
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 

 An Inertia Model for the Adoption of 

New Farming Practices 

Simon Anastasiadis1 
1 Victoria University of Wellington and MOTU 

Public Policy and Economic Research 

 

Paper presented at the 2012 NZARES Conference 
Tahuna Conference Centre – Nelson, New Zealand. August 30-31, 2012 

 

Copyright by author(s). Readers may make copies of this document for non-commercial purposes only, 

provided that this copyright notice appears on all such copies 



An Inertia Model for the Adoption of New Farming
Practices

Simon Anastasiadis
Victoria University of Wellington,

and
Motu Public Policy and Economic Research

August 3, 2012

Abstract

Nutrient emissions from agricultural land are now widely recognized as
one of the key contributors to poor water quality in local lakes, rivers and
streams. Nutrient trading has been suggested as a regulatory tool to improve
and protect water quality. However, farmers’ attitudes suggest that they are
resistant to making the changes required under such a scheme.

This paper develops a model of farmers’ resistance to change and their
adoption of new management practices under nutrient trading regulation. We
specify resistance as a bound on the adoption of new practices and allow this
bound to relax as farmers’ resistance to change weakens.

This paper reflects current work in progress as part of the author’s Master’s
Thesis. Future work will extend and build upon the material presented here.
We request that readers refer to this paper only in the absence of a more recent
version.

This paper has been prepared for the purposes of the New Zealand Agri-
cultural and Resource Economics Society conference August 2012.

Key words: agriculture; inertia; mitigation; nutrient trading; technology
adoption;

1 Introduction

Nutrient emissions from non-point sources, such as agricultural land, are increas-
ing recognized as one of the key contributors to poor water quality. Declining water
quality is a serious problem in many developed countries, including New Zealand,
and in an increasing number of developing countries (Sutton et al. 2011, Parliamen-
tary Commissioner for the Environment 2006). Numerical modeling of different
approaches to improving water quality can help inform the decisions of both pol-
icy makers and local stakeholders. Unfortunately, some simplifying assumptions
that are necessary to make numerical modeling tractable reduce the credibility of
the associated results.

The NManager model (Anastasiadis et al. 2011) make several simplifying
assumptions in order to model the performance of six different designs of nitrogen
regulation (including a nitrogen trading scheme) in the Lake Rotorua catchment
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(New Zealand). These assumptions include: farmers are willing to change, farmers
respond optimally to a nitrogen price, and farmers’ decisions are independent of
their past decisions and the decisions of other farmers.∗

However, evidence suggests these assumptions are a poor representation
of reality. Farmers have expressed a reluctance to change where it involves the
adoption of unfamiliar farm management practices or technologies (see for exam-
ple Fenemor et al. 2012); they tend to manage their business with an eight to ten
year time horizon; and may have incentives to delay the adoption of new prac-
tices or technologies in order to capitalize on learning opportunities (Coleman &
Sin 2012). Furthermore, there is a well known psychological phenomenon where
people and organizations continue a familiar practice, even though a better one is
available, until the cost of continuing with their current practice exceeds the cost of
change.

In order to provide a more credible model of farmer behavior, and to re-
flect the reality identified above, we develop a model of farmers’ resistance to
change. We describe farmers’ resistance to change as their inertia. Farmers’ in-
ertia depends on their past behavior, the past behavior of other farmers, and the
passing of time. This is a novel and somewhat challenging approach as it involves
quantifying something that is difficult to identify and measure.

The paper is set out as follows: In the remainder of this section we review
some of the literature relevant to agricultural adoption, and briefly describe the
workings of a nutrient trading scheme. In section 2 we specify our inertia model
for the adoption of new mitigation technologies and practices. The implementa-
tion of the model is discussed in section 3, and section 4 concludes with the future
intentions for this work.

1.1 The adoption of new agricultural practices

Research into the factors that affect the adoption on new agricultural practices and
technologies have highlighted the importance of networks, information, and costs.
Foster & Rosenzweig (1995) find that imperfect knowledge is a key barrier to the
adoption of new seed varieties for Indian households, and that households ini-
tially learn from their neighbors’ experiences. Conley & Udry (2003) draw similar
conclusions with respect to the growing of pineapples in Ghana. They find that
learning from social networks of other farmers is significant, even after controlling
for spatial and serial correlation. Pannell et al. (2006) review the drivers of adoption
and the implications to policy makers in Australia. They note that farmers have an
excess of information and are almost never passive in their receipt of information.

Meta-analyses of the drivers of adoption have been conducted for the United
States. Skinner & Staiger (2005) compare adoption rates of hybrid corn, tractors,
and β-blockers (for the treatment of heart attacks) across states. They find that
high levels of social and human capital (i.e. involvement in local networks and
education) are strongly associated with early adoption, while low financial costs of
adoption had a much weaker affect. Skinner & Staiger (2005) also explore the dif-

∗We thank audiences at the New Zealand and the Australian Agricultural and Resource Eco-
nomics conferences (2011 and 2012 respectively) for their honest feedback that these assumptions
were too simplistic. Part of the motivation for this paper is in response to their feedback.
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ferences between the economic paradigm, where agents are profit or utility maxi-
mizers and invest in eduction or new technology only if it will help earn a higher
wage; and the sociology paradigm, where eduction, networks and the structure of
organizations can empower people to being about change. A more recent study by
Baumgart-Getz et al. (2012) emphasizes the importance of farmers’ connections to
local networks, the quality of their information, and their financial capacity. Farm-
ers’ risk aversion was not found to be significant.

A less emphasized determinant of farmers’ adoption decisions is farmers’
attitudes to farming and to change. Dury et al. (2010) interview farmers in France
and identify the following as farmer objectives: maximizing profit or income, es-
tablishing and maintaining a secure source of income, and reducing or simplifying
their workload. Connor et al. (2008) and Ward et al. (2008) give the following dif-
ferent classifications of Australian farmers into groups.

Connor et al. (2008) classify farmers as follows:
• 52 percent are business oriented with low environmental concern. These

farmers are reliant on their own knowledge and independent in their deci-
sion making.
• 22 percent are business oriented and confident in their ability to innovate.

These farmers have the highest environmental concern.
• 13 percent are traditionalists and have no environmental concern. These

farmers believe that they do not need a high degree of education or training
in order to farm effectively.

The remaining 13 percent of farmers are not described.

Ward et al. (2008) classify farmers as follows:
• 52 percent have weak business orientation and low environmental concern.

These farmers are the most receptive to social influences on their decision
making.
• 25 percent have strong business orientation and are confident in their ability

to innovate. These farmers have low environmental concern, are not moti-
vated to learn.
• 10 percent have the weakest business orientation and high environmental

concern. These farmers are not receptive to social influences nor motivated to
learn.
• 13 percent have the highest environmental concern and willingness to learn.

These farmers also face significant capital constraints.

Coleman & Sin (2012) provide a framework for thinking about farmers’ deci-
sions to adopt new environmentally friendly technologies. They note that delaying
adoption may be an optimal individual decision as it allows farmers to learn from
earlier adopters, take advantage of alternative technologies that might arise, and
avoid irreversible costs of adopting and locking-in inferior technologies. Where
farmers’ individual adoption decisions are not socially optimal Coleman & Sin
(2012) identify the roles for regulatory intervention to encourage adoption.

Following the development of a new technology, the proportion of the target
population who have adopted the technology can be describes using an S-shaped
function of the time since the technology became available. Griliches (1957) fits
these S-curves with logistic functions and characterizes them according to three
aspects: (i) origin, when the population begin to adopt; (ii) slope, the speed of
adoption; and (iii) ceiling, the total proportion who adoption.
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A common approach when modeling individual firms’ adoption decisions
is to treat adoption as an irreversible binary decision: in some period firms make
a step change from the old technology to the new technology. The key question
under this framework is when will firms adopt the new technology? Berger (2001)
consider this using an agent-based approach, where as agents learn about the tech-
nology from observing other agents they become more likely to adopt it. This is also
the framework used by Kerr & Newellz (2003) to assess the ability of regulatory in-
tervention to encourage technology adoption in the context of the U.S. petroleum
industry’s phase-down of lead in gasoline. The approach by Ellison & Fudenberg
(1993) is notable in that, they allow their agents to revise their choice of which tech-
nology they will use. Their model contains inertia as only some agents are able to
change each period.

In this paper, as part of considering the adoption of specific mitigation prac-
tices and technologies, we treat adoption as a continuous decision. Rather than
deciding when to adopt, in each period farmers decide how much more they will
adopt new practices.

1.2 Nutrient trading schemes

We will frequently discuss the development of our inertia model in the context of a
trading scheme for nitrogen emissions. In this section we provide a brief overview
of nutrient trading schemes and their application to non-point sources. Readers
who are already comfortable with these concepts may wish to move forward to the
next section.

The key nutrients emitted by agricultural activities are nitrogen and phos-
phorus. Increased levels of these nutrients in local water bodies lead to reduced
water clarity and increased algal growth. The resulting concentrations of algae
lead to eutrophication of water ways, are harmful to fish, and in sufficient quanti-
ties can be poisonous to humans and livestock (Carpenter et al. 1998, Parliamentary
Commissioner for the Environment 2006).

Nitrogen and phosphorus tend to enter the farming system via the applica-
tion of fertilizers and the importing of feed for livestock. Some of these nutrients
leave the farm as produce: milk, meat, fiber and crops. Of the nutrients that do not
leave the farm as produce, a proportion remain in the soil and plants but the rest
is lost from the farm as nutrient emissions into local water ways (such as rivers,
streams, and lakes) or into groundwater (underground bodies of water).

In New Zealand, farms’ nutrient losses can be estimated using the OVER-
SEER software tool developed by AgResearch (2009). This gives farms’ long run
average nutrient losses as a function of farm management practices, including:
farm type, output produced, stocking rate, fertilizer use, imported feed, area for
effluent irrigation, and the use of mitigation technologies (nitrogen inhibitors, win-
tering and stand-off pads); and farm location, including: slope, rainfall, soil type
and drainage.

Under a nitrogen trading scheme the regulator provides a fixed supply of
annual allowances. Each allowance entitles the bearer to emit a single unit of ni-
trogen. At the start of each year, farmers receive or purchase an initial allocation
of permits. During the year, farmers are free to buy and sell allowances. At the
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end of the year, farmers must surrender sufficient allowances to cover the nitrogen
emissions from their property for that year. Farmers with insufficient allowances
to cover their intended emissions must either purchase unused allowances from
farmers with excess allowances, reduce their emissions, or risk non-compliance.
By controlling the supply of allowances a regulator can manage the total amount
of nitrogen emissions.

A trading scheme is theoretically desirable, as it encourages mitigation to
occur where it is most cost effective. Profit-maximizing farmers will mitigate as
long as the cost of mitigation is less than the value of the allowances they would
otherwise have to hold. This implies that the price of allowances will be such that
all allowances are used and each farmer is indifferent between further mitigation
and purchasing additional allowances. It follows that under a trading scheme the
least costly mitigation activities will take place first.

For a more general introduction to the literature on environmental trading
schemes we recommend Tietenberg (2006). Barnes & Breslow (2001) provide a good
introduction to the application of emissions trading for air quality, and Kerr et al.
(2012) provide a good introduction to the application of nutrient trading for water
quality.

2 The Inertia Model

Consider a farmer faced with regulatory pressure to reduce nutrient emissions. The
farmer can either adopt new management practices and technologies designed to
reduce emissions, or can attempt to reduce emissions given their current practices
and technologies.

The adoption of new practices or technologies is potentially threatening to
the farmer or the farm business and will involve risk and learning new or unfa-
miliar abatement activities. In contrast, continuing with current practices and tech-
nologies is likely to be less threatening to the farmer and, while costly in the long
run, will feel less risky in the short run.

Although the optimal response to nutrient regulation must involve the adop-
tion of appropriate practices and technologies in the long run, farmers are likely to
be resistant to making these changes in the short run. We will describe this resis-
tance as inertia. Farmers’ inertia will decline with time, as their current system
becomes sub-optimal, and as farmers observe their neighbors making changes on
their own farms.

The passing of time gives farmers greater opportunity to learn and prepare
for change, social and regulatory pressure will increase, and new technologies will
become available. There is anecdotal evidence that long established farmers are
more resistant to change. As time passes these farmers are more likely to retire,
allowing less well established farmers to take their place.

Farming is a business and, while profit does not drive all farming activity,
many farmers have significant mortgages to repay. It follows that farmers have
some incentive to improve the efficiency of their farm’s management by adopting
practices and technologies that are consistent with their current activities.
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Farmers are often part of the same networks (social or professional) and
therefore have opportunities to learn from each other. There is ample evidence
in the literature that suggests this takes place. We even have anecdotal evidence
that some farmer deliberately delay adopting profitable new technologies in order
to capitalize on learning from their peers.

The relative importance of each of the above factors will differ between farm-
ers. Building a model enables us to observe the aggregate impact of nutrient regu-
lation, and the interactions between the decisions of different farmers.

2.1 The general model

We consider a group of farmers subjected to an exogenous cap on total nutrient
emissions and who are able to participate in a nutrient trading scheme. In the
context of this regulation, we will think of farmers as using two inputs: nutrient
allowances (n) and new mitigation technologies or practices (m).

Under the inertia model, farmers have a maximum amount of additional
mitigation they are willing to adopt in any given year.

We express the decision problem of farmer i at time t as:

maxπit = max
mit,nit

fi(mit, nit)− ptnit

where fi(·) is the farm’s profit from production and incorporates the cost of the
different levels of mitigation, and pt is the price of nutrient allowances at time t.

Subject to a binding nutrient cap St over all farmers:∑
i

nit ≤ St

And, subject to the farmer’s resistance to increasing mitigation:

mit −mi,t−1 ≤ hi
(
t,mi,t−1, pt−1, {mj,t−1}

)
where h(·) gives the maximum increase in mitigation a farmer is willing to un-
dertake (h(·) ≥ 0), and {mj,t−1} is the set of all farmer mitigation decisions in the
previous period.

2.2 Production decisions

Given the functional form of a farm’s profit function we can determine a farmer’s
optimal production decision as a function of the price of allowances and the upper
bound on mitigation.

We propose the following functional form for farmers’ profit from produc-
tion per hectare. We use this form as it extends the functional form used by Anas-
tasiadis et al. (2011), and can intuitively be decomposed into profit as a function of
nitrogen emissions, and a measure of the non-optimality of farmers’ current miti-
gation technologies and practices. It also has continuous first-order derivatives.

fi(mit, nit) = ainit
2 + binit + ci + di(nit − ei +mit)

2
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where ai, bi, ci and di are coefficients, and ei is the farm’s emissions before regula-
tion.

Figure 1 gives an example of the behavior of this functional form. The green
line gives farmers’ profit if they have no resistance to change. The blue and orange
lines demonstrate farmers’ profit functions given bounds on their mitigation.
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Figure 1. Farm’s profit per hectare for different mitigation bounds

Let m̄ be the upper bound on mit as determined by mi,t−1 and g(·). Then
mit ≤ m̄ and we can determine farmers production decisions as follows:

When mit < m̄:

∂πit
∂mit

= 0 implies − 2di(nit − ei +mit) = 0

so
m∗it = nit

And
∂πit
∂nit

= 0 implies 2ainit + bi − pt = 0

so
n∗it =

pt − bi
2ai

When mit = m̄:

∂πit
∂nit

= 0 implies 2ainit + bi + 2di(nit − ei + m̄)− pt = 0

so

n∗it =
pt − bi + 2di(ei − m̄)

2ai + 2di

We can show that farmers will hold more allowances when their mitigation
decision is constrained (mit = m̄) than when their mitigation decision is uncon-
strained (mit < m̄) for the same allowance price. For ease of notation we drop the
subscripts in the following proof.

p− b
2a
≤ p− b+ 2d(e− m̄)

2a+ 2d
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as

(p− b)(2a+ 2d) ≤ (p− b+ 2d(e− m̄))(2a)

2d(p− b) ≤ 2d(2a(e− m̄))

p− b
2a
≤ e− m̄

which must be true whenever m∗it = m̄.

The first derivative of a farmer’s profit function is equivalent to a farmer’s
demand function (their demand for allowances as a function of price). Figure 2
gives examples of farmers’ demand functions that correspond to the example profit
functions given in Figure 1.
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Figure 2. The demand for allowances for different mitigation bounds

Note that we have defined profit and demand on a per hectare basis. When
aggregating profit or demand for allowances across multiple farmers we must ac-
count for the area of each farm. Notably this changes how we express the binding
nutrient cap: ∑

i

ηinit ≤ St

where ηi gives the farm area in hectares, and nit gives emissions per hectare for
farm i in year t.

2.3 The inertia function

The choice of the inertia function hi(·) is independent of the functional form cho-
sen for the farmers’ profit functions. In designing an inertia function thought
needs to be given to the behavior it should exhibit. How long will farmers main-
tain their current practices before changing? When farmers are willing to change,
how rapidly will they change? Do farmers make many small changes year-to-
year or larger less frequent changes? How prevalent are cascade effects (where
one farmer’s mitigation triggers other farmers to mitigate, who in turn triggers yet
more farmers to mitigate)?

It may be helpful when specifying the functional form for farmers’ inertia
functions to separate inertia into two components: the decision to change, and the
maximum amount a willing farmer will change this period.
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We propose the following functional form for a deterministic inertia func-
tion. We use a linear form for simplicity in the absence of strong priors for any
other shape.

hi
(
τi,mi,t−1, pt−1, {mj,t−1}j

)
=

{
0 if gi,t−1 ≤ δi

gi,t−1 − δi if gi,t−1 > δi

With gi,t−1 as a measure of how sub-optimal the farmer perceives their mitigation
decisions to have been last period.

gi,t−1 = αiτi + βi
(
mi,t−1 −

pt−1 − bi
2ai

)
+ γi

(
max

j
{mj,t−1} −mi,t−1

)
Where αi, βi, γi and δi are coefficients, τi gives the time since the farmer last in-
creased mitigation on their farm, and pt−1−bi

2ai
is the mitigation decision that would

have been optimal given last period’s price of allowances (the mitigation decision
that a farmer would make if their inertia was non-binding, and assuming their mit-
igation decisions do not influence the price of allowances).

We can interpret α as capturing the frequency with which farmers replace
or update their existing farm technologies and review the associated management
practices. Farmers with low α values will be more likely to have long delays be-
tween changes in mitigation, this may be because they are capital constrained or
prefer traditional methods of farming.

We can interpret β as capturing the business focus of the farm. Farmers with
high β values will be more likely to increase their mitigation activities when their
current practices are suboptimal, this may be because they are more comfortable
innovating.

We can interpret γ as capturing a farmer’s willingness and ability to learn
from other farmers. Farmers with high γ values will be more likely to carry out
increased mitigation when other farmers have already done so, this may be because
they are socially influenced or risk adverse.

We can interpret δ as capturing overall resistance to change. Farmers with
low δ values will be more likely to carry out new mitigation activities, this may be
because they have higher environmental concern.

This suggests that the farmer classifications by Connor et al. (2008) and Ward
et al. (2008) can be reflected by the inertia model as follows:

• For the farmers classified by Connor et al. (2008):

– The business oriented farmers would have high βi values but low γi
values.

– The innovative farmers would have even higher βi values and lower δi
values.

– The traditional farmers would have very low βi and γi values.

• For the farmers as classified by Ward et al. (2008):

– The majority of the farmers would have low βi values but high γi values.
– The innovative business oriented farmers would have high βi values and

low δi values.
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– The unresponsive farmers would have low βi and γi values but also low
δi values.

– The capital constrained farmers would have the lowest αi values but
also the lowest δi values.

2.4 Random inertia

While the inertia function may be a good indicator for a farmer’s intention to
change there may be factors outside a farmer’s control that result in actual mitiga-
tion differing from intended mitigation. Changes in market conditions, farm staff,
or personal circumstances will impact a farmer’s ability to realize their intended
mitigation. Unfavorable weather conditions may require a farmer to spend more
effort maintaining their farm, reducing their ability to prepare and implement new
mitigation. Alternatively, there may be unanticipated scale or synergy effects that
make the intended mitigation more effective or additional mitigation more worth-
while.

We propose the use of a stochastic functional form, with the same expected
value as the deterministic functional form, to estimate the range of possible out-
comes we might observe in reality.

hi
(
τi,mi,t−1, pt−1, {mj,t−1}j

)
=

{
0 if g′i ≤ δi

g′i − δi if g′i > δi

Where g′i is a random variable with expected value gi,t−1.

If we think of farmers’ mitigation decisions as choosing to implement some
technologies out a set of discrete technology choices, then we may allow g′i to follow
a binomial (or multinomial) distribution with the number of trials determined by
the number of technologies. If we think of farmers’ mitigation decisions as choos-
ing some number of small changes to make, then we may allow g′i to follow a Pois-
son distribution with rate parameter gi,t−1.

For the purpose of simulating the inertia model when farmers’ inertia is
stochastic we focus on the case where there is strong (perhaps perfect) correlation
between farmers’ inertia values. This enables us to consider the variation in out-
comes that might arise from shocks to all farmers. These are the more interesting
shocks for a regulator whose concern is with the long term overall performance of
the region.

It is straightforward to allow farmers’ inertia values to be simulated inde-
pendently of each other. However, given a large sample of farmers the aggregation
of independent shocks should have minimal impact on the aggregate performance
of all farms, and hence is of minimal interest when considering mitigation at a
catchment level, which is our focus in this paper.

3 Implementing the Inertia Model

We will implement the inertia model as an extension of NManager (Anastasiadis
et al. 2011). In this section we set out an algorithm for implementing the model and
the general behavior we expect the model to result in.
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3.1 Solution algorithm

We propose the following algorithm for the model. As farmers inertia in each pe-
riod depends on their decisions and the price in the previous period, the algorithm
solves the model for each period from first to last in sequence.

We normalize farmers’ current mitigation and emissions so mi,0 = 0 and
ni,0 = ei for all farmers. In the absence of nutrient regulation we assume p0 = 0,
and τi = 0 for all farmers.

For each period, we resolve the model in the following order:

1. Recall farmers’ decisions from last period {mj,t−1}j and {nj,t−1}j and the
market price pt−1.

2. Calculate gi,t−1 for each farmer.
3. If the model is stochastic, draw random variables g′i with expected value gi,t−1

for each farmer.
4. Determine hi(·), and from this farmers’ upper bounds on mitigation.
5. Construct the individual demand curves for each farmer.
6. Aggregate farmers’ individual demand curves to form a catchment demand

curve. Equate aggregate demand with the supply of allowances to determine
the market clearing price (pt).

7. Apply the market clearing price to farmers’ individual demand curves to de-
termine the emissions, mitigation and profit for each farmer (nit, mit and πit).

8. Set τi = 0 for each farmer who increased their mitigation during the current
period, and τi = τi + 1 for each farmer who did not.

Of these, only step 6 is not computationally straightforward given the model
specification above. If we use quadratic profit functions then farmers’ demand
curves are monotonic, non-increasing, and piecewise linear, and hence total de-
mand is likewise monotonic, non-increasing, and piecewise linear. There are many
ways to determine the intercept of a monotonic, non-increasing, piecewise linear
function and a horizontal line. Among them are the modified Newton method used
by NManager for this kind of problem, and an adaption of the analytic solution to
NManager given in the appendix.

3.2 Expected behavior

Suppose there were to be a step decrease in the total permitted level of nitrogen
emissions. This could be driven by the introduction of an nitrogen trading scheme
or a decrease in the supply of emission allowances. We anticipate that the inertia
model would suggest the following response by farmers:

1. Initial inertia is high. There is minimal increase in mitigation, most farms
respond by trying to manage within their current mitigation technology and
practices.

2. The price of allowances will be much higher than its long run value.

3. Some farmers’ inertia will weaken, motivating them to introduce new miti-
gation technologies and practices. These farmers will be the ones most moti-
vated by nitrogen prices (the βi(mi,t−1 − pt−1−bi

2ai
) component of gi,t−1).

11



4. The price of allowances will decrease as those farmers who carried out miti-
gation now demand fewer allowances at each price.

5. In response to farmers carrying out mitigation in previous periods, more
farmers will introduce new mitigation technologies and practices (driven by
the γi

(
maxj{mj,t−1} −mi,t−1

)
component of gi,t−1). This will further lower

the price of allowances.

6. Stages three to five will repeat as farmers near the optimal long run response.

7. Those farmers that carried out more mitigation that was optimal in the long
run will decrease their use of mitigation technologies and practices as the
price of allowances declines.

8. Once farmers are close enough to their optimal long run systems they will
increase mitigation infrequently (driven only by the αiτi component of gi,t−1).

The values of the γ, β and α parameters will determine the importance of
each of the above steps in any realization of the model. The description given
above assumes a balance between the different parameters.

4 Moving Forward

The inertia model we have specified uses aspects of farmers’ behavior to determine
their mitigation decisions when faced with a price for nitrogen. We have specified
our model in both a general and an explicit form.

Given the explicit form of our model, we will next demonstrate the range
of possible behaviors that the model can produce before using the model to extend
NManager. This should enable us to estimate the cost of reaching a given nitrogen
target when farmers’ short term response to regulation is less cost effective than
their eventual response.

In our model each farmer is described by nine parameters. While it may
be difficult to find appropriate data in order to calibrate all nine parameters, we
will also make suggestions as to what kind of data would be ideal and how the
parameters could be estimated.
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