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Relationship Between Prices of Food, Fuel and Biofuel

Ladislav Kristoufek, Karel Janda, David Zilberman

Annotation: In this paper, we analyze the relationships betwtbe prices of biodiesel, ethanol
and related fuels and agricultural commodities withuse of minimal spanning trees and
hierarchical trees. To distinguish between shartitand medium-term effects, we construct these
trees for different frequencies (weekly and monthWe find that in short-term, both ethanol and
biodiesel are very weakly connected with the ott@mmodities. In medium-term, the biofuels
network becomes more structured. The system dptitsstwo well separated branches — a fuels
part and a food part. Biodiesel tends to the fbedsich and ethanol to the food branch. As a part
of this paper we also characterize the major blefaad their agricultural feedstock and we
outline their recent quantitative development.

Key words: biofuels, networks, minimal spanning tree, hieharal tree.

1 Introduction

In this paper, we utilize a straightforward methiody of taxonomy standardly used in
networks and complex systems analysis for cleantifigation of relationships between

components of the system. We apply the methodobwgthe system of biofuels and related
agricultural and fuel commodities. We quantify the®lationships over different market
phases and time dimensions using a graphical gisglgrice transmission network. In this

way, we contribute to important policy discussidooat impact of biofuels and energy prices
on food prices.

Biofuels became of high interest after the oilisraf the 1970s as a possible replacement for
fossil liquid fuels used in transportation. Increésnterest in climate and environmental
issues in last three decades also contributedet@aipularity of biofuels as alternative fuels.
Global production of biofuels experienced a rapidréase since then, especially during the
last decade. The main drivers behind this growghgarvernment policies such as mandates,
targets and subsidies which have been justifiethergrounds of energy security and climate
change considerations. However, the concerns r&igdtle global food crisis in 2007/2008
and ambiguity with respect to environmental impattbiofuels led many government to
reconsider their earlier optimism with respect itafugels.

Very important factor leading to expansion of ethlamas a phase-out of the gasoline additive
methyl tertiary butyl ether (MTBE) which was usesl @ oxygenate to raise the octane
number. MTBE was banned or restricted in multiple &tates (California, New York, etc.)
since it was found to contaminate ground water wheteaked from tanks and pipelines.
Unlike other ingredients contained in gasoline fUMITBE dissolves in water during the
gasoline spills and moves away from spill siteshwitater flow. MTBE was classified as a
possible carcinogen. The fuel industry therefoltestituted ethanol as an alternative source of
oxygen for fuel blends.

Biofuel production has increased continuously wwitke over the last years. In 2009, global
ethanol production reached nearly 75 billion litearanore than 40 countries. That year, the
ethanol production was 40 billion liters in the USZ6 billion liters in Brazil and 3 billion
liters in the EU. Global biodiesel production tetlalmost 19 billion liters worldwide in
2009. The biodiesel production reached 2.2 billibers in the USA, 1.5 billion liters in
Brazil and 9.4 billion liters in the EU. The FAPRBibfuel production forecasts for 2019 are
65 and 5.4 billion liters of ethanol and biodiesekpectively for the USA, 52 and 2.9 billion
liters of ethanol and biodiesel, respectively foaBl, 6.9 and 13.1 billion liters of ethanol and



biodiesel, respectively for the EU. The land usadbiofuels was estimated in 2008 at around
20 million ha worldwide, or around 1% of the glokagricultural land, of which about 8
million ha was used for sugarcane plantation inzBrdhe share of ethanol on the US total
gasoline motor transportation fuel use measureghsoline-equivalent gallons was 6.5% in
2010. Corresponding share of biodiesel on the @Sdllitransport fuel use was 0.8% in 2010.
Since the US use of diesel as transportation fulelsa than 50 billion gallons yearly is equal
to approximately 1/3 of gasoline use, the overadire of biofuels on the US transportation
fuel use was 5.1% on an energy-equivalent bas?®i®. This relatively small share sharply
contrasts with a very large contribution in Bramihere ethanol from sugar cane replaced
already 50 percent of gasoline for transport in200

Biofuel use represents an important share of globadal, sugar and vegetable oil production.
According to 2010 Agricultural Outlook of OECD-FAGugarcane will remain the single
most biofuel-oriented commodity. Its global shamebte used for the ethanol production is
expected to rise to 35% in 2019 as opposed to 208tei baseline period of 2007-2009. The
next most used category is molasses with the eagesithare of slightly less than 25% as
compared to slightly less than 20% in the basgbeeod. Vegetable oil and coarse grains,
which have the same share of 9% of their produdtieing used for biofuels in the baseline
period, are predicted to diverge somehow with ali@% of the global production of coarse
grains being used to produce ethanol in 2019, whi#ecorresponding forecast for vegetable
oil conversion to biodiesel is 16%. For sugar begtmodest increase from currently less than
10% biofuel utilization to about 11% utilization éxpected in 2019. Relatively high rate of
increase of the biofuel utilization is expectedvidgreat. But given its low baseline share about
1%, only about 3-4% of its 2019 production is expddo be used for biofuels.

The economics of biofuels constitutes a very aciive growing research area as documented
in recent review article byanda et al. (2012). Simulation models of econamigacts of
biofuels, which are based on long-run parametéesi@ading source being GTAP database of
Thomas Hertel and his collaborators, for recergrezfces see Beckman et al. (2011) ) and on
partial or general equilibrium economic theory,uase links between prices of food, biofuels
and fossil fuels. But empirical evidence for thisks is largely inconsistent.

Current empirical research on biofuels and fueisepdynamics varies widely from Value-at-
Risk estimation (Chang et al.,, 2011) to varioushtamgration estimations (Peri and Baldi,
2010) to volatility spillovers (Serra, 2011) and weket coherence analysis (Vacha and
Barunik, 2012) and others. The common feature isfrigsearch is growing sophistication of
econometric estimation which usually comes at thst ©f imposing many structural or
distributional assumptions on the processes underiyne interactions between the prices of
biofuels and related commodities. In this articlee present different methodological
approach to this problem. We analyze connectiohsdsn biofuels and related commodities
(energy-related and food-related) with a use of im@th spanning trees (MST) and
hierarchical trees (HT) to uncover the most impdrtaonnections in the network of
commodities.

MST and HT are methodologically very straightfordiaapproaches using only simple
correlations as a starting point with no additiopalor assumptions. The MST and HT
methods are now being increasingly used for amalysstocks connections (Bonanno et al.,
2004; Tumminello et al., 2007), foreign exchangesaJang et al., 2011), import/export
networks (Kantar et al., 2011), interest ratesesyst(Tabak et al., 2009), portfolio selection
(Onnela et al., 2002) as well as commodities nksv@Tabak et al., 2010; Lucey et al.,
2011), yet mainly in the journals of interdisci@ny physics, specifically econophysics.

This paper presents the first MST and HT analygiplied on the network containing
biofuels. The advantage of our approach is a nlapossibility to include simultaneously
different biofuels and many different related condities into our analysis. This contrasts



with previous time-series econometric studies whishally focus only on a small selected
group of commodities. Our analysis allows the irdéign of the principal findings in the
literature on price transmission between food, Sushd biofuels markets in a clear and
elegant way. The correlation clusters formed aslt®®f our analysis may serve as good
starting points for further econometric analysidha price interactions within these clusters.
Indeed, the fact that the MST and HT methodologyesy straightforward is not only its
advantage but of course its limitation as well — ave not able to comment on causality
between commodities, the methodology does not take consideration possible
cointegration or lagged values of variables of regé Further, as the methodology is
constructed for the stationary series, we mighséomformation if the analyzed series need to
be first-differenced to attain stationarity, which the case for all stationarity-assuming
approaches.

In this paper, we focus on the most popular bisfuelethanol and biodiesel. Ethanol is
mainly produced from crops rich in sugar and stdikodl sugarcane and corn. Biochemical
technologies for conversion of sugar and starch #me most technologically and
commercially mature today. Biodiesel is producemirfroilseed crops like soybean, rapeseed,
and oil palm. Therefore, we are mainly interestdettiver a dynamic behavior of ethanol and
biodiesel forms clusters with food commodities andnergy commodities. Moreover, we
want to analyze the behavior at different frequesi§¢weekly and monthly) to see whether the
relationships apply in short and/or medium termrtiar, the connections between the
commodities might vary for different phases of tharket depending on binding regulatory or
technological constraints and market development.

The rest of the paper is structured as followsSéttion 2, we present a brief review of a
current research dealing with links among biofld related commodities. In Section 3, we
describe the basic notions of the used methodolégySection 4, the data choice and
description is given. Section 5 presents the resilbur analysis. Section 6 concludes.

2 Therelation to current research

In this section, we briefly review most recent tiseries studies on links between prices of
biofuels and related commodities. More detailedenéceviews are provided klanda et al.
(2012) and Zilberman et al. (2012).

Zhang et al. (2009) focus on volatility of ethamaold commodity prices using cointegration,
vector error corrections models (VECM) and multisge generalized autoregressive
conditional heteroskedasticity (NnGARCH) models. Thghors analyze weekly wholesale
price series of the US ethanol, corn, soybean,liggsand oil from the last week of March
1989 through the first week of December 2007. Timey that there are no long-run relations
among fuel (ethanol, oil and gasoline) prices agricaltural commodity (corn and soybean)
prices in recent years.

The same authors further analyze long and shortat@nactions with a use of cointegration

estimation and vector error corrections model v@tlanger-type causality tests (Zhang et al.,
2010). They examine corn, rice, soybeans, sugdrndueat prices along with prices of energy
commodities such as ethanol, gasoline and oil fkbench 1989 through July 2008. They find

no direct long-run price relations between fuel aggicultural commodity prices and only

limited if any direct short-run relationships.

Tyner (2010b) finds that since 2006, the ethanaketahas established a link between crude
oil and corn prices that did not exist historicalie finds that the correlation between crude
oil and corn prices was negative (-0.26) from 1882005; in contrast, it reached a value of
0.80 during the 2006-2008. However, only the peedes are analyzed, which rises serious
guestions about stationarity of the data.



Du et al. (2011) investigate the spillover of crugkprice volatility to agricultural markets
(specifically corn and wheat). They apply stoclasblatility models on weekly crude oil,
corn and wheat futures prices from November 1998ataiary 2009. Their model parameters
are estimated using Bayesian Markov Chain MonteloCarethods. They find that the
spillover effects are not statistically significainom zero over the period from November
1998 to October 2006. However, the results indisgjaificant volatility spillover from the
crude oil market to the corn market between Oct@B@6 and January 2009.

In a pair of papers focusing on the cointegratiébrprices for oil, ethanol and feedstocks,
Serra, Zilberman and co-authors study the US (Sxred, 2011) and Brazilian (Serra et al.,
2011) ethanol markets. In the case of the US, fimey the existence of a long-term
equilibrium relationship between these prices, \eitfianol deviating from this equilibrium in
the short term. Further for the US, they find tinegs of oil, ethanol and corn to be positively
correlated as might be expected. The authors dstithat a 10% perturbation in corn prices
boosts ethanol prices by 15%. From the other sy, find that a 10% rise in the price of oil
leads to a 10% rise in ethanol. In terms of temp@sponse time, they find that the response
to corn prices is much quicker (1.25 months to iimpact) than for an oil price shock (4.25
months). For Brazil, the relevant feedstock is sca@e. The authors find that sugar and oil
prices are exogenously determined and focus thieinteon on the response of ethanol prices
to changes in these two exogenous drivers. Theoeuttonclude that ethanol prices respond
relatively quickly to sugar price changes, but msl@vly to oil prices. A shift in either of
these prices has a very short run impact on ethane® volatility as well. These commodity
markets are not as quick to achieve long-run dgjuilim again as those in the US according to
these two studies.

Rajcaniova and Pokrivcak (2011) analyze the ratatiqp between fuel prices (oil, gasoline,
ethanol) and prices of food (corn, wheat, sugawisg as ethanol feedstock. They do not find
any cointegration in the period January 2005 — R008, while they find cointegration
among majority of their price time series for maezent time period of August 2008 —
August 2010. Pokrivcak and Rajcaniova (2011) ingast the relationship among the prices
of ethanol, gasoline and crude oil in a vector mgression and impulse—response
framework. Their results confirm the usual findinghe literature that the impact of oil price
shock on transport fuels is considerable largen thee versa.

The interaction between monthly prices of crude thie US gasoline and the US ethanol
between 1994 and 2010 is investigated in a joinictiral vector auto regression (SVAR)
model by McPhail (2011). His structural VAR moddbws to decompose price and quantity
data into demand and supply shocks. Since the W&net demand is driven mainly by
government support through blending mandates andctedits, he assumes that ethanol
demand reflects primarily changes in governmenicpolAs opposed to policy driven

demand, ethanol supply shocks are determined bygelsain feedstock prices. The author
shows that policy-driven ethanol demand expanstadd to statistically significant decrease
in real crude oil prices and the US gasoline pridés also shows that ethanol supply
expansion does not have a statistically significatience on real oil prices.

Ziegelback and Kastner (2011) investigate the imeiahip between the futures prices of
European rapeseed and heating oil. They use 2008-@dily data to show the asymmetry in
price movements. The results of their three-regiimeshold cointegration model are similar
to the results of Peri and Baldi (2010). Relatedgpaby Busse et al. (2010) deals with the
connections between prices of rapeseed oil, sgybmtliesel and crude oil during the rapid
growth of German biodiesel demand from 2002 unsldecline in 2009. They found an

evidence for a strong impact of crude oil price@erman biodiesel prices, and of biodiesel
prices on rapeseed oil prices. However, in botlegathe price adjustment behavior was
found to be regime-dependent.



Different results with respect to mutual interasidetween the prices of biofuels and related
commodities may be due to a number of factors.uimresearch, we focus on the differences
in investment horizon (comparing different frequesy, on the role of technological and
regulatory constraints and also on geographic factd the US and European biofuels
markets.

Besides time-series models of interactions betwsefuels, agricultural commodities, fosil
fuels and raw oil, there is a number of other $tmad models. Conceptually most simple type
of structural models are engineering-like cost aatiog models which are used to estimate
profitability of an activity for a single price-talg agent, such as an individual farmer or a
processor. The production function in such modekypically assumed as a fixed-proportion
one. Classical representatives of this class ofetsaake crop budget models which have been
used to estimate profitability of cultivation ofengy crops based on assumptions about yield,
output prices, cost of production and other techgichl and economic parameters.

More theory-based economic studies, which evaltiaeimpact of biofuels, are based on
partial equilibrium or computable general equililon (CGE). These models explain the
interaction among supply, demand, and prices thrdlig market clearance using a system of
equilibrium equations.

In the partial equilibrium structural models, whiate also labeled as sector models, clearance
in the market of a specific good or sector is otdi under the assumption that prices and
quantities in other markets remain constant. Ragtjailibrium models are therefore suitable
for providing good indication of short-term resperte shocks. Partial equilibrium models
often provide a detailed description of the spea#gctor of interest but do not account for the
impact of expansion in that sector on other seabthe economy. The examples of partial
equilibrium models used in the assessment of th@aanof biofuel development include
AGLINK/COSIMO model developed by OECD and FAO, ESIModel, which was
developed by the Economic Research Service of i®&partment of Agriculture and which
is used by the European Commission since 2001, FARel of the Food and Agricultural
Policy Research Institute, and the IMPACT modethaf International Food Policy Research
Institute.

A number of smaller partial equilibrium models arged for analysis of specific questions
related to biofuels. An example of this type of ralsds GLOBIOM model, which is a global

recursive dynamic partial equilibrium model integrg the agricultural, bioenergy and

forestry sectors.

CGE structural models compute equilibrium by simuoéously taking into account the

linkages between all sectors in the economy. Thd& @@deling framework provides an

understanding of the impact of biofuels on the whetonomy by taking into account all the
feedback relations between biofuels and other nisrRéne most well known CGE studies of
biofuels are based on variants of GTAP model wisalnder continuous development under
the leadership of Thomas Hertel since 1991.

The major disadvantage of CGE approach to modéiioigiels is that global CGE models are

much stronger in a treatment of the developed cmstthan in the treatment of the

developing countries. In the case of biofuels, thia serious deficiency since the developing
countries are expected to be a big supplier ofuigisfin the future. They are also currently a
focus of the debate about social and environmetasequences of biofuels production and
of the fuel versus food discussion.



3 Methodology

In this section, we describe the basics of constmcof minimal spanning trees and
hierarchical trees. As this methodology is not welbwn in the economics literature, we
present quite careful description of the methods.tke first application of minimal spanning
trees and hierarchical trees to the financial tseges and a more detailed description, see
Mantegna (1999).

3.1 Distance measure

The interconnections in a group of assets are atdhyd measured by sample correlation
coefficients. For a pair of assétsand j with valuesX; and X, andt=1..,T, the sample

correlation coefficienfoij is calculated as
o, _ th:l(xit ‘X)( th _X)
Py == —— —
\/Zizl(xit B Xi) zizl(xjt - X)

T T
— X, — e . . . . .
where X; =¥ and X, =@ are respective time series averages. Linear etiogl o,

(1)

ranges between -1 (perfectly anti-correlated) afuetfectly correlated) withp; =0 meaning

that the pair is uncorrelated. Note that it onlykesm sense to estimate correlations for the
series with well defined means and varianceswieak stationarity of the series is needed.

For a portfolio of N assets, we obtaitN(N-1)/ 2 pairs of correlations. Mantegna (1999)
showed that the correlation coefficients can besi@med into distance measures, which can
in turn be used to describe hierarchical orgaromatif the group of analyzed assets. Distance

measure
d; :\/2(1_ a) (2)

is constructed so that it fulfills three axiomsaainetric distance:

. d; =0 ifand only ifi=j;

° dij = dji '

. d; <d, +d; forall k
From the definition of the correlation coefficiethe distance ranges between 0 and 2, while
d; - 0 means that the pair is strongly correlated,— 2 implies strongly anti-correlated

pair andd, = J2 characterizes an uncorrelated pair.

3.2 Minimal spanning tree and hierarchical tree

Minimal spanning tree (MST) is used to extract nest important connections in the whole
network. For our purposes, the connections areachanized by correlation coefficients
between pairs of assets. The basic idea behind €1$3 reduce the number M(N-1)/2
pairs to only the N-1 most important connections while the whole systmmains
connected. The procedure is very straightforwanliardetail described in Mantegna (1999).
In short, we transform the correlation mati@ into a distance matriXD, discarding the
diagonal elements (containing zero distances). NMéa find the closest pair of assets, which
creates the first two nodes in the network conmebtethe first link (with a weight equal to
the distanced, ). Each node now has a single edge (the link cdedew the node). We

proceed to the second closest pair which createsebond pair of nodes. At this point, if a



node from the second pair is already present iméteork, the new node is simply connected
to the existing pair. The steps are repeated WtHl links are reached, while the network
must not be closed or create closed loops. Ifitlewould create a loop, it is not added into
the network. We use Kruskal’'s algorithm in our aggtion (Kruskal, 1956).

MST helps us to construct hierarchical trees (Hhjclw are important for the analysis of
clusters. With a use of HT, it has been shown st@tks form clusters based on the industrial
branches (Mantegna, 1999; Tabak et al., 2010) lasidfdreign exchange rates create clusters
with respect to the geographical location (Mizuhale 2006; Keskin et al., 2011; Jang et al.,
2011). In order to construct HT with a use of M&Td distance matribD , we first need to
determine the subdominant ultrametric distance imdd”. The elements of the matri®"

are defined as the subdominant ultrametric disEard;fe Such a distance is equal to the
maximal weight of the link which needs to be takermove from node to node | in the
MST. More formally, dijD= max(d, ), wherek and| stand for all nodes connectingand |

(including i and j) in the corresponding MST. In matriR”, we find the minimal distance
d;’ and create the first pair of assets. We folloveannecting the assets and if we find more

assets with samel;’, we connect the clusters together. In the endphtain the whole HT

which clearly separates clusters of the analyzedhi@s (Mantegna, 1999). For illustration,
consider three commoditiea, b and c, which form MST such thaa—b—c with
d,=0.4 and d,. =0.7. Since the lowest distance &, , then the ultra metric distance is

d;, =0.4. The second lowest distanceds, which impliesd,, =0.7. Now, we need to find
d... To get fromc to a in this simple MST, we need to crobs d_, is then a maximum of
distances betweem—b and b—c, i.e. d., =max(d,, d,.). We arrive atd_ =0.4 and

d. =d,.=0.7, which means thata and b are connected and form a pair white is

separated from this simple cluster as it has theesaltra metric distance from bothandb,
and we are able to construct the hierarchical ffée. procedure will be better illustrated on
the analyzed dataset arriving at more complicatedarchical structures in the following
sections.

Depending on the structure of HT, we can discussgéonnections between specific clusters
or separate assets and commodities. In generdran$lates relatively unstructured MST and
creates a unique hierarchical structure. From thetf view of our research and focus on
clusters in biofuels and related commaodities, Hiegia more informative picture of existing
clusters. Without HT, MST would give only limitedformation.

3.3 Stability of links

The major weakness of the described methodologyiri¢he fact that the calculated MST and
HT might be unstable. Moreover, without furthertistecal analysis, we cannot be sure
whether the links present in the MST are actudlly important links in the network or are
rather a statistical anomaly, i.e. whether theltesue sensitive to the sampling. To deal with
the problem, we use a bootstrapping technique ppebdy Tumminello et al. (2007)
specifically for MST and HT analysis.

In the procedure, we first construct the originaS™M and HT. Then, we construct a
bootstrapped time series from the original whilegiag the time series length fixed (i.e. the
observations may repeat in the bootstrapped samy®] and HT are then constructed for
the bootstrapped time series and links are recottexthen checked whether the connections
in the original MST are also present in the new M#iBed on bootstrapped time series. We
repeat such procedure 1,000 times so that we climgliish whether the connections in the
original MST and HT are the strong ones or statistanomalies (Keskin et al., 2011). The



share of the bootstrapped cases, where the linkaapetween nodes and j, will be
labeled ady; with an obvious ranggé<b; <1.

4 Data

Biofuels represent a wide range of fuels whichiareome way derived from biomass. The
wide definition of biofuels covers solid biomasgjuid fuels and various biogases. In the
further text, we concentrate on liquid biofuels.

The biofuels are generally classified as convemafiofthe first generation) biofuels and
advanced biofuels (the second, third, and fourtregations). The first generation biofuels are
made from food crops rich in sugar or starch orevagle oil. The most common types of the
first generation biofuels are bioalcohols (espégci@thanol) and biodiesel. The second
generation biofuels are produced from residual fomat parts of current crops, such as stems,
leaves and husks that are left behind once the ¢omol has been extracted, as well as other
crops that are not used for food purposes, suchwéishgrass, jatropha, miscanthus and
cereals that bear little grain, and also industagte such as wood chips, skins and pulp from
fruit pressing etc. The third generation biofuels abtained from algae. Biofuels created from
processes other than the first generation ethandl l@odiesel, the second generation
cellulosic ethanol, and the third generation al¢pefuels are referred to as the fourth
generation biofuels. Fourth generation biofuelstaghly experimental and have not yet been
even clearly defined. Some fourth generation teldgies are: decomposition of biofuels at
high temperatures, artificial photosynthesis reasj known as solar-to-fuel, and genetically
modifying organisms to secrete hydrocarbons.

Crops rich in sugar and starch like sugarcane andl (enaize), respectively, supply almost all
the ethanol that is produced today. Other majop<roeing used include wheat, sorghum,
sugar beet, and cassava. Biochemical technologresfiversion of sugar and starch are also
the most technologically and commercially maturgago Currently prevailing fermentation
technologies are based on an extraction of simpigars in sugar crops, their yeast-
fermentation and distillation into ethanol. Starcloeops require an additional technological
step. They are initially converted into simple ssg@irough an enzymatic process under high
heat. This conversion requires additional energg lads to an increase in the cost of
production. The major drawback of the first generabiofuel crops is that they are important
food crops and their use for fuel can have advienpacts on food supply. Another drawback
is that these crops are intensive in the use of @anenore inputs such as land, water,
fertilizers, pesticides, etc., which have otherismmmental implications. In the future, the
cellulosic sources are expected to displace sumbscas the major second-generation source
of ethanol. While the first generation ethanol isquced from the sugar or starch part of the
plant, which comprises only a small percentageheftotal biomass of the plant, the second-
generation conversion of lignocellulosic biomasadke to the full use of lignocellulosic
material contained in many biomass sources likdevesed husks and stalks and fast growing
grasses and trees. Lignocellulosic biomass is ceapmf polysacharides (cellulose and
hemicellulose), which are converted into sugarsugh hydrolysis or chemical (or combined)
processes. The sugar is then fermented into ethanay the technologies already utilized for
the first generation biofuels.

In contrast to ethanol, biodiesel is produced frmiiteeed crops like soybean, rapeseed, and
oil palm. The most common method of producing keedl is transesterification. It is a
chemical process by which vegetable oils (like smanola, palm, etc.) can be converted to
methyl or ethyl esters of fatty acids also calleddiesel. Biodiesel is physically and
chemically similar to petro-diesel and hence stlostble in diesel engines.
Transesterification also results in the productainglycerin, a chemical compound with
diverse commercial uses.



In this paper we analyze weekly and monthly price8rent crude oil CO), ethanol E),
corn (C), wheat V), sugar cane§C), soybeans $), sugar beetsgB), consumer biodiesel
(BD), German diesel and gasoline and GG), and the US diesel and gasolindg) and
UG) from 24.11.2003 to 28.2.2011. While the majoofyour data were obtained from the
Bloomberg database, gasoline and diesel prices webtained from the U.S. Energy
Information Administration and they present averpgees of the countries. We use both the
US and the German prices to uncover potential adiore to ethanol and biodiesel as
biodiesel production used to be rather a Europetwity while ethanol production is more an
American activity. Ethanol price is the New York fHar price for ethanol according to
ASTM D4806 specification. This is a denaturatedyainbus fuel ethanol for blending with
gasoline. Crude oil price refers to current pipelaxport quality Brent blend as supplied at
Sullom Voe. Corn price is for Corn No. 2 Yellow. @4t price is for various types of wheat
(No. 2 Soft Red Winter Wheat, No. 2 Hard Red Winddneat, No. 2 Dark Northern Spring
Wheat, and No. 2 Northern Spring Wheat at par (aghprice); and No. 1 Soft Red Winter
Wheat, No. 1 Hard Red Winter Wheat, No. 1 Dark Nem Spring Wheat and No. 1
Northern Spring Wheat at 3 cents per bushel ovetract price.) Sugar price is for raw
centrifugal cane sugar based on 96 degrees aveualgeization. Soybeans price is for
Soybeans No. 2 Yellow. Sugar beets price is foitevbeet or cane crystal sugar or any other
refined sugar. Biodiesel price is for commodityagygonsumer biodiesel, as reported by F.O.
Licht. Daily data are not used in our analysishas 4pot markets (ethanol and biodiesel) are
not liquid enough and the analysis would not bemmegul.

Taking X, as Monday closing prices, we analyze returrslog(X, — X,_,) . As we analyze

the structure of distances, which are simply tramséd -correlations, between the
commodities, stationarity of the series becomesiatuThe results for three stationarity tests
— ADF test with a constant, ADF test without a dants and KPSS test are quite
straightforward — all the logarithmic returns atatisnary, which implies that we can proceed
to the estimation of correlation coefficients anstahces from the logarithmic returns series
without further adjustments. Note that we try t@egehe methodology as straightforward as
possible. To do so, we present only the resultauf@djusted logarithmic returns, which is
standardly done in the literature. We also appiied methodology on AR(1)-GARCH(1,1)-
fillered series, i.e. the estimated correlationsreweobust to autocorrelation and
heteroskedasticity in the processes. However, dngpke correlations differ only a little for
the adjusted series and the resulting MSTs and &f@squalitatively the same as the ones
presented in this paper. Again, the methodology lsarextended to various frameworks
modeling time-dependent correlations (Long et 2011) or even time- and frequency-
dependent correlations (Vacha and Barunik, 2012).

5 Results

In this section, we present and comment on theltsesfl the minimal spanning trees and
hierarchical trees for the studied network of cortities".

We start with the first few steps of constructidmanimal spanning tree for weekly returns
to illustrate the procedure. The pair with the leigihcorrelation coefficient — and thus the

closest one — consists of German diesel and Gegasoline withd; =0.533C. Therefore,

the first connected nodes of the MST are GD—GG. 3éeond lowest distance is the one
between US gasoline and US diesg] € 0.656%). We now have two pairs of nodes GD—
GG and UD—UG in the MST. The next lowest distansefound for SB—SC pair
(d; =0.767]). The MST now contains three separate pairs oesed GD—GG, UD—UG

and SB—SC. We proceed to the fourth lowest distamckeobtain a next pair created by corn

lAII calculations and construction of MST and HT bBaeen conducted and coded in TSP 5.0.



and wheat ¢; =0.884€). Again, neither corn nor wheat are connectednhto dther nodes

already present in the MST which implies that th8Ts now made of four separate pairs. In
the next step, we find that the fifth lowest distam the distance matri® is for the German

and US gasolinesd| =0.9181). Both of the nodes are already present in the &That we

just connect the nodes GG and UG. The MST is neated by two pairs C—W, SB—SC
and one quadruple GD—GG—UG—UD. Next pair is forngdsoybeans and corn with
d; =0.936¢. Corn is already a part of the MST so that soybeme just connected to the

existing couple C—W. The MST is now formed by ar@B—SC, a triple C—W—S and a

guadruple GD—GG—UG—UD. The next closest pair isdhe of German gasoline and US
diesel. Both nodes are already present in the M&dreover, they are both a part of the
guadruple GD—GG—UG—UD and are therefore alreadyneoted. If we added a new link

GG—UD, we would create a loop, which is not dedeakventually, no new link is added

for this pair. Following these simple rules, wea\arat the final MST presented in Fig. 1a.

In the similar way, we describe the constructiothaf hierarchical tree for the weekly returns.
We start with finding the closest pair in the MSThat is GG—GD pair, which in turn forms

the first pair in the HT. Next is the UG—UD pairhish again forms a pair in the HT. In the
same way, the C—W and SC—SB pairs are formed. Ex¢ lowest distance is between
GG—UG link. Now, both nodes are already preserthenHT so that we connect the pairs

GG—GD and UG—UD but assign the distandE:O.918J to all pairs which might be

formed by these four nodes. Therefore, the disthieteeen the pairs is now 0.9181. This is
graphically shown in Fig. 1b. The next lowest dis&in the MST is present for C—S pair.
Corn is already a part of the HT and forms a pathwheat. We now check what the
maximum distance between soybeans and wheat iwariohd that it is the distance between

corn and soybeans. In turn, we asstg%: 0.936€ to both possible pairs formed from the

three. Graphically, we connect S to the pair C—Waif, if we follow these simple rules, we

finally arrive at the HT presented in Fig. 1b. hetsame way, we constructed the HT for
monthly frequency.

Let us first focus on the minimal spanning treesadigher frequency — a trading week. It is
clearly visible that the minimal spanning treeasnied from two parts — a food part (SC, SB,
W, C, S) and a fuels part (CO, GD, GG, UG, UD, B)BIn the MST charts, we also show

the distancedl; between nodes (regular font) as well as a bopisé valueb; (italics in

brackets). The bootstrapped value represents thgogion of times when the specific link
has been present in the bootstrapped MST. For deatie value of 0.783 for S—CO link
means that out of 1,000 bootstrapped realizatloen S3—CO link has been found in 783 final
MSTs. Using these values, we can comment on agitrem a stability of a link in the MST.
In the food part of the MST, we observe a triple W—S and a pair SC—SB which have
been found in all bootstrapped realizations. THedes are thus very stable. The connection

between the triple and the pair is quite weakegr=0.428). We can see similarly strong
connections in the fuels part of the MST, mainly dodfoursome GD—GG—UG—UD which

has been found in almost all the bootstrapped c&xhk biofuels are linked to the US fuels.
Relatively low bootstrapped value for CO—GD lirty < 0.388) is caused mainly by the fact

that crude oil is correlated to GG, GD, UD and UGsiailar levels so that the links alter
between the four in the bootstrapped cases.
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Figure 1a, b.Minimal spanning tree (upper picture) and hierarchical trees (lower picture)
for network of returnswith weekly frequency

Very similar results can be read from the HT. Here,can see that there are several clusters
— a fuels cluster, a sugar cluster and a foddestedu The other commodities — crude oill,
ethanol and biodiesel — are quite far from thesstets and thus do not interact much in the
short term. Importantly, the biofuels are quite oéenfrom the rest of the network, which can
be interpreted in a way that in a short term harjzihne behavior of these biofuels is not
dependent on the other analyzed commaodities.



0.9859 0.6217

. (0.904) . (0.778) .

Biodiesel us German Soybeans
Diesel o @Diesel <5
5 o9 S o
;O 5
06218 S 11230 S 10810 1.1171 0.6965
. (0.818) . (0.274) . (0.774) . (0.435) . (1.000) .
Crude German Corn Ethanol Sugarcane  Sugar
il © o Gasoline n S Beets
R g
o 9 o 9
us Wheat
Gasoline
-1.4
| — -
d*(ij)
—0 B
- _ " o £
T [5 o sl |5 £
g 1% ki = 219 |S $ [
T |z (=] E @ o m o
e |2 o la o |o s |£ = -El = £l
[=5] (] LU LU = 2 (] = J1& W v _0 5

Figure 1c, d.Minimal spanning tree (upper picture) and hierarchical trees (lower picture)
for network of returnswith monthly frequency

When we look at the relationships between commesliit the lower (monthly) frequency,
both MST and HT are getting more structured. The b the connections remains the same
— we still have the three clusters. However, thkeab®r of the biofuels changes. Ethanol
becomes more connected with the food part and désetliwith the fuels part. Interestingly,
the whole network practically splits into two braes — one branch contains all the retail
fuels, crude oil and biodiesel and the other branchudes all the analyzed food and ethanol.
However, it has to be noted that a distance betwebranches is quite low so that the whole
system is well correlated. Moreover, differencéhia distances between ethanol and C—W—
S cluster, then SC—SB from C—W—S—E cluster and thetween the whole food cluster
and the fuels cluster is very small (all threeautietric distances are between 1.08 and 1.12),
which means that this separation is very unstddeertheless, the average distance between
the analyzed commodities decreases from 0.98 ferwbekly frequency to 0.84 for the
monthly frequency, which implies that the systensgaore interconnected with the lower
frequency. Apart from the connections of the bitdue the rest of the network, we observe
some other interesting features. First, compargtdaveekly frequency, where the GG—GD
and UG—UD clusters were well separated, this séparalmost disappears for the monthly



frequency. This implies that in a short term, betawf the retail fuels is dominated by
geographical features but in medium term, this isgman vanishes. Second, crude oil is very
well connected to the retail fuels cluster in thedmm term, which was not the case for the
short term. This implies that it takes several vee@htil the effect of the price change of crude
oil is reflected in the prices of retail fuels. Afabt, the feedstock and sugar clusters are well
separated for both frequencies.

To summarize the most important findings for ethaara biodiesel returns with respect to
different frequencies, we can say that in the shenn, both of these are very weakly
connected with the other commodities. Moreoverreghe no clear inclination to either of
fuels or food parts of the network. In the meditemt, biodiesel becomes connected to the
fuels section of the system, whereas ethanol getrg monnected to the food branch of the
system.

Unfortunately, the MST and HT analysis is not cdpab find the direction of the effects, i.e.
whether the effect comes from food to ethanol a tther way around. However our
supplementary follow-up analysis of Granger-catgdlased on the whole sample of data
used in this paper shows that prices of corn Graogese prices of ethanol in both short and
medium term. We found out that this effect is pesitso that increase in price of corn leads
to increase in price of ethanol in relatively shiorte and the effect disappears quite quickly
since the aggregate effect is insignificant stgrtloy the 12th week. We did not find
statistically significant Granger causality in thier direction (from ethanol to corn). This is
in agreement with the findings of Wixson and Katw#@2012) who show on monthly US
data from 1995 to 2010 that price of corn Grangesea price of ethanol and that ethanol
does not Grange-cause wheat. Similar results g@rtesl by Saghaian (2010) who shows
that corn price Granger-causes price of ethanolh watatistical significance on all
conventional levels, but the reversed directiorGodnger causality is statistically significant
only on 10 percent significance level.

However there also exist studies indicating défdércausality patterns. For example Zhang et
al. (2009) did not find any long-run causality teda between prices of ethanol and corn
while in the short-run they found out that pricésethanol Granger-cause the price of corn.
Serra et al. (2011) show that positive causal icelahip from ethanol prices to corn prices
does not only prevail in the short-run but alsthi& longer term. However they also show that
a shock to corn price when the ethanol price isafeay from its equilibrium level will cause
an adjustment in the ethanol price in the sametiine.

An important starting point for further discussioh our results is the comparison of two
major biofuels markets covered in our analysis - &6l EU. The EU is historically the
largest producer, consumer and importer of biodliegdeich is the most important biofuel in
EU. According to Flach et al. (2011) on energyibasodiesel represents about 80 percent of
the total EU biofuels market in the transportatsector. Biodiesel was the first biofuel
developed and used in the EU in the transport sectthe 1990s. At the time, the rapid
expansion was driven by an increasing crude odeprihe Blair House Agreement of 1992
between US and EU on export subsidy and domestisicy reduction and resulting
provisions of the EU’s set-aside scheme, and gesdsax incentives mainly in Germany. The
Blair House Agreement allowed the EU to produceestls for non-food use of up to 1
million MT of soybean equivalent. EU biofuels goakt in directive 2003/30/EC (indicative
goals) and in the RED 2009/28/EC (mandatory gdalsher pushed the use of biodiesel. In
addition, the Fuel Quality Directive gave the inysonsiderable latitude to market higher
blends in the fuel supply. This means that the Eldntation on biodiesel was very much
induced by public policies originating in 1990s. e contrary to the EU situation, the US
biofuels markets are dominated by ethanol.

The EU policy of setting a single target for alp&g of biofuel provides a flexibility for EU
fuel markets to select a cost-effective biofuelsety and technologies. The US approach of
sectoral targets is missing this market flexibjlibut it may provide market players a long-



term confidence for introducing new investmentsairbroad range of renewable energy
sources. More detailed comparison of the US and idfuels markets and policies is
provided by Tyner (2010a) and Ziolkowska et al.1@0 Because of crucial determining role
of government policies in biofuel markets developiigoth in US and EU, it is important to
realize that US biofuels mandate was designed lunves while the EU targets are in energy
units. This means that in the US a liter of ethama$ equivalent to a liter of biodiesel as far
as volumetric mandates were concerned, while irEtdea kilojoule of ethanol is equivalent
to kilojoule of pure biodiesel. According to Tyng010a) 1.65 liters of ethanol have an
energy equivalent of 1 liter of biodiesel which mgdahat EU system provides an incentive
for private sector to use the biodiesel in ordemteet the biofuels mandates while the US
policy is biased towards the use of ethanol.

Another important difference among EU and US méiet markets is much higher share of
diesel-engined cars in Europe than in US. Thisohstl difference was again caused by
government policies, primarily by taxation of mofoels. Since the fuel taxes in US were
historically much lower than in Europe, the highged cost of diesel engines, as compared
to gasoline engines, were more important than blri@ost advantage of diesel fuel. In
addition the relative tax differences among diesel gasoline in Europe and US meant that
over the period covered in our paper the consurriee pf a liter of diesel was higher than
that of gasoline in US and vice versa in EU.

From economic point of view, our results show statrt-term adjustments, which correspond
more to random changes than systematic forcesptiform strong price links in the whole
system of biofuels and related commodities. Theéupgcchanges by extending the analyzed
horizon to one month since the MST and HT constédictvith monthly data exhibit
considerably more complex structure.

While some earlier evaluations (Mitchell, 2008) iged to biofuels as a major cause of
2007/2008 food crisis, subsequent research of Haohehal. (2011) and other authors shows
that biofuels were only one of many contributorgpate increase. Majority of this research
dealing with the role of biofuels in the 2007/20@®d crisis concentrates on ethanol and
main agricultural commodities (corn, soybean, riaeat) and concludes that the role of
biofuels in the price increase was noticeably gjevrior corn than for soybeans, with soybean
prices driven primarily by the increase in deman@ do economic growth. This is in line
with our results separating soybeans into a “fadsgsoup” of MST/HT and placing biodiesel
into a distinctive “fuels group” as opposed to etblawith strong connections to food
commodities.

An important policy lesson of our analysis is toptrasize that the general statements about
biofuels driving up the prices of agricultural comdities miss a critical distinction between
different biofuels. We show that ethanol prices &mnodiesel prices have clearly different
places in a wide system of biofuels-related commmesli Our results confirm that discussion
about food and biofuels prices is primarily relevenm ethanol, but not so much for biodiesel.
While we present a strong correlation between prafeethanol and its major feedstock corn
and to a lesser extent other feedstocks, we doltain such results for biodiesel. The close
connection of major biodiesel feedstock — soybeamsth corn and other grains shows that
pricing of soybeans is more driven by its compatitwith corn for land and water resources
and as major components of animal feed in livesfwokluction in US and abroad, especially
in China.

6 Conclusions and suggestions for further research

We analyzed the relationships between biodieskhnetl and related fuels and agricultural
commodities with a use of minimal spanning treed arerarchical trees. To distinguish



between short-term and medium-term effects, we toocted the trees for different
frequencies (weekly and monthly).

We found that in the short term, both analyzedustsf are very weakly connected with the
other commaodities. In the medium term, the netwairigcture becomes more interesting. The
system practically splits into two branches — ddymart and a food part. Biodiesel tends to
the fuels branch and ethanol to the food branch.

Our results contributed to the policy debate alimofiuels as possible (major) source of rises
in food prices leading to food crises. We confirnpesitive correlations among the prices of
biofuels and food, but we shoved that the distorctshould be made between different
biofuels. The policy recommendation of carefullgtaiguishing between different biofuels is
not new to the biofuels and food debate, but sotlar distinction was drawn primarily
between first generation and second generatioruéi®fwith emphasis on ethanol related
feedstock. Our contribution is in highlighting tkldéferences among biodiesel and ethanol
with respect to co-movements with food commoditicgs and to emphasize time-varying
nature of these co-movements. The investigatioinoé and price varying dynamic causal
relations among prices of various biofuels andteelacommodities is a topic of our further
ongoing research in this food-policy relevant area.

Finally, even though the methodology of taxonomr goonomic time series is very simple
and only transforms the correlations into distapees were able to find several important
results. We identified different biofuel prices wetk clusters corresponding to different
binding constraints for the biofuels price equilion formation. The connections among
different elements of biofuels network identifiedthis paper may be used as starting points
for more detailed econometric time series invesitga (identification of the most important
connections in the system, identification of patntollinearity, or even a basis for an
optimal portfolio construction). The simplicity dfe minimal spanning trees and hierarchical
trees methodology allows to include a large nuntdferices and we therefore expect future
research to expand our analysis both in terms oflg@nd locations in more detail. This will
eventually create a good picture of how the retatood and fuel prices relate over space and
time.

The taxonomy methodology opens new possibilities fimther research. First, a broader
range of commodities and assets which might be itapbin the biofuels discussion —
exchange rates, interest rates, commodities fytwtesks, climate conditions, exports and
many others — can be included in the MST and HTlyarsa A range of possible factors
influencing clustering of commodity prices is sugigel by Savascin (2011). Second, the
proposed methodology can be accompanied by prihcgpaponent analysis (Pearson, 1901)
to give a more complex view on the cluster analy3isird, conditional (time-varying)
correlations can be taken into consideration awdrporated into MST/HT methodology to
better describe the evolution in time. Howevers thiould impose a specific model on the
data-generating process of the analyzed seriesshwive wanted to avoid in this paper.
Fourth, the time-dependent correlations analysis @ expanded to the frequency domain
through wavelets which are able to separate tintefa@aguency characteristics of the series
(Vacha and Barunik, 2012). Discrete wavelets andresponding coherences can be
incorporated into the proposed methodology as wieile still keeping the framework model-
free. And fifth, the biofuels network can be analyawith a 3D generalization of MST/HT
methodology proposed by Song et al. (2011). Asadisg point, the proposed methodology
and obtained results uncover new frontiers in ib&ubls systems research.
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