the vector of inputs for $D M U_{0}$). The selection occurs for every equivalence class into which the set of feasible solutions is partitioned.

The transformation results into the problem:

$$
\max _{\{\mu, v\}} z=\mu^{T} Y_{0}
$$

$s . t$
$\nu^{T} X_{0}=1 \quad\left(D I_{0}\right)$
$\mu^{T} Y-v^{T} X^{0} \leq 0 \quad$ (Multiplier problem)
$\mu^{T} \geq 0$
$v^{T} \geq 0$

The dual problem of the above is:
$\min \theta$
$\{\theta, \lambda\}$
s.t.
$Y \lambda \geq Y_{0} \quad\left(P I_{0}\right)$
$\theta X_{0}-X \lambda \geq 0$ (Envelopment problem)
θ free, $\lambda \geq 0$
where λ is a vector of multipliers with dimension ($1 \times n$) where n is the number of DMU's. X is a matrix of elements $x_{i j}$ where j (column) indicates the $j^{\text {th }} D M U$ and i the $i^{\text {th }}$ input. Similarly Y is a matrix of outputs $y_{1 j}$ where j refers to the $D M U$ and i to output. Similarly to X_{0}, Y_{0} is a vector of outputs for DMU_{0}. θ is a scalar, while θ, λ are the variables ${ }^{4}$. One can solve either $\left(D I_{0}\right)$ or $\left(P I_{0}\right)$ for $D M U_{0}$, and similarly for every other $D M U_{j}$ by replacing Y_{0} and X_{o} with Y_{j} and X_{j} respectively. There are alternative structures however for

[^3]both $\left(D I_{0}\right)$ and $\left(P I_{0}\right)$. (Note that the subscript is not referring now to DMU。 as is the case with X_{0} and Y_{0} but to the first alternative structure for $D I_{p}$ and PI_{p}, where $\mathrm{p}=0,1,2,3$). In particular, if e^{T} is a row vector of ones with dimension ($n \times 1$), we have the following alternative forms of the envelopment problem (PI_{p}):

$\min \theta$	$\left(P I_{p}\right)$
$\{\theta, \lambda\}$	For $P I_{0}$, append nothing
s.t.	FOI $P I_{1}$, append $e^{T \lambda} \leq 1$
$Y \lambda \geq Y_{0}$	For $P I_{2}$, append $e^{T \lambda} \geq 1$
$\theta X_{0}-X \lambda \geq 0$	For $P I_{3}$, append $e^{T \lambda=1}$
θ free, $\lambda \geq 0$	

and of the multiplier problem ($D I_{p}$):

$$
\begin{aligned}
& \max z=\mu^{T} Y_{0}+u_{*} \\
& \{\mu, v\} \\
& s . t . \\
& v^{T} X_{0}=1 \\
& u_{0} e^{T}+\mu^{T} Y-v^{T} X \leq 0 \\
& \mu^{T} \geq 0 \\
& v^{T} \geq 0
\end{aligned}
$$

where $u_{*}=0$ in $D I_{0}, u_{*}$ is free in $D I_{3}, u_{*}$ is smaller than equal to zero in $D I_{1}$ and u_{*} is larger than equal to zero in DI_{2}. We use in this study the
envelopment model $\left(P I_{p}\right)$ of the input oriented model. ${ }^{5}$ The constraints concerning $e^{T} \lambda$ are associated with the assumptions about the returns to scale. If we add:

1) $e^{\mathrm{T}} \lambda \leq 1:$ increasing returns are not allowed ($\mathrm{p}=1$)
2) $e^{T} \lambda \geq 1$: decreasing returns are not allowed $\quad(p=2)$
3) $\mathrm{e}^{\mathrm{T}} \lambda=1:$ no assumption is made $\quad(\mathrm{p}=3)$
4) nothing: only constant returns allowed (p - 4)

When applying the model we use $(p=3)$ and $(p=2)$ primarily, but we
also examine the other assumptions, as well. Solving (PI_{p}) with respect to θ and λ, for each DMU, the optimal solution $\theta *$ provides an efficiency score. By its structure the model always provides $\theta * \leq 1$. When $\theta *=1$ the firm (DMU) is operating on the frontier. If for the optimal $\lambda *, X_{0}=X \lambda *$ and $Y_{0}=Y \lambda *$, then $\theta *=1$ guarantees that the boundary point is efficient. If $\theta *<1$ the DMU does not operate on the frontier and is inefficient. The smaller θ t is from 1 , the larger the distance of the operating point from the frontier. ($\theta *$ can also be used to project an inefficient point on the frontier.)
${ }^{5}$ The envelopment and multiplier problems of the output-oriented model can also be used in different forms depending on the constraints added. Thus, we have the envelopment problems $\left(\mathrm{PO}_{\mathrm{p}}\right)$ and the multiplier problems ($\mathrm{DO} \mathrm{p}_{\mathrm{p}}$) as in the input oriented case:

\[

\]

where in the $P O_{p}$ model we append nothing if $p=0, e^{T} \lambda \leq 1$ if $p=1, e^{T} \lambda \geq 1$ if $p=2$, and $e^{p} \lambda=1$ if $p=3$. In the D_{p} model, $v_{*}=0$ if $p=0, v_{*} \geq 0$ if p $=1, v_{\star} \leq 0$ if $p=2$ and v_{\star} is free if $p=3$.

For the purposes of our analysis, we have considered 12 different farm sizes - for the whole U.S. - the efficiency and relative efficiency of which, we wish to investigate. The twelve farm sizes (sales classes) are:

Class 1: Values of sales, less than $\$ 2,500$
Class 2: Values of sales, $\$ 2,500$ to $\$ 4,999$
Class 3: Values of sales, $\$ 5,500$ to $\$ 9,999$
Class 4: Values of sales, $\$ 10,000$ to $\$ 19,999$
Class 5: Values of sales, $\$ 20,000$ to $\$ 24,999$
Class 6: Values of sales, $\$ 25,000$ to $\$ 39,999$
Class 7: Values of sales, $\$ 40,000$ to $\$ 49,999$
Class 8: Values of sales, $\$ 50,000$ to $\$ 99,999$
Class 9: Values of sales, $\$ 100,000$ to $\$ 249,999$
Class 10: Values of sales, $\$ 250,000$ to $\$ 499,999$
Class 11: Values of sales, $\$ 500,000$ to $\$ 999,999$
Class 12: Values of sales, $\$ 1,000,000$ or more
Although one would not expect substantial efficiency differences for all those classes, especially the small and neighboring ones, we kept the number of sales classes large for two reasons: First, not to avoid noticing efficiency differences where they exist because of unfavorable aggregation into few classes. Second, because the sales classes constitute our observations and the larger the number of observations relative to the number of inputs plus the number of outputs, the larger the discriminatory power of the model. These 12 classes are all for which the U.S. Census of Agriculture provides data on inputs and outputs. Initially, we selected seven inputs accounting for all production expenses and two outputs accounting for all the value of agricultural sales (all inputs and outputs are included in the DEA model).

Dividing the expenditures for each input and sales of each output by the number of farms of each farm size, we estimated what an "average" farm of a particular farm size, uses, and produces, in the U.S. The two aggregate outputs were (1) all crops and (2) all livestock and dairy. The seven aggregate inputs were: (1) livestock, poultry, and feed purchased, (2) agricultural chemicals, seeds, bulbs, plants, and trees, (3) commercial fertilizer, (4) energy products (includes petroleum products and electricity), (5) farm labor (includes hired and contract labor), (6) machinery (includes repair, maintenance, customwork, machine hire, and rental of machinery and equipment, and (7) other production expenditures (includes interest expenses, cash rent, property taxes, and all other production expenditures). Every class is represented in the model by its "average" farm.

Empirical Results

Based on what we said before about the DEA model, and making no restrictive assumptions about returns to scale, the envelopment problem of the input-oriented model that we apply can be expressed in matrix form as follows:

Rotating Y_{0} and X_{o} for each farm size, we solved the model 12 times (the program used was LP88). The results of this model provide optimal values of $\theta *=1$ for all sales classes from 6 to 12 , (farms with more than $\$ 25,000$ value of sales). Moreover the first two constraints for $\theta *=1$, hold with equality suggesting that these farms are both, operating on the frontier and efficient. The first signs of inefficiency appear in class 5 ($\$ 20,000$ to $\$ 24,999$) where $\theta *=0.957$. The result, however, suggests that despite this inefficiency, these farms operate very close to the frontier. The small inefficiency exists in the smaller class $4(\$ 10,000$ to $\$ 19,999)$ too, where $\theta *=0.967$ presenting actually a small increase from the previous inefficient case. After that, even smaller farms (less than $\$ 10,000$) appear to be efficient with $\theta *=1$ and the first two constraints holding with equality, Hence, large farms appear to be efficient and as we move towards smaller farms a small inefficiency appears only for farms with value of sales $\$ 10,000$ to $\$ 24,999$, while even smaller farms appear efficient again. Before we discuss these results further, we should note that 12 observations with seven inputs and two outputs substantially reduce the discriminatory power of our model and in every one of the 12 linear programming models tend to push the 13 th variable (θ) close to 1. To increase the discriminatory power of the model we aggregated all outputs to one ("agricultural output") and all inputs to one ("bundle of agricultural inputs"). The model then becomes ${ }^{6}$:

[^4]\[

$$
\begin{gathered}
\min \theta \\
\left\{\theta, \lambda_{1}, \ldots, \lambda_{12}\right\} \\
\text { s.t. } \\
{\left[y_{1}, \ldots, y_{12}\right]\left[\begin{array}{c}
\lambda_{1}^{0} \\
\vdots \\
\lambda_{12}^{0}
\end{array}\right] \geq y_{0}} \\
\theta x_{0}-\left[x_{1}, \ldots, x_{12}\right]\left[\begin{array}{c}
\lambda_{1}^{0} \\
\vdots \\
\lambda_{12}^{0}
\end{array}\right] \geq 0 \\
\theta \text { free, } \lambda \geq 0 \text { and } \Sigma \lambda_{1}=1
\end{gathered}
$$
\]

The results suggest again that classes 9, 10, 11, and 12 (more than $\$ 100,000$ value of sales) are efficient. Again $\theta *=1$ and the constraints hold with equality. For class 8 ($\$ 50,000$ to $\$ 99,999$), a small inefficiency appears as $\theta *=0.975$. This continues as we go to class $7(\$ 40,000$ to $\$ 49,000)$ where $\theta *=0.920$. Classes 5 ($\$ 20,000$ to $\$ 24,999$) and 4 ($\$ 10,000$ to $\$ 19,999$) continue to exhibit a small inefficiency but $\theta *$ rises to 0.950 and 0.960 respectively. After that, very small farms become efficient again (less than $\$ 10,000)$.

Conclusions

Our results indicate that large farms ($\$ 100,000$ or more) are efficient. A small and rising inefficiency as we go to smaller sizes prevails for farms with sales of $\$ 25,000$ to $\$ 100,000$. Then, the inefficiency continues for even smaller farms but at a declining rate and finally efficiency prevails again for very small farms. This upward and then downward trend of inefficiency as we move towards smaller sizes is interesting. A reason for that, discussed before, has to do with farm labor. Those farms rely on family labor more than the larger farms but only expenditures on hired and contract farm labor are
published and considered here. Therefore, small farms "appear" more labor efficient and this affects the overall evaluation of their performance. Labor costs constitute 16.38 of all production expenditures, in farms with more than $\$ 1,000,000$ of sales and 13.2% for farms with sales of $\$ 500,000$ to $\$ 1,000,000$. For farms with values of sales less than $\$ 10,000$ this percent is $1-2 \%$. In any case, the losses of efficiency that occur as we go from large farms to medium and smaller do not appear to be significant. The higher input/output ratios for the smaller farms could then be attributed to the fact that they operate on a different scale of the frontier, instead of its interior.

We should note also that for classes $1-10$ the assumption of increasing (and in some cases constant) returns to scale, yields the same results as no restriction at all $\left(e^{T} \lambda=1\right)$. However, in the large classes 11 and 12 , it is the declining returns to scale assumption, that seems to "prevail" and yields the same results with no restriction at all.

BIBLIOGRAPHY

Afriat, S., 1972, "Efficiency estimation of production functions," International Economic Review 13, 568-598.

Banker, R. D., 1984, "Estimating most productive scale using data envelopment analysis", European Journal of Operational Research 34, 513-521.

Banker, R. D., and R. Morey, 1986b, "The use of categorical variables in data envelopment analysis", Management Science 32, 1613-1627.

Banker, R. D., A. Charnes, and W. W. Cooper, 1984, "Some models for estimating technical and scale inefficiencies in data envelopment analysis", Management Science 30, 1078-1092.

Banker, R. D., R. F., Conrad, and R. P. Strauss, 1986, "A comparative application of DEA and translog methods: An illustrative study of hospital production", Management Science 32, 30-44.

Banker, R. D., A. Charnes, W. W. Cooper, J. Swarts, and D. Thomas, 1989, "An introduction to data envelopment analysis with some of its models and their uses", Research in Governmental and Non-profit Accounting S, 125-163.

Bauer, Paul W., 1990, "Recent developments in the Econometric estimation of frontiers", Journal of Econometrics, 46.

Bowlin, W. F., A. Charnes, W. W. Cooper, and H. D. Sherman, 1985, "Data envelopment analysis and regression approaches to efficiency estimation and evaluation", Annals of Operations Research 2, 113-138.

Charnes, A. and W. W. Cooper, 1962, "Programming with linear fractional functionals", Naval Research Logistics Quarterly 9, 181-185.

Charnes, A., W. W. Cooper and E. Rhodes, 1981, "Evaluating program and managerial efficiency: An application of data envelopment analysis to program follow through", Management Science 27, 668-697.

Charnes, A., W. W. Cooper and R. M. Thrall, 1986, "Classifying and characterizing efficiencies and inefficiencies in DEA", Operations Research Letters 5, 105-110.

Charnes, A., W. W. Cooper, Q. L. Wei and Z. M. Huang, 1989b, "Cone ratio DEA and multi-objective programming", International Journal of Systems Science 20, 1099-1118.

Dyson, R. G. and E. Thanassoulis, 1988, "Reducing weight flexibility in DEA", Journal of the Operational Research Society 39, 563-576.

Epstein, M. K. and J. C. Henderson, 1989, "DEA for managerial control and diagnosis", Decision Sciences 20, 90-119.

Fare, R., 1981, "Simultaneous input and output efficiency", Operations Research-Verfahren, 27-29.

Fare, R. and C. A. K. Lovell, 1978, "Measuring the technical efficiency of production", Journal of Economic Theory 19, 150-162.

Farrell, M. O., 1957, "The measurement of productive efficiency", Journal of Royal Statistical Society A.120, 253-281.

Seiford, Lawrence M., 1990, "A bibliography of data envelopment analysis (1978-1990)", Version 5.0, Technical report (Department of Industrial Engineering, University of Massachusetts, Amherst, MA).

Seiford, L. M. and R. M. Thrall, 1990, "Recent developments in DEA", Journal of Econometrics, 46, 7-38.

Sengupta, J.K., 1990, "Transformations in stochastic DEA models", Journal of Econometrics 46 .

Varian, H. R., 1990, "Goodness of fit in optimizing models", Journal of Econometrics 46.

APPENDIX

FARM PRODUCTION EXPENSES
According to the U.S. Census of Agriculture, data on production expenses are limited to those incurred in the operation of farm business. They include the share of expenditures provided by landlords, contractors, and partners. Property taxes paid by landlords however, are excluded. Expenditures for nonfarm activities are excluded. Expenditures for agricultural activities outside the farm are also excluded.

The data on fertilizer include the cost of custom application. The same is true for agricultural chemicals. This category of inputs includes the cost of all insecticides, herbicides, fungicides, and other pesticides. The data on interest which were collected separately for 1987 , include interest paid on debts secured by real estate and on those which were not.

MARKET VALUE OF AGRICULTURAL PRODUCTS SOLD
This value is estimated before taxes and production expenses. It includes sales by operator as well as the value of any shares received by partners, landlords, contractors, or others associated with the operation. It also includes receipts from placing commodities in the Commodity Credit Corporation loan program in 1987. It does not include payments received for participation in federal programs, income from farm related sources such as customwork and other agricultural services, or income from non-farm sources. A part of this value may be coming however from products harvested and stored before 1987.

Summary by Value of Agncuitural Products Sold - 1987			
Sales Classes	All Farms	\$500.000 or more	\$250.000 to \$499.999
Number of farms	2087759:	32023	61148
VALUE OF SALES $(\$ 1,000)$			
Grains			
	28340524	2764690	4747732
Cotton and cottonseed	4207891	1601045	920298
Tobacco	1745417:	124169	195972
Cotton, cottonseed and tobacco.			
	5953308	1725214	1116270
Hay, sillage and field seeds.			
	2598615	604574	324054
Vegetables, sweet com and melions	4698083 .	3296294	499055
Fruits, nuts and berries	7084018:	3882863 i	929457
Nursery and greenhouse crops	5774391	4043164 !	653418
Other crops	4482146	2373309	873972
Vegetables, sweet com, mellons, fruits, nuts, berries, nursery and greenhouse crops.			
		135956	
Poultry and pouttry products.			
	12758270	7588179	2844049
Dairy products	16029195	3766489	2664002
Cattle and caives	35876720	18441285	3623898
Hogs and pigs.			
	9890644	2301045	2170293
Sheep, lambs and wool.			
	791219:	276656	102024
Other livestock and livestock products.			
	1771382	888518	191456
Cattle, calves and dairy products.			
	51905915	222077741	1-6287900

,			
\$10.000 to \$19.999	\$5,000 to \$9.999	\$2.500 to \$4.999	Less than \$2.500
250594	274972.	262918	490296
i			
!			
!			
306805	177181	114108:	136355
294951	180549	128111:	204628
134597	66439	32635	24212
	速		
295268	175991	98677'	92616
180473	89610	44600 i	50939
288244	189549 \|	124794:	140206
86140;	60868 42466: 55424		
- i	+		
374384	250417	167260	195630
125801	667261	37801\|	50410
53617 i	32401!	$18620 \mid$	24233
	-		
179418!	- 99127	564211	74643
3282391	- 231776	159511	216317
122063:	67918	39176.	35726
	-		
450302	299694	198687	252043
342133	231118!	170528	294595
136116	60064	30074	1 29183
247668	204149	163412	285119
347088	199234	1332031	177448

[^0]: ${ }^{1}$ These states were: North Dakota, Virginia, Washington, Minnesota, Utah, West Virginia, Texas, Pennsylvania, Oregon, Wyoming, Wisconsin, Ohio, Oklahoma, South Dakota, South Carolina, Tennessee, Alabama, Montana, New York, Iowa, California, Vermont, Missouri, Mississippi, Michigan, Nebraska, Arizona, Kansas, Kentucky, and Illinois. These states, coming from all regions of the U.S., were selected randomly. They include however the majority of the U.S. farms.

[^1]: ${ }^{2}$ Machinery includes expenditure on repair and maintenance, customwork, machine hire, rental of machinery and equipment.

[^2]: ${ }^{3}$ For more explanations on the data used and some statistical information, see the Appendix.

[^3]: ${ }^{4}$ If we had chosen to use the output oriented DEA, (CCR) model, the corresponding models to ($I R$), $\left(D I_{0}\right)$, and ($P I_{0}$) would have been

 $$
 \begin{array}{ccc}
 \min \frac{v^{T} X_{0}}{u^{T} Y_{0}} & \min q=v^{T} X_{0} & \max \phi \\
 \{u, v\} & \{\mu, v\} & \{\theta, \lambda\} \\
 s . t . & s . t . & s . t . \\
 \frac{v^{T} X_{j}}{u^{T} Y_{j}} \geq 1 & \mu^{T} Y_{0}=1 & X \lambda \leq X_{0} \\
 j=1, \ldots, n & -\mu^{T} Y+v^{T} X \geq 0 & \phi Y_{0}-Y \lambda \leq 0 \\
 u \geq 0 & \mu^{T} \geq 0 & \phi \text { free } \\
 u \geq 0 & v^{T} \geq 0 & \lambda \geq 0
 \end{array}
 $$

 These are symbolized as $O R, D O_{0}, P O_{0}$ respectively.

[^4]: ${ }^{6}$ Charnes, et al. (1990) presented the "Cone Ratio Model" to restrict the set of efficient DMU's. Also, Thompson et al. (1990) proposed for this purpose the Assurance Region method (A/R).

