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 Abstract

~ A& problem with the Ub(l of flexible functional forms is that the estimated functions frequently
violate the regularily ﬁonditiotxs (eg. monotonicity, concavily) implied by ¢eonomic theory
Samp‘lmg tlnéory methods exist for imposing curvalua; conditions at all non-ncgative prices,
but such metiods may significantly reduce the flexibility properties of the functionsi forms.
Bayesian methods can be used to rﬁaiiu‘:.ﬁh these flexibility propertics, by imposing regularity
conditions at 4 point, at-several points, or over the region within which inferehc'esf will be
drawn. We use this Bayesian approach to estimate a system of cost and input cost-share
“equationy ; for the Australian njicrineéwoo'lgmwing secmr; The imposition of both
monotonicity and conca‘my constraints al several sets of prices lcadsV to sign reversals and

significant changes in the magnitudes of 4 small number of estimated input-price elasticities.

KEYWORDS: cost functions, Markov Chain Monte Carlo, iner,uality consiraints



Estimated flexible functional forms frcqﬁcnny violate the monotonieity, concavity, convexily and quasi-
convexity conditions implicd by ec’mmmic ticory, Examples from the agricultural cconomics literature include
the profit and cost function cstishates of Berudt and Khalcd (1979), J"mgcnscn and Fraumeni (1981) and
O*Donnell and Woodland (1995), One solution to this problem is to imposc ﬂ\esé rcgulariiy conditions at the
ume of estmation; a number of methods currently exist Tor imposing at least some conditions at all on-
negative prices, It is pdssihlc to-impose global curvature restrictions, for example, using cigenvalue
decomposition methods and methods invplving Clinlesky factorisation (see Wiley, Schmidt and Bramble, 1973;

Talpaz, Alexander and Shamway, 1989; Coelli, 1996).

Unfortunately, the global imposition of curyaiure conditions forces many flexible functional forms to take on
propertics not implied by economic dico_r’y. For example; imposing global concavity on a translog cost function
may lead to an upward bias in the degree of input substitutability, and imposing global concavity on a
Generalised Leontiel éost function will rule out complementarity between inputs (Diewert and Wales, 1987), An
alternative approach which can be used to maintain the fiexibility propertics of flexible functional forms
mvolves the imposition of regularity ‘cdndmoris only at a point, at several points, or over a region ot i‘n’tcfés;t,
usually the region over which infercnees will be drawn, Methods which can be used to impose curvature
restrictions locally inéludc the nusmerical mcihods of Lau ¢1978) and Gallant and Goluh (’:984}, More recently,
Chalfant and Watlance (1992) and Terefl (1996) have used a Bayesian approach to impose both monotonicity and
curvature resuictions."‘l‘ocally. An advantage of the B:;yesian approsch is its ability to provide {inile sample

mference pracedures for nonlinear functions of parameters,

The Bayesian approach of Terell exploits recent developmients in Markov Chain Monte Carlo {MCMC)
simulation methods. The use of MCMC methods has grown rapidly with the availability of ihexpensiva high-
speed computers and with thie furiher development of powerful computer-intensive statistical alg’oﬁl'llmis. These
algorithms, which include the Gibbs sampler and the Metsopolis-Hastings algorithm, can be used to generate

random variables from a marginal distribution indirectly, without having to derive the density itself, Not



surprisingly, MCMC niethods have revolutionised Bayesiun cconometrics, where posterior marginal densities

can be analytically ditficult orimpossible to derive,

In this paper we use MCMC uiethods to estimate o ystem of ¢ost m‘xd cost-shire equutions for 4 scct‘bmf “w,
Australian woolgrowing industry. This emnpideal application of the MCMC ‘n‘ﬁlixm!t)lngy is miotivated by the
large number of curvature violitions reported i the study by O'Donnell and Woodland. Although wé retain
most of the featires of te O'Donacl! and Woodland moded, and we use their dati set, we estimate a system of
cost and cost-share equations which has a less comblcx stochastic structure, and we focus otily o one Ausiralian
woolgrowing sector (metino-woolgrowing) instead of three. These simplifications atlow us (o better illustrate
the applicability and usefulness of the MCMC mchniqucﬁ. and st allow us (o validate the elasticity cstinates

ubtaned i O'Donnclt and Woodland's eartier wotk,

The outline of the paper is ns follows. In Section 2 we franslate a standard ecoriomie model of pruduc'cri
behaviour into the system of cast and cost-share ¢quations 10 be ased in our cmpirical work, This empirical
madel takes the forn of the Sceringly 'UﬁrclmcdRzﬁgqusiaﬂ (SURY model discussed in mosi clemenlary
cconometrics (extbooks. In Section 3 we describe two alternative hot cquivzﬂ‘ént iterative procedires for
obtming maximum fikelihood estimates of the SUR model parameters, Wiz also describe the Gibbs sampler
and Metropolis-Hastings algorithms, and the manner in which monctonicity and curvature restrictions can be
imposed. The dataare deseribed in Section 4 and the estimation resulis are presented in Seedon 5, The results
are evaluated in erms of parametey cstimazés, predicted cost shares, estimated eigenvalues and estimated inputs

price lasticitics. ‘The paper is concluded in Section 6.,

Our model is predicated on the assumption that the techiological possibilities faced by the firm can be

summarised by the cost function



M Cow )= ain [w'x: flx)2g, x20)

where x s an (Ix B veetor of inputs. w s xin (Is1) vcé:wr of input prices and g is scutar output, I the productivn
function [(x) sptsfies s smmi‘s\m set of relatively weak assumptions then thie cost funciion will be nonnegative
tor all postive paces and oolpat, linearly iomogenons i prices, nondecreasing in prices (e, monolonic) wnd
concave and continuous i prices (Chambiers. 1988). Vioreover, the Hessian matrix of second order derivatives of
the cost function will be symmetric, Our interest lics in the properties of monotonicity and concavity, and the

manner m whien these propertics can be imposed on st estimiated Hexible fincuonat form.

A tunctonal form is flexible if it can provade a loewd ‘second-otder nppmximi\uon' 1o an arbitrary functional
torm  An excellont d»‘s‘:umin of the concept of a 'second-order approximation' can be found in Bamett (1983),
The two most commonly used flexible functional forms are the generalised Leontief introduced by Diewert
(19711 and the translog inroduced by Christensen, Jorgensen and Lau (1971). We follow O'Donnell and
Woodland and assume & constint returns 1o scale translog functional form, which implics a cost function of the

form

1
) I(Clygt = g + CL’('F*’X
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where C represents total costs, w, represents the price of input i and T is 4 limy & nd which is used to caplure

the effects of exogenous wehnical change. The lactor cost-share equations are obtiingd vsing fih&phard's lemina;
L _ . ,

() 8, = Uy + ji‘i.“ijm(“{i) =l il

where s; represents the cost share of input 4, 1t is élear from equations (2) and (3) that our assumied form of

techmical change 15 Hicks neutral: factor shares are unatfecied by teehnical change while unit cests decrease at a

CONSLADE perCentage rate,



Some of the theoretical prapesties of the cost Function £1) can be expressed in terms of e parameters appearing

w equatton (23 Specifically, linear homogeneity and symmetry will be satisfied if the parameters satisty the

estneOns
! . 1 . ,
b ‘;.10,‘ e 1, : ‘}Lm,j =0 =1 .0 0y = gy Oj=l D

Manotomenty will by satisfied if e estimated (actor cast-shires are positive, while concavity will be satistind i
the the Hesstan matnx of second order derivatives of the cost function is negative semi-definite. In tum, the

Hessian matrx will be hegative semi-tdelimte if ond onty if 1 eigenvalucs are non-positive.

Our empincal mudel 15 oblamed by i‘mllczwmﬁ the usugd practice of embedding equations (2) and (3) in a
stochastie framework. - Afier shcomorating stochastic terms, and after recogrising thiat our dats vary over time
and cross-secuonal unils by introduging the fico and tube subsctipts o and t (0=, ., N and =1, ..., T), our

emprrical model s grven by

1
St = O "g‘ilmulnfwjmx e i=1 I-1
5
I0(C g = 00 + 0T+ 0tnlwp ) + 05,2 jgl Oy Wy DINCW) ) o By
where €., (i=1, ..., 1) represents statisucal noise. Note that we have adopted the usual practice of dropping one
share equation to avoid siigularity of the error covaranice matrix, The share and cost equation errocs are assutned

to be mdependently and identically distributed ovet Tirmis and me with properties:

)  Efg,)=0

G i n=k and t=5

M Efe; ¢ ]e:{
ok 0 otherwise



The maodel given by equations (4) (o (7) his an identicnl dci‘émiinisiic structure and a similar stochastic struciure
to the mode! of O'Donnell and Woodland. Like O'Donnell and Woodland, our smhaﬁﬁc assumptions allow for
within- firm contemporancous correlation between the disturbances B =1 ou 1. However, unlike O'Donnell
and Woodland, our undﬂcriy.ing eeonomic model ignores yield uﬁccmminly :mii. 15 1 CORSLQUENCE, our cost function

duws DOt have an eor components structore,

In thus sectinn we deseribe four riethods for estimating the parameters of the model give‘n by equations (4) o {7):
two equivalent methods for ohtanng maximum likelihood estimates, the Gibhs sampler and the Metropolis-
Hassngs algorithm., The maximum. likelhood ’mcmmls we describe do not alfow for the imposition of
monatonicity oF concavity constramts  Nor does out Gib’bs sumpler: the Gibbs sampler 1 only used in this
saudy 1o lustraie an alternatve MOMC fechinigue and to provide i henchmark by which (o judge the 'ms’ulm of
the maximum likelihood and Memsmlis-ﬂrcstings approaches. Qur deseription of 1 standard :Mei:omlis»

Hasungs algorithm provides details on the modifications necessary to ensure that monotonicity and concavity

condittons are satisfied.

For a mode! vonsisting of four inputs the system of equations given by (5) can be more conveniently writien:
& Yyt = Xi By By izl 4
where =80 ‘ i=1.m,3

Vi = )
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and the defingtions af ¥, (= L. 43 conform (o the defmisions of B, G = 1, ..., 4) and are obvious. Nolice
trom equations (93 and (10) that the B, tr = 1, o) have many elements in common. Indeed, the restrictions
piven by equation (43 and the restrictions implicit i equations (9% and (103 together mean (hat only 11 of die 31
parameters w the B, (1= 1, ..., 41 are 'free’ Those that are redundant or not free’ cin be obtained from the other

parametess and restrictions.

Swckimg equatton (8Y by D, Gme period and then by eyoation we obtain

ah

fH

Yaq o

Yy

where ¥, = (¥, 1 Yiage - YiNpe y,a} Yizze s YiNa -+ Yyt 18 (NTx D) for all £ and X, and «; are similarly
defined. although it 15 worth noting that X, is INTeS) foi i=1, ... 3 and X, s (NTx16)  Thus, we can write
the empirical model more compactly as:

12y y=XB+e

where the definitions are obvious. The parametric resirictions implicd by equations (4), (9) and (10) and our

assumptions conceming he error vector ¢ can also he wriifen more compactly as:
3 Rf=r

14y Ele}=0



s Efee') =8 = E8lyy

where L = [0, ] and v-and R are known matrices of order (20x31) and (20x1) respectively. The model given by

equations (12) to (153 is a standard restricted SUR model (see Judge et al, 1985, p.469-473).

To obtain maximum likelihood estimates we note that the restricted Generalised Least Squares (GLS) estimator

forBs
(16 Bzﬁa—(‘k.‘(l{ﬁfk’)”](!,‘»l(ﬁ)‘

where € = [N T@LpX] and f = exis 1@1¢py 15 the unrestricted GLS estimator. I practice, restricted
Esumated Generalised Least Squases (EGLS) estmates can be obtained by replacing X it cquation (16) wilh an
estmator £ construgted using restricied or upfestrcted OLS residuals. ‘OF course. anottier estimate of ﬁ‘ canhe
obtamed by replacing E 1n equation (161 with an estmator based on the resticted EGLS residuals (rather than
OLS residualsy. In fact, we can contintie @ updale our estimates of f} and X in an iterative way and, il the

disturbances are multivariate nommal, this derative process will yield the maximum likelibood estimates,

The nerative progess deseribed above ¢an be ime-consuming if the number of resirictions ta be imposed and
parameters to he estimated at cach step is large. An alternative but equivalent estimation proceduare, which fs not
only faster but can also be usetully exploited in our Bayesian approach, invalves maximum likelihood
estumation of the subset of 11 'l‘r‘én"pa‘rmncmrs in .ﬁ.y After camécrgence., the remaining 20 maximum likelilood
estmates are desived from thie 20 parametric restyictions Rf =r. To implement the procedure we rearrange the
rows of B and the columns of X and R in such a way that cquations (‘l“?;) and (1.3) caii be writen in the following

partitioned form;
an  y=Xpre=|X; X;l[}}] +E

(18 RP=[R; Rzl[,?]zr |



where X, Xa. Ry Ry, v and 1y are (NTX20), (NTx 1), (?,OXQOL (20x11); (L1x1) wnd (20%1) respestively,
The vector ¥ contting the subser of 11 'free’ parameters to be estimated in the Tirst stage, and i contains the 20
remaming parameters i [ which will be estimated using estimates of  and the following equivalent form of

equation (18):
an =R Ry

Recall that the veetory ol ‘free’ paramelers contiing parametets which cannol be obtained from other parameters

and restrictions. To éstimute ¥ e use (19) to rewnle (171 in te form:
A y=XTrde

where X*= X « Xy RY R, and we have exploited the fuct that v is % zero veelor. ‘The model given by (20), (14)

and (151 1s an unrestricted SUR e, with tunrestricted) GLS estimator m given by
Qb = CRME ISy

where ¢ = [X "'cxfl@rﬁf,ax*] 1. Again, in practice, EGLS estimaies can be oblained by rc;vlﬁi:iﬁg Lwihan
estmator canstructed using unrestricted OLS residuals, Morcover, if the disturbances are muliivariate normal

then a maximum likelihood estimate for y can be oblained using the leriive proceduire described uhove,

3.2 Bayesian Eslimation

The formulation of our empirical model 15 an unrestricted SUR model (equitions (20), (14) aud (15)) is
convenient for Bayesian analysis beeause o number of relevant results already appear in the maitstream
cconometrics literature (eg, Judge et al, pA78-80), The cornerstone of Bayesian analysis is Bayes Thcdtjc’m

which, in the: present context, allows us 10 state that;



@)y Eye Liy 1% 2 piy £

where « denotes proportionnl (o', fty, £ 1¥) is the posterior joint density function for y and £ fiven y-(the
posterior deastty sustmarises sl the information wbout ¥ and Z after the sample y has been absurv;;tﬁ. Liy ¥,
1 1s the Tikelihood fun,uiima (susmmarising all e sample infarmation), and p(y, 2:) iy the prior densisy lunction
tor yand £ (summarising the nonsample information about y and £), Our interest Hes in the posterior density
ty. £ 1y), and characteristics (eg. means and varianees) of posterior marginal densities which can be derived

from 1t

We begin with 1 standard Bayesian weatment of the unrestricted SUR model and assume that € is multivariaie

normal. Under this assumplion the likelihood function is given by Qudge ef al, p478)
2% Liyly, e JEINT2 expl-.5 AL n

where A ts the dx4 symmictrie mateix with (. )P clement oy, = (e XTNyK Y In wddidon, we use &

nontniormative’ joint prior:
(245 ply, ) = plyd plE) ltye I sel2

where py) e constant, pEy e DR 1 ihe limiting form of n Wishart density, the Iy are e suis of
permissible pasamieter values when monowonicity and s:tmc:wiiy information is (s=1) and is ot (s=2) avallable,
and lye ) is an indicator function which tikes the value 1 if yo I, and takes the value ) otherwise, We
chowse & noninfomiative prior because it allows us 10 compare our maximum Hkelihood results with oy
Bayeswun results, whether or not monaloizity shd concavity information is availsble. Note gt the z&!gehiiﬁr:
form of the prior p(y £) is unchanged by the availability of monotonicity and cmiéwits? kfi):furmmibn. even
though the region over which it is defined is different, The same §s tue of the joint naalétidr dengity which is

gven by Judge er al, pATI:
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We are particularly interested o the poém‘rim marginal densities of the efements of y, and the medns and standard
devintions of those posterior densities. Unfortunately, these results cunnot e obtained from cquations (25) and
(26) analytically, Insfead, we must ;2'é<: MCMC methods 1o drw g ssmple from 1y Ly), We then use these
sample observitions t(w plar estimaies m’tllc macginal dengities of the élumdms of v, m.id 10 gslimale ﬂ,,i,éiv |
moments. The two MCMC algorithims we use 1o generate these samples are {hes Clibbs s:smplék und Metropolise

Hastings algorithms,
The Gibbs Sampler

U .eful ilustrations and discussions of the workings of (he Gibbs sampler cag be found in Casella snd George
(1992) and Chib and Greenberg (19932, Tn thie present context, the Gibbs sampler is an algorithim which

eftectvely samples from 1y 1 y) by Herating as follows:

Step 11 Specily starting values /7, £, Seti=0,
Step 2 Generate 4+ from 1y 125 §)
Step 3 Generate £141 from (S 141+, y)

Step 4:  Setr=i+1 and go to Step 2,

This tteration seheme produces o Gibbs suqucnccni ‘eliin’ 4, £, 42, £2, ... with the propesty that, for large
k. ¥ is effectively o sumple point from: [y} y); T, I practice, 1%, .. 70 can be regarded us a sample
from f(y1y) in (his pﬂbcr Wi sel kaa,()()()mm ‘huriein' period) and deaw a sumple of sifza, 24,000, We
generate samples of (his size because thie obiservations in our Gibbs chain are .c;»trélalcd; smaller samply sizes
could have been vsed iF our sample of size i wis t:¢)nistni:cmd;using the only the Jast observation In m

mdepentent Gibihs chising,



Nottee from Steps 2 and 3 that in order to make the Gibbs sampler operanonal we need the conditional denzities

Ky 2, y) and (1Y ).

Fo obtan (the kernel of) the conditional posterior pdf 11y, ) we use (25) and view £as a constant, yielding
AN Ry LE yde expleSty- PROE @ IX Pl e I
where ¥ 15 the GLS estimator given by aqba‘tmu (21). Thus, (Y1 X, y) 18 proportional 1o the density function
of & multtvariate formal random variable with meun veetor ¥ and covariance matrix [X*(2 t®lyaX 1Y,
Accordingly, in Step 2 we generate observailons ¥ using (see Phrymes, 1970, p. 1)

28 P =y+Pa

Where 2 = (2, .. 2y)" 18 8 vector of mdependent stundird normal variaies 2=NIOD G=1, oo L), and s the

(VIxT1) matrix such it P9 = (X2 10 lx L

Finally, to obtain the kernel of the conditional posterior pdf {( W. ¥) we use (27) and view ' as a constant,

yeilding

A HEIR D i D=5 WASD)

Thus, 12 1%, y) is proportional 1o an Invertcy Wishart density function with parameters A, NT and I (sce ;

Zeliner, 1971, p.395), Moreover, in Step 3 we can gencrate observations £F using (see Dhrynies, p.14)
a0 3 = (HAZ)

where % = [z} is an (XN matsix of independent standard normal varintes 2=N(0, 1) Gi=1, o L jel -, NT) ,

and M is the (Ix1) matrix stch thal HE = A,




A deseription of the workings of the Metropolis-Hastings algorithm can be found in Chib and Greenberg, Tn the
lireac'nnt context, 4 Meimpoli&m\élings ‘algorithin which altows Us to impose monotonicity and concavity at

price veelors wy, ... Wy proceeds sieratively as follows:

Step 12 Specify an arbimuy"slaning value 4 which satisties the écxxhsslréixm. Seti=0, :
Step 2:. Given the cuirent value ‘v‘; use a symewtric wansition density gy, 1) to generaie a candidate tor the
nex( value .i" the sequence, ¥, | | ’ |
Swep 3. Use the candidate vatue ¥° and prices Wy, e W (0 cvaluai«: Use monotonicity and concavity
consiraints. If any constraints are violated réturn 1o Stcp 2. ‘ | '
Step 4 Caleulate oy, 'r) = min(eyEVEY, 1)
Step 5 Gém:rmc an independent uniform random variable U from the interval [0,1]
T { ¥e if Usodyt, ¥©)
Step 6: Serytl=9q i
e yrif Usoy, ¥4

Step 72 Sevi=i+{ and go to Step 2,

Again, this iteration scheme produces 2 chain ), 72, Mth the property that, for large k, ¥K is al‘fe«:‘ﬁvély a
sample point from £(y 1 y). Thus, dhe sequence v, .. AR+M can once again be regarded as a sample from f(y1
y). Importantly, this sc’quehw satisfies the monotonicity and concavity constraints at price VECIORs Wy, ., Waw
, In this f)apcr we use a bum-in period of ‘k:de.O(X)‘, we draw a sahple of size m¥65,006. and we iinp@‘sé the
‘mnnolnniéity and concavily at the T seis of average input prices “’t = Zw, /N {t=1, ... T}, In Step 3 the
‘mbnmonicity éonstrainc ig evaluated using the signs of the predieted cost shares, while the ‘concavity consfraint

is evaluated using the maxirum cigenvalye of the estimated Hessian matrix of the cost funetion,

Notice from Steps 1, 2 and 4 that in order to make the Metropolis-Hastings algorithm operational we need an
arbitrary starting value ¥ which satisfics the constraints. We also need ihe transition density g(y/, ¥¢) and the

kertiel of £(Y),
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We use the starting vatues =025 (i=1, ..., 4) and txﬂ:’() for .a'li i#l, These starting values s;niéi‘y ihe
constraints implicd by economic theory but may be some distance from the mean of f(y | y), Our unnsually

long burn-in period helps ensure the convergence o our Metropolis-Hastings chain.

The transition density qCy, ¥¢) is assumed (o be multivarite normal with mean ¥ and covariance matrix

IX" (1@ IX"] ) (it estimated covariance matrix of the restricted SUR estimator ). In practice, it is
X +

commonplace to multiply the (arbitrarily chosen) covariance matrix by a constant h in order to manipulate the
rate at which the candidite ¥ is aceepted ag the next value in the sequence. In this paper we set h=0,02 in order
to oblain an acceptaiice rute of approximately 0.5, This constant was chosen by (hal and ¢rror,  Given our
assuinptions concerning the transition density it is possible to gencrate ¥ using (see Dhrymes, p.14)

Ay ye=yevurz

wherz P has been defined aboye,

The kemel of the marginal density f(y) can be obtained by integraiing X out of the joint posterior (26) (see Judge

el al, p.479):

A2 iy ly) e AINT2 (e Ty

In practice, we altempt to réduc;: numerical pmbléms hy galcmmihg )Yy as:
(33) M) = exp[ - (rJfI’/:!)qu(lA"l)‘ + (iilT/i)Iog(lA‘l) i

where ACand AV represeiit A evaluated at ¥ and 4 respectively,
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4. DATA

The data was originally collected by the Austealian Bureaw of Agricultural Economics (ABARE) as part of its k
Ausualian Sheep Industry Surveys (ASIS), Qur s:lmpié‘ consists of 310 time-serics and cross-section
observations on Australian merino woolgrowers, covering the presiods 1952-53 10 1962-63 (t=1, ..., 11) and
1964-65 to 1975-76 (1=13, ..., 2. Bach absmmion ixi the original data setis n rc:coM m‘ the avcmgé financial
and physical charactenistics of a group of firms, These obervations are 'ix;sml o construct observations on ﬁmtﬁut
(). total cost (C), input quantitics (x) and input prices (w), Inputs were grouped into one of four broad
categories. land, capital, hivestock and other inputs (‘iné:luding ln,ho’u,r. equipment, materials and services). A

more complete description of the data can be found in O'Dansell and Woodiand,

The results were gencrated using SHAZAM (White, 1978), In this section the results are cvaluated in torms of
estimates of the unknown paraimeters, ‘prmdicwd cost shares, eigenyalugs of the estimated Hessian matrix of

second order derivatives of the cost function, and estimates of the own- and cross-price clasticities.

Maximum likelifiood estimates of the structural parameters [ are presented i Table 1 along with the means of
the samples we obtained using the Gibbs and Mewopolis-Hastings algorithms, "The numbcrs in parentheses are

cither the standard errors of the maximunm likelibood estimates or the standard deviations of our MCMC samples,

Ow maximum likelihood estimates dre similar to the maximum lik‘éiihkoodcsﬁtﬁa(es presented by O'Donnell and
Woodland. Thus, it appéms that our specification of 4 less complex stochastic siructure and our focus on fonly'

one woolgrowing sertor instead of mwé has had little or no effect on the signs or magnitudes of the slope
cocfficicnts of their standard ervors, Note that all coefficients ase suiiis,uéally different from 2610 8t the usual :

levels of significance. Also bote that the cocfficicnt of the time variable i the cost function is & measuire of the
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rate of technical progress, and onr maximum Jikelihood estimates suggest that the annuat proportional reduction
0 umt costs as a result of technicil change is in the order of 3,2%, only slightly igher than the estimate of

29% reporied by ('Donnell and Woodland,

The strong simifarity hetween the maximum Jikelihood and Gibbs estimates presented in Table 1 refleets our yse
of a nomnformative prior. ‘The use of a noninformative prios implics that the Jocation and Shnpc of the
tikelthood function LOy (v, X) will govern the location and shape of the posterior density ¢y, £1y), and, of
course. our maximum likelihood and Gibbs results have been obtained using these two functions. Note,
however, that the standard d;:i:mtiqlis of the Gibbs samples are always higher than the standard errors of the
maximum likelihood estimates. Thiese differences arise becavse tht& standard errors of the maximum likelihood
estumates do not account for tie ungertainty aéaocmtcd,wim the estimation of the variance-covariance matrix X,
The standard deviations of t}ie Gibbs sumples do.aceount for this uncertainty. For this reason, and because the
maximum likelihood and Gibbs estimates re very samilar, we shall ignore the maximuin likelibood estimates in

the remainder of Uus papet.

Finally, there is a reasonable similarity between the Gibbs and Metropolis-Hastings estimates presented in Table
1. In fact, only the ﬁyrsu and second-order coefficients associated with the livestock input anpc.ﬁr ahs very
different: the means of G thutions Of 0y, 05 and fugy appear 10 change significantly with the imposition
uf the monotonicity and concavity constratnts. Violations of these constrainis are assessed below in terms of

predicted cost shares and the eigenvalues of the estimated Hessian matrix.
Predicted Cost Shacs

Monotonicity requires that the predicied cost shares be positive. The Gibbs samples were used to chizck this
requircment at the 23 seis of average input prices Wy = W, /N (=1, .., 11, 13, .., 24). The distributions of
the predicted st shases were uniformly found to fic between zero and one, indicating that monotonicity was

satisficd without the imposition of constraints,
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Bigenyalucs

For the estmated cost Functicn to be consistent with economie theory it must be concave, wqmrihg thiat the
estmated Hessun matnx ol second-ordes price denvatves be negative semi-delinite. A necessary and sufficient
condwon for pegative sei-detineness 15 that all the exgenvalues be non-positive, o"mmu wid Woodland
used ths crferon i tewr study and found that the cotcavity cmxdti‘um was violuted in 36 out of 69 cases, with
many viofations attributed o i posiive r:’:sj‘mnsc of the livestock ioput to & change in its own price,  The
ivestock tpnt xcems o play an equadly nnpnrt"am role 1n our study. recall that only ’tha (means of the

distribuuons of thed hivestock coelficients appei to change mgmi“wmtly' with the imposition ol the consteaints.

Our Gibbs samples were used (o clieck coneavity at our 2% sets of average wiput prices and si)njc ol the results
are presented n Table 2. Table 2 presents the meais and standard devmtm.ns of the maxmum ergmivaiucs
caleulated using the CGibbs samples 1T out of 23 of these means ace posiave, it resull which 1s consistent with
the results of O'Donnell and Woodkand - Table 2 also presents the means of the maximuim cigr;n,vaiues ileubated
using the Metropohis-Jastings samples. OF course, the ergenvidues ealculated using the Memj,inlié*ﬂéwﬂgs

samples have been coostained to be non-positive

The effects of imposing concavity of our estimated cost function are Further Hlustruted it Figures 110 4 where
we present the estimated posierior pdl's of die maximum eigenvalucs in four representative i periods (=1, 5,

23 and 24)

Several important observations emerge from Figures 1 tod. First, in all cases there is a noticeable Jeftward shift
i the posterior pdf after the imposition of the concavity constraint, even when the unconstraingd paf already bas
a high positive probability over the negative range of Ui real Jine (eg, Figure 2). This suggests thit the
posterior conrelations between the maximuem eigenvalies in different ume periods may be high, Second, most of
the constrained posterior pdf's have a regular shiape, without severe truncation at zefo, cven when the
unconstrained pdf has a high po'smwr p’mhab.ili(y' over the pm:itivc range of the real tine (eg. Figure 1), An
exception is the consteained ‘pomrim pdf in time period t=24 ‘(Piguﬂre 4). An explanation may be found in Table

2. where we observe that the postetior mean of the unconstrained maximum cigesvalog in time period (=24 s
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lugher than in any other time period. This suggests that constt..aing this cigenvalue (o be negative may bave
been sufficient (o impose negativity on the remainder. Third, the constrained mslcrmt pdr's appiar (o hayve
smaller varsanee than the unconstraingd pdl‘s; an observation which is confirmed by looking at the standard
deviaions presented in Table 2. This is not surprising: the xnimmmn of sestrictions will make the Metropolis-
Hasungs estimates more precise. Finally, the unconstrained posterior pdf’s depicted in Figures 2 and 3 illustrate
how the means of the cigenvalies reported in “Fable 2 may um‘iarsmm the degree (o winch the mnc‘avity
constramt 1s violated.  Even when the posterior mean 1y ncg:sttvc. coneavity can he regarded as being violated
whe zve tie posternios pdl of the maximum eigenvalue has positive probability over the positive range of the

real e Using this enitepon, the Gibbs estimates violate concavaty in 14 out of 23 tine periods

The imposition of regulanily condittons on our estimated cost function leads o significant changes in the
postenor distributions of @ number of dwne ang crxiswn'ca glasticities. To hnefly iiustrate, Table 3 reports the

means and standard deviations of the pdf's of input price clasucities calculaied 4t averape prices w s Zw,/NT.

Three features of Table 3 are of particular inlcrest, not least because they tend to confirm our carlicr Jjudgement
concerning the role of the livestock input, First, tthe means ofyall siwx»pn‘w clasticities are correetly signed and
ndicate that all input demands are inclastic with respect (o their own pnwb Mbrccsvun the only own-price
elasticity which scems to bé affected by the imposition of the constraints is the vwn-price elasticity for
livestock: the mean of this clznéticiny decreases from -0.13 to 0.3, Second, the standard deviations of thé ‘
constrained and unconstrained pdf's are generally similar, Again, the only n‘bta‘htc zéxceptioﬁ is ma standasd
deviatios of the own-price clasticity for livestock, which falls dramatically with the immsiﬁcn of the
constraints. Finally, the two cross-price elasticities which measure the relationships between the prices and
quantitics of livestock and other inputs undergo 4 sign reversal with the imposition of the constraints, Thus, all

pairs of inpuis now appear to he substitutes in production,
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In this paper we gise Markay Chain Monte Cardo {MCMC) mcutmis to fmpose regolarity conditions on i system
of cost and costshare equations. This Bayesian metivdology FErEseits il aliernative to wnv#hﬁpnm s;sznpliﬂg
theory techmyues whiieh typeadly desiroy the fexibility propertics of many of the more populr functional ‘
torms T'he methodology has prevm&slgy been psed by Teeell o estimate 4 st fungtion using the weli-known
Berndt and Wood (1975) dati set. Our own empirical application hus teen motivated by the large number of
regulanty violations reported in the study by ODonnell and Woedland. “Thus, our empirical tpdel is based on

the tanstog model of ODonneld and Woodland and estimated using (a part of) their data sel.

The empirteal results we present smclude parmeler estimates, eipenvitue estmates and cs,umm‘c& ol input price
elastieities for models with and without regolanty conste til,s uxipostru Our unconstraiiicd MOCMC gstinuales arc
almons sdentical (o vur fakimum tikelihood estimates and tie maximum likelibood cstimates of O'DonneH and
Woodland  Our constrained MCMC estimates differ from o uhconstained estimates in severn) respects: all
maxtmum eigenvalues becoims negative 1 accordance with econamie tieory, standand deviations become smaller,
and the signs and magnitudes of coefficients and elasticities associated with the lvestock input undergo
substantial change. This fast result 1s consistent with the finding of O'Dannell and Woodlund that » large

number of regularity violalons are astociaied with the livesiock input.

Our paper demonstrates how Bayesian techniques can be used to snpose i large number of incquality congtrainis
on an estimated cost-or profit function, Wn also demonstrate the use of two important numerical algorithms
which can be used to generate smnplcs‘ rmin funadytically) pr‘ahlémmic mrginal probubility densitics, Finally,
we show how the Bayesian approach ean be used (o conveniently summarise important information in the form

of posterior pif’s,

Some possible extensions of our study include the specification of a more complex. error struciure, Cne
possibility is to consider the heteroskedastic error components structure of O'Donnell and Woodland, Another

possibility is the truncation of one or mofe of these error components in tine with the stochastic specifications
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popular in the Trontier lieratere, Other possible exiensions include the use of aliemative funetional forms and

relaxation of the assumplion o} constant retsms (o seale,
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Tuble L Steuctural Parmelers

L ©Gibbs®  Metropolis-Hastings”
Constant ; .5953 0.5959 081
00578 (0.0619) (0.0491)
o, Lud 0.2503 0.2501 0.2514
C O 0.0053) (0.0058) (0.0053)
n,  Capial | 0.6742 06743 0,658
©0188) 00203 (00180
o,  Livestock 0.4400 04401 0.3445
O0126) (0.0132) 0.0071)
ay  Other . S
oy, LandLand 0.0234 0.0234 0,0235
(0.0007) (0.0007) (0.0007)
a,, Land/Capital 00176 0.0176 0.0177
: (0.0008) OO0 (0.0008)
oy Land/Livest, 00062 0,0062 -0,0060
(0.0006) M0 0007
oy Land/Other ~ » w ' .
0y,  Capital/Capital 04151 01151 st
(D.0059) O006h (00059
oy Capital/Livest, 00074 : -0.0074 -0.0064
(0.024) (0.0026) (0.0022)
05,  Capital/Other ’ |
oy  Livest/Livest. ~ 0.0757 00757 0.0567
' - (00022) (0,0024) 0.0011)
G4  Livest/Other . - .
o,y Other/Other ‘ . . o -
ap  Time 0031 -0,0320 00333
: 0.0020) 10.0925) (0.0023) ;

* Numbers in parenthoses are siandard errors,
P Numbers in parentlieses are standard deviations of the MCMC samples,
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Table 2: Maximum Eigenivalues®

C Yewr o : Gibbs Metropolis-Hastinigs
1952-53 s 0.0248 ~ -0.0101
P (0.0046) ©.0019)
195354 2 00149 +0.0250
- (0.0055) C o (0.0043)
195455 3 0009 -0.0776
00047 : (:0039)
1955-56 4 00149 -0.0364
, o (0.0047) (0.0035)
1956-57 5 00120 00328
; 10.0046) o (0.0036)
195758 6 00220 00321
, 000560 (000400
1958-59 7 0.0008 00213
o {0.0041) (0.0016)
1959-60 8 00148 -0.0345
~ ' (0.0047) (0.0036)
1960-61 9 : 00100 , 00212
; ‘ o (0.0K40) {0.0013)
1961-62 ~ 10 o 0m3l 00189
oM (0.0015)
1962-63 N ‘ 0.0179 0.0153
: ; (00042 (0.0015)
1964-65 13 00217 -0.0371
‘ (0.0054) (0.0037)
19566 14 -0.0190 00379
: N (0.0051) ' (0.0037)
196667 s 0019 00847
S Cf00sy (0.0037)
196768 15 00055 -0.0329
EE : (0.0043) (0.0022)
1968-69 R : 0.0054. S 00
~ | (0.0041) 0.0015)
1969-70 18 ) -0.0006 00295
| A (0.0043) (0.0017)
1970-71 R U 0,006 00287

0.0043) - 0.0017)
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Table 2. continued.

Yeur t Gibbs : Metropolss-Hustings
1971-72 20 (1.0229 ‘ 00116
, (0.0042) O 00012)
1972-73 21 0.0093 00215
: {0.0040) {0.0012)
1973.74 22 ‘ 0.0131 , 0.0201
- 0Ok 0009
197475 23 -0.0068 ; ‘ -0.0352
0.0051) , O (0.0025)
1975-76 24 S 00257 | -0.0006

00043) (0.0006)

" Numbers m parentheses are standird deviations of the MCMC samples.



LARTE 3: Input-Price Blasticitics at Averege Prices®

brice of Price of Price of Price of
Land Capitnl Livestock Other Inputs
Gibbs B
Qty of Land 0.6468 .4934 0.0269 {31263
(0.0109) {0.0104) {0.0070) {0.0179)
1y of Capital C0148) -0.3145 0.0725 0.0937
(0.0033) (0.0219) (0.0088) (0.0221)
Qty of Lavestock 0.0245 02187 -0.1263 01168
00067 (.0270) (0.0238) ; {0.0338)
Qty of Other Inputs 00216 0.0530 -0.0219 -0.0527
100035y (0.0125) {0.0063) (0.0147)
Metropolis-Haslings
Qty of Land 0640 0.4948 0,0304 0.1188
(001D (0.0098) (00076} (0.0167)
Qty of Capital 0479 03299 0.0765 0.1055
{0.0032) (0,0201) 0.0074) (0.:0199)
Qty of Livestock 0.0271 0.2276 0.3260 0.0712
(00073) {00224y (0.0054) (0.0215)
Qty of Other Inputs 0.0200 0.0593 0035 00028
10:0032) 0011 0.0041) (0.0122)

" Numbers in parentheses are standard deviations of the MCMC samples,
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Figure 1: Posterior distribution of the maximum eigenvalug: averdge 1952 53 prices {t=1)
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Figure 2: Posterior distribution of the maximutn eigenvalue; average 1956-57 prices (t=5) :
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Fuguge 3. Posterior distribution of the maximuns eigenvaluc: averuge 197374 prices (1=23)
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Eigure 4: Posterior distribution of the maximum eigenvalue: average 1974-75 prices (1=24)
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