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Relationship Between Prices of Food, Fuel and Biofuel  

Ladislav Kristoufek, Karel Janda, David Zilberman 

Annotation:  In this paper, we analyze the relationships between the prices of biodiesel, ethanol 
and related fuels and agricultural commodities with a use of minimal spanning trees and 
hierarchical trees. To distinguish between short-term and medium-term effects, we construct these 
trees for different frequencies (weekly and monthly). We find that in short-term, both ethanol and 
biodiesel are very weakly connected with the other commodities. In medium-term, the biofuels 
network becomes more structured. The system splits into two well separated branches – a fuels 
part and a food part. Biodiesel tends to the fuels branch and ethanol to the food branch. As a part 
of this paper we also characterize the major biofuels and their agricultural feedstock and we 
outline their recent quantitative development.  

Key words: biofuels, networks, minimal spanning tree, hierarchical tree. 

1 Introduction 

In this paper, we utilize a straightforward methodology of taxonomy standardly used in 
networks and complex systems analysis for clear identification of relationships between 
components of the system. We apply the methodology on the system of biofuels and related 
agricultural and fuel commodities. We quantify these relationships over different market 
phases and time dimensions using a graphical display of price transmission network. In this 
way, we contribute to important policy discussion about impact of biofuels and energy prices 
on food prices.  

Biofuels became of high interest after the oil crisis of the 1970s as a possible replacement for 
fossil liquid fuels used in transportation. Increased interest in climate and environmental 
issues in last three decades also contributed to the popularity of biofuels as alternative fuels. 
Global production of biofuels experienced a rapid increase since then, especially during the 
last decade. The main drivers behind this growth are government policies such as mandates, 
targets and subsidies which have been justified on the grounds of energy security and climate 
change considerations. However, the concerns raised by the global food crisis in 2007/2008 
and ambiguity with respect to environmental impact of biofuels led many government to 
reconsider their earlier optimism with respect to biofuels.  

Very important factor leading to expansion of ethanol was a phase-out of the gasoline additive 
methyl tertiary butyl ether (MTBE) which was used as an oxygenate to raise the octane 
number. MTBE was banned or restricted in multiple US states (California, New York, etc.) 
since it was found to contaminate ground water where it leaked from tanks and pipelines. 
Unlike other ingredients contained in gasoline fuel, MTBE dissolves in water during the 
gasoline spills and moves away from spill sites with water flow. MTBE was classified as a 
possible carcinogen. The fuel industry therefore substituted ethanol as an alternative source of 
oxygen for fuel blends.  

Biofuel production has increased continuously worldwide over the last years. In 2009, global 
ethanol production reached nearly 75 billion liters in more than 40 countries. That year, the 
ethanol production was 40 billion liters in the USA, 26 billion liters in Brazil and 3 billion 
liters in the EU. Global biodiesel production totaled almost 19 billion liters worldwide in 
2009. The biodiesel production reached 2.2 billion liters in the USA, 1.5 billion liters in 
Brazil and 9.4 billion liters in the EU. The FAPRI biofuel production forecasts for 2019 are 
65 and 5.4 billion liters of ethanol and biodiesel, respectively for the USA, 52 and 2.9 billion 
liters of ethanol and biodiesel, respectively for Brazil, 6.9 and 13.1 billion liters of ethanol and 



biodiesel, respectively for the EU. The land used for biofuels was estimated in 2008 at around 
20 million ha worldwide, or around 1% of the global agricultural land, of which about 8 
million ha was used for sugarcane plantation in Brazil. The share of ethanol on the US total 
gasoline motor transportation fuel use measured in gasoline-equivalent gallons was 6.5% in 
2010. Corresponding share of biodiesel on the US diesel transport fuel use was 0.8% in 2010. 
Since the US use of diesel as transportation fuel at less than 50 billion gallons yearly is equal 
to approximately 1/3 of gasoline use, the overall share of biofuels on the US transportation 
fuel use was 5.1% on an energy-equivalent basis in 2010. This relatively small share sharply 
contrasts with a very large contribution in Brazil, where ethanol from sugar cane replaced 
already 50 percent of gasoline for transport in 2009. 

Biofuel use represents an important share of global cereal, sugar and vegetable oil production. 
According to 2010 Agricultural Outlook of OECD-FAO, sugarcane will remain the single 
most biofuel-oriented commodity. Its global share to be used for the ethanol production is 
expected to rise to 35% in 2019 as opposed to 20% in the baseline period of 2007-2009. The 
next most used category is molasses with the expected share of slightly less than 25% as 
compared to slightly less than 20% in the baseline period. Vegetable oil and coarse grains, 
which have the same share of 9% of their production being used for biofuels in the baseline 
period, are predicted to diverge somehow with about 13% of the global production of coarse 
grains being used to produce ethanol in 2019, while the corresponding forecast for vegetable 
oil conversion to biodiesel is 16%. For sugar beets, a modest increase from currently less than 
10% biofuel utilization to about 11% utilization is expected in 2019. Relatively high rate of 
increase of the biofuel utilization is expected for wheat. But given its low baseline share about 
1%, only about 3-4% of its 2019 production is expected to be used for biofuels.  

The economics of biofuels constitutes a very active and growing research area as documented 
in recent review article by Janda et al. (2012). Simulation models of economic impacts of 
biofuels, which are based on long-run parameters (the leading source being GTAP database of 
Thomas Hertel and his collaborators, for recent references see Beckman et al. (2011) ) and on 
partial or general equilibrium economic theory, assume links between prices of food, biofuels 
and fossil fuels. But empirical evidence for these links is largely inconsistent.  

Current empirical research on biofuels and fuels price dynamics varies widely from Value-at-
Risk estimation (Chang et al., 2011) to various cointegration estimations (Peri and Baldi, 
2010) to volatility spillovers (Serra, 2011) and wavelet coherence analysis (Vacha and 
Barunik, 2012) and others. The common feature of this research is growing sophistication of 
econometric estimation which usually comes at the cost of imposing many structural or 
distributional assumptions on the processes underlying the interactions between the prices of 
biofuels and related commodities. In this article, we present different methodological 
approach to this problem. We analyze connections between biofuels and related commodities 
(energy-related and food-related) with a use of minimal spanning trees (MST) and 
hierarchical trees (HT) to uncover the most important connections in the network of 
commodities. 

MST and HT are methodologically very straightforward approaches using only simple 
correlations as a starting point with no additional prior assumptions. The MST and HT 
methods are now being increasingly used for analysis of stocks connections (Bonanno et al., 
2004; Tumminello et al., 2007), foreign exchange rates (Jang et al., 2011), import/export 
networks (Kantar et al., 2011), interest rates systems (Tabak et al., 2009),  portfolio selection 
(Onnela et al., 2002)  as well as commodities networks (Tabak et al., 2010; Lucey et al., 
2011), yet mainly in the journals of interdisciplinary physics, specifically econophysics.  

This paper presents the first MST and HT analysis applied on the network containing 
biofuels. The advantage of our approach is a natural possibility to include simultaneously 
different biofuels and many different related commodities into our analysis. This contrasts 



with previous time-series econometric studies which usually focus only on a small selected 
group of commodities. Our analysis allows the integration of the principal findings in the 
literature on price transmission between food, fuels and biofuels markets in a clear and 
elegant way. The correlation clusters formed as results of our analysis may serve as good 
starting points for further econometric analysis of the price interactions within these clusters. 
Indeed, the fact that the MST and HT methodology is very straightforward is not only its 
advantage but of course its limitation as well – we are not able to comment on causality 
between commodities, the methodology does not take into consideration possible 
cointegration or lagged values of variables of interest. Further, as the methodology is 
constructed for the stationary series, we might loose information if the analyzed series need to 
be first-differenced to attain stationarity, which is the case for all stationarity-assuming 
approaches.  

In this paper, we focus on the most popular biofuels – ethanol and biodiesel. Ethanol is 
mainly produced from crops rich in sugar and starch like sugarcane and corn. Biochemical 
technologies for conversion of sugar and starch are the most technologically and 
commercially mature today. Biodiesel is produced from oilseed crops like soybean, rapeseed, 
and oil palm. Therefore, we are mainly interested whether a dynamic behavior of ethanol and 
biodiesel forms clusters with food commodities and/or energy commodities. Moreover, we 
want to analyze the behavior at different frequencies (weekly and monthly) to see whether the 
relationships apply in short and/or medium term. Further, the connections between the 
commodities might vary for different phases of the market depending on binding regulatory or 
technological constraints and market development.  

The rest of the paper is structured as follows. In Section 2, we present a brief review of a 
current research dealing with links among biofuels and related commodities. In Section 3, we 
describe the basic notions of the used methodology. In Section 4, the data choice and 
description is given. Section 5 presents the results of our analysis. Section 6 concludes.  

2 The relation to current research 

In this section, we briefly review most recent time-series studies on links between prices of 
biofuels and related commodities. More detailed recent reviews are provided by Janda et al. 
(2012) and Zilberman et al. (2012).   

Zhang et al. (2009) focus on volatility of ethanol and commodity prices using cointegration, 
vector error corrections models (VECM) and multivariate generalized autoregressive 
conditional heteroskedasticity (mGARCH) models. The authors analyze weekly wholesale 
price series of the US ethanol, corn, soybean, gasoline and oil from the last week of March 
1989 through the first week of December 2007. They find that there are no long-run relations 
among fuel (ethanol, oil and gasoline) prices and agricultural commodity (corn and soybean) 
prices in recent years.  

The same authors further analyze long and short-run interactions with a use of cointegration 
estimation and vector error corrections model with Granger-type causality tests (Zhang et al., 
2010). They examine corn, rice, soybeans, sugar, and wheat prices along with prices of energy 
commodities such as ethanol, gasoline and oil from March 1989 through July 2008. They find 
no direct long-run price relations between fuel and agricultural commodity prices and only 
limited if any direct short-run relationships.  

Tyner (2010b) finds that since 2006, the ethanol market has established a link between crude 
oil and corn prices that did not exist historically. He finds that the correlation between crude 
oil and corn prices was negative (-0.26) from 1988 to 2005; in contrast, it reached a value of 
0.80 during the 2006-2008. However, only the price series are analyzed, which rises serious 
questions about stationarity of the data.  



Du et al. (2011) investigate the spillover of crude oil price volatility to agricultural markets 
(specifically corn and wheat). They apply stochastic volatility models on weekly crude oil, 
corn and wheat futures prices from November 1998 to January 2009. Their model parameters 
are estimated using Bayesian Markov Chain Monte Carlo methods. They find that the 
spillover effects are not statistically significant from zero over the period from November 
1998 to October 2006. However, the results indicate significant volatility spillover from the 
crude oil market to the corn market between October 2006 and January 2009.  

In a pair of papers focusing on the cointegration of prices for oil, ethanol and feedstocks, 
Serra, Zilberman and co-authors study the US (Serra et al., 2011)  and Brazilian (Serra et al., 
2011)  ethanol markets. In the case of the US, they find the existence of a long-term 
equilibrium relationship between these prices, with ethanol deviating from this equilibrium in 
the short term. Further for the US, they find the prices of oil, ethanol and corn to be positively 
correlated as might be expected. The authors estimate that a 10% perturbation in corn prices 
boosts ethanol prices by 15%. From the other side, they find that a 10% rise in the price of oil 
leads to a 10% rise in ethanol. In terms of temporal response time, they find that the response 
to corn prices is much quicker (1.25 months to full impact) than for an oil price shock (4.25 
months). For Brazil, the relevant feedstock is sugarcane. The authors find that sugar and oil 
prices are exogenously determined and focus their attention on the response of ethanol prices 
to changes in these two exogenous drivers. The authors conclude that ethanol prices respond 
relatively quickly to sugar price changes, but more slowly to oil prices. A shift in either of 
these prices has a very short run impact on ethanol price volatility as well. These commodity 
markets are not as quick to achieve long-run equilibrium again as those in the US according to 
these two studies.  

Rajcaniova and Pokrivcak (2011) analyze the relationship between fuel prices (oil, gasoline, 
ethanol) and prices of food (corn, wheat, sugar) serving as ethanol feedstock. They do not find 
any cointegration in the period January 2005 – July 2008, while they find cointegration 
among majority of their price time series for more recent time period of August 2008 – 
August 2010. Pokrivcak and Rajcaniova (2011) investigate the relationship among the prices 
of ethanol, gasoline and crude oil in a vector autoregression and impulse–response 
framework. Their results confirm the usual finding in the literature that the impact of oil price 
shock on transport fuels is considerable larger than vice versa.  

The interaction between monthly prices of crude oil, the US gasoline and the US ethanol 
between 1994 and 2010 is investigated in a joint structural vector auto regression (SVAR) 
model by McPhail (2011).  His structural VAR model allows to decompose price and quantity 
data into demand and supply shocks. Since the US ethanol demand is driven mainly by 
government support through blending mandates and tax credits, he assumes that ethanol 
demand reflects primarily changes in government policy. As opposed to policy driven 
demand, ethanol supply shocks are determined by changes in feedstock prices. The author 
shows that policy-driven ethanol demand expansion leads to statistically significant decrease 
in real crude oil prices and the US gasoline prices. He also shows that ethanol supply 
expansion does not have a statistically significant influence on real oil prices.  

Ziegelback and Kastner (2011) investigate the relationship between the futures prices of 
European rapeseed and heating oil. They use 2005-2010 daily data to show the asymmetry in 
price movements. The results of their three-regime threshold cointegration model are similar 
to the results of Peri and Baldi (2010). Related paper by Busse et al. (2010) deals with the 
connections between prices of rapeseed oil, soy oil, biodiesel and crude oil during the rapid 
growth of German biodiesel demand from 2002 until its decline in 2009. They found an 
evidence for a strong impact of crude oil price on German biodiesel prices, and of biodiesel 
prices on rapeseed oil prices. However, in both cases, the price adjustment behavior was 
found to be regime-dependent.  



Different results with respect to mutual interactions between the prices of biofuels and related 
commodities may be due to a number of factors. In our research, we focus on the differences 
in investment horizon (comparing different frequencies), on the role of technological and 
regulatory constraints and also on geographic factors of the US and European biofuels 
markets.  

Besides time-series models of interactions between biofuels, agricultural commodities, fosil 
fuels and raw oil, there is a number of other structural models. Conceptually most simple type 
of structural models are engineering-like cost accounting models which are used to estimate 
profitability of an activity for a single price-taking agent, such as an individual farmer or a 
processor. The production function in such models is typically assumed as a fixed-proportion 
one. Classical representatives of this class of models are crop budget models which have been 
used to estimate profitability of cultivation of energy crops based on assumptions about yield, 
output prices, cost of production and other technological and economic parameters.  

More theory-based economic studies, which evaluate the impact of biofuels, are based on 
partial equilibrium or computable general equilibrium (CGE). These models explain the 
interaction among supply, demand, and prices through the market clearance using a system of 
equilibrium equations.  

In the partial equilibrium structural models, which are also labeled as sector models, clearance 
in the market of a specific good or sector is obtained under the assumption that prices and 
quantities in other markets remain constant. Partial equilibrium models are therefore suitable 
for providing good indication of short-term response to shocks. Partial equilibrium models 
often provide a detailed description of the specific sector of interest but do not account for the 
impact of expansion in that sector on other sectors of the economy. The examples of partial 
equilibrium models used in the assessment of the impact of biofuel development include 
AGLINK/COSIMO model developed by OECD and FAO, ESIM model, which was 
developed by the Economic Research Service of the US Department of Agriculture and which 
is used by the European Commission since 2001, FAPRI model of the Food and Agricultural 
Policy Research Institute, and the IMPACT model of the International Food Policy Research 
Institute.  

A number of smaller partial equilibrium models are used for analysis of specific questions 
related to biofuels. An example of this type of models is GLOBIOM model, which is a global 
recursive dynamic partial equilibrium model integrating the agricultural, bioenergy and 
forestry sectors.  

CGE structural models compute equilibrium by simultaneously taking into account the 
linkages between all sectors in the economy. The CGE modeling framework provides an 
understanding of the impact of biofuels on the whole economy by taking into account all the 
feedback relations between biofuels and other markets. The most well known CGE studies of 
biofuels are based on variants of GTAP model which is under continuous development under 
the leadership of Thomas Hertel since 1991.  

The major disadvantage of CGE approach to modeling biofuels is that global CGE models are 
much stronger in a treatment of the developed countries than in the treatment of the 
developing countries. In the case of biofuels, this is a serious deficiency since the developing 
countries are expected to be a big supplier of biofuels in the future. They are also currently a 
focus of the debate about social and environmental consequences of biofuels production and 
of the fuel versus food discussion. 

 



3 Methodology 

In this section, we describe the basics of construction of minimal spanning trees and 
hierarchical trees. As this methodology is not well known in the economics literature, we 
present quite careful description of the methods. For the first application of minimal spanning 
trees and hierarchical trees to the financial time series and a more detailed description, see 
Mantegna (1999).   

3.1 Distance measure 
The interconnections in a group of assets are standardly measured by sample correlation 
coefficients. For a pair of assets i  and j  with values itX  and jtX  and 1t … T= , , , the sample 

correlation coefficient 
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ranges between -1 (perfectly anti-correlated) and 1 (perfectly correlated) with 0ijρ =  meaning 

that the pair is uncorrelated. Note that it only makes sense to estimate correlations for the 
series with well defined means and variances, i.e. weak stationarity of the series is needed.  
For a portfolio of N  assets, we obtain ( 1) 2N N − /  pairs of correlations. Mantegna (1999) 
showed that the correlation coefficients can be transformed into distance measures, which can 
in turn be used to describe hierarchical organization of the group of analyzed assets. Distance 
measure  

 2(1 )ij ijd ρ= −  (2) 

is constructed so that it fulfills three axioms of a metric distance:  
• 0ijd =  if and only if i j= ;  

• ij jid d= ;  

• ij ik kjd d d≤ +  for all k   

From the definition of the correlation coefficient, the distance ranges between 0 and 2, while 
0ijd →  means that the pair is strongly correlated, 2ijd →  implies strongly anti-correlated 

pair and 2ijd =  characterizes an uncorrelated pair.  

 

3.2 Minimal spanning tree and hierarchical tree 

 
Minimal spanning tree (MST) is used to extract the most important connections in the whole 
network. For our purposes, the connections are characterized by correlation coefficients 
between pairs of assets. The basic idea behind MST is to reduce the number of ( 1) 2N N − /  
pairs to only the 1N −  most important connections while the whole system remains 
connected. The procedure is very straightforward and in detail described in Mantegna (1999).  
In short, we transform the correlation matrix C  into a distance matrix D , discarding the 
diagonal elements (containing zero distances). We then find the closest pair of assets, which 
creates the first two nodes in the network connected by the first link (with a weight equal to 
the distance ijd ). Each node now has a single edge (the link connected to the node). We 

proceed to the second closest pair which creates the second pair of nodes. At this point, if a 



node from the second pair is already present in the network, the new node is simply connected 
to the existing pair. The steps are repeated until 1N −  links are reached, while the network 
must not be closed or create closed loops. If the link would create a loop, it is not added into 
the network. We use Kruskal’s algorithm in our application (Kruskal, 1956).   
MST helps us to construct hierarchical trees (HT) which are important for the analysis of 
clusters. With a use of HT, it has been shown that stocks form clusters based on the industrial 
branches (Mantegna, 1999; Tabak et al., 2010) and that foreign exchange rates create clusters 
with respect to the geographical location (Mizuno et al., 2006; Keskin et al., 2011; Jang et al., 
2011).  In order to construct HT with a use of MST and distance matrix D , we first need to 
determine the subdominant ultrametric distance matrix D∗ . The elements of the matrix D∗  
are defined as the subdominant ultrametric distances ijd∗ . Such a distance is equal to the 

maximal weight of the link which needs to be taken to move from node i  to node j  in the 

MST. More formally, max( )ij kld d∗ = , where k  and l  stand for all nodes connecting i  and j  

(including i  and j ) in the corresponding MST. In matrix D∗ , we find the minimal distance 

ijd∗  and create the first pair of assets. We follow in connecting the assets and if we find more 

assets with same ijd∗ , we connect the clusters together. In the end, we obtain the whole HT 

which clearly separates clusters of the analyzed variables (Mantegna, 1999). For illustration, 
consider three commodities a , b  and c , which form MST such that a—b — c  with 

0 4abd = .  and 0 7bcd = . . Since the lowest distance is abd , then the ultra metric distance is 

0 4abd∗ = . . The second lowest distance is bcd  which implies 0 7bcd∗ = . . Now, we need to find 

acd∗ . To get from c  to a  in this simple MST, we need to cross b . acd∗  is then a maximum of 

distances between a—b  and b — c , i.e. max( )ac ab bcd d d∗ = , . We arrive at 0 4abd∗ = .  and 

0 7ac bcd d∗ ∗= = . , which means that a  and b  are connected and form a pair while c  is 

separated from this simple cluster as it has the same ultra metric distance from both a  and b , 
and we are able to construct the hierarchical tree. The procedure will be better illustrated on 
the analyzed dataset arriving at more complicated hierarchical structures in the following 
sections.  
Depending on the structure of HT, we can discuss interconnections between specific clusters 
or separate assets and commodities. In general, HT translates relatively unstructured MST and 
creates a unique hierarchical structure. From the point of view of our research and focus on 
clusters in biofuels and related commodities, HT gives a more informative picture of existing 
clusters. Without HT, MST would give only limited information.  

3.3 Stability of links 
The major weakness of the described methodology lies in the fact that the calculated MST and 
HT might be unstable. Moreover, without further statistical analysis, we cannot be sure 
whether the links present in the MST are actually the important links in the network or are 
rather a statistical anomaly, i.e. whether the results are sensitive to the sampling. To deal with 
the problem, we use a bootstrapping technique proposed by Tumminello et al. (2007) 
specifically for MST and HT analysis.  
In the procedure, we first construct the original MST and HT. Then, we construct a 
bootstrapped time series from the original while keeping the time series length fixed (i.e. the 
observations may repeat in the bootstrapped sample). MST and HT are then constructed for 
the bootstrapped time series and links are recorded. It is then checked whether the connections 
in the original MST are also present in the new MST based on bootstrapped time series. We 
repeat such procedure 1,000 times so that we can distinguish whether the connections in the 
original MST and HT are the strong ones or statistical anomalies (Keskin et al., 2011). The 



share of the bootstrapped cases, where the link appears between nodes i  and j , will be 

labeled as ijb  with an obvious range0 1ijb≤ ≤ .  

4 Data 
Biofuels represent a wide range of fuels which are in some way derived from biomass. The 
wide definition of biofuels covers solid biomass, liquid fuels and various biogases. In the 
further text, we concentrate on liquid biofuels.  
The biofuels are generally classified as conventional (the first generation) biofuels and 
advanced biofuels (the second, third, and fourth generations). The first generation biofuels are 
made from food crops rich in sugar or starch or vegetable oil. The most common types of the 
first generation biofuels are bioalcohols (especially ethanol) and biodiesel. The second 
generation biofuels are produced from residual non-food parts of current crops, such as stems, 
leaves and husks that are left behind once the food crop has been extracted, as well as other 
crops that are not used for food purposes, such as switchgrass, jatropha, miscanthus and 
cereals that bear little grain, and also industry waste such as wood chips, skins and pulp from 
fruit pressing etc. The third generation biofuels are obtained from algae. Biofuels created from 
processes other than the first generation ethanol and biodiesel, the second generation 
cellulosic ethanol, and the third generation algae biofuels are referred to as the fourth 
generation biofuels. Fourth generation biofuels are highly experimental and have not yet been 
even clearly defined. Some fourth generation technologies are: decomposition of biofuels at 
high temperatures, artificial photosynthesis reactions, known as solar-to-fuel, and genetically 
modifying organisms to secrete hydrocarbons.  
Crops rich in sugar and starch like sugarcane and corn (maize), respectively, supply almost all 
the ethanol that is produced today. Other major crops being used include wheat, sorghum, 
sugar beet, and cassava. Biochemical technologies for conversion of sugar and starch are also 
the most technologically and commercially mature today. Currently prevailing fermentation 
technologies are based on an extraction of simple sugars in sugar crops, their yeast-
fermentation and distillation into ethanol. Starches crops require an additional technological 
step. They are initially converted into simple sugars through an enzymatic process under high 
heat. This conversion requires additional energy and leads to an increase in the cost of 
production. The major drawback of the first generation biofuel crops is that they are important 
food crops and their use for fuel can have adverse impacts on food supply. Another drawback 
is that these crops are intensive in the use of one or more inputs such as land, water, 
fertilizers, pesticides, etc., which have other environmental implications. In the future, the 
cellulosic sources are expected to displace such crops as the major second-generation source 
of ethanol. While the first generation ethanol is produced from the sugar or starch part of the 
plant, which comprises only a small percentage of the total biomass of the plant, the second-
generation conversion of lignocellulosic biomass leads to the full use of lignocellulosic 
material contained in many biomass sources like waste seed husks and stalks and fast growing 
grasses and trees. Lignocellulosic biomass is composed of polysacharides (cellulose and 
hemicellulose), which are converted into sugars through hydrolysis or chemical (or combined) 
processes. The sugar is then fermented into ethanol using the technologies already utilized for 
the first generation biofuels. 
 In contrast to ethanol, biodiesel is produced from oilseed crops like soybean, rapeseed, and 
oil palm. The most common method of producing biodiesel is transesterification. It is a 
chemical process by which vegetable oils (like soy, canola, palm, etc.) can be converted to 
methyl or ethyl esters of fatty acids also called biodiesel. Biodiesel is physically and 
chemically similar to petro-diesel and hence substitutable in diesel engines. 
Transesterification also results in the production of glycerin, a chemical compound with 
diverse commercial uses.  



In this paper we analyze weekly and monthly prices of Brent crude oil (CO), ethanol (E ), 
corn (C ), wheat (W ), sugar cane (SC), soybeans (S), sugar beets (SB), consumer biodiesel 
( BD ), German diesel and gasoline (GD  and GG), and the US diesel and gasoline (UD  and 
UG ) from 24.11.2003 to 28.2.2011. While the majority of our data were obtained from the 
Bloomberg database, gasoline and diesel prices were obtained from the U.S. Energy 
Information Administration and they present average prices of the countries. We use both the 
US and the German prices to uncover potential connection to ethanol and biodiesel as 
biodiesel production used to be rather a European activity while ethanol production is more an 
American activity. Ethanol price is the New York Harbor price for ethanol according to 
ASTM D4806 specification. This is a denaturated anhydrous fuel ethanol for blending with 
gasoline. Crude oil price refers to current pipeline export quality Brent blend as supplied at 
Sullom Voe. Corn price is for Corn No. 2 Yellow. Wheat price is for various types of wheat 
(No. 2 Soft Red Winter Wheat, No. 2 Hard Red Winter Wheat, No. 2 Dark Northern Spring 
Wheat, and No. 2 Northern Spring Wheat at par (contract price); and No. 1 Soft Red Winter 
Wheat, No. 1 Hard Red Winter Wheat, No. 1 Dark Northern Spring Wheat and No. 1 
Northern Spring Wheat at 3 cents per bushel over contract price.) Sugar price is for raw 
centrifugal cane sugar based on 96 degrees average polarization. Soybeans price is for 
Soybeans No. 2 Yellow. Sugar beets price is for white beet or cane crystal sugar or any other 
refined sugar. Biodiesel price is for commodity type consumer biodiesel, as reported by F.O. 
Licht. Daily data are not used in our analysis as the spot markets (ethanol and biodiesel) are 
not liquid enough and the analysis would not be meaningful.  
Taking tX  as  Monday closing prices, we analyze returns 1log( )t t tr X X −= − . As we analyze 

the structure of distances, which are simply transformed correlations, between the 
commodities, stationarity of the series becomes crucial. The results for three stationarity tests 
– ADF test with a constant, ADF test without a constant and KPSS test are quite 
straightforward – all the logarithmic returns are stationary, which implies that we can proceed 
to the estimation of correlation coefficients and distances from the logarithmic returns series 
without further adjustments. Note that we try to keep the methodology as straightforward as 
possible. To do so, we present only the results for unadjusted logarithmic returns, which is 
standardly done in the literature. We also applied the methodology on AR(1)-GARCH(1,1)-
filtered series, i.e. the estimated correlations were robust to autocorrelation and 
heteroskedasticity in the processes. However, the sample correlations differ only a little for 
the adjusted series and the resulting MSTs and HTs are qualitatively the same as the ones 
presented in this paper. Again, the methodology can be extended to various frameworks 
modeling time-dependent correlations (Long et al., 2011) or even time- and frequency-
dependent correlations (Vacha and Barunik, 2012).  

5 Results 
In this section, we present and comment on the results of the minimal spanning trees and 
hierarchical trees for the studied network of commodities1.  
We start with the first few steps of construction of minimal spanning tree for weekly returns 
to illustrate the procedure. The pair with the highest correlation coefficient – and thus the 
closest one – consists of German diesel and German gasoline with 0 5330ijd = . . Therefore, 

the first connected nodes of the MST are GD—GG. The second lowest distance is the one 
between US gasoline and US diesel ( 0 6563ijd = . ). We now have two pairs of nodes GD—

GG and UD—UG in the MST. The next lowest distance is found for SB—SC pair 
( 0 7671ijd = . ). The MST now contains three separate pairs of nodes – GD—GG, UD—UG 

and SB—SC. We proceed to the fourth lowest distance and obtain a next pair created by corn 
                                                 
1All calculations and construction of MST and HT have been conducted and coded in TSP 5.0. 



and wheat ( 0 8848ijd = . ). Again, neither corn nor wheat are connected to the other nodes 

already present in the MST which implies that the MST is now made of four separate pairs. In 
the next step, we find that the fifth lowest distance in the distance matrix D  is for the German 
and US gasolines ( 0 9181ijd = . ). Both of the nodes are already present in the MST so that we 

just connect the nodes GG and UG. The MST is now created by two pairs C—W, SB—SC 
and one quadruple GD—GG—UG—UD. Next pair is formed by soybeans and corn with 

0 9369ijd = . . Corn is already a part of the MST so that soybeans are just connected to the 

existing couple C—W. The MST is now formed by a pair SB—SC, a triple C—W—S and a 
quadruple GD—GG—UG—UD. The next closest pair is the one of German gasoline and US 
diesel. Both nodes are already present in the MST. Moreover, they are both a part of the 
quadruple GD—GG—UG—UD and are therefore already connected. If we added a new link 
GG—UD, we would create a loop, which is not desirable. Eventually, no new link is added 
for this pair. Following these simple rules, we arrive at the final MST presented in Fig. 1a.  
In the similar way, we describe the construction of the hierarchical tree for the weekly returns. 
We start with finding the closest pair in the MST – that is GG—GD pair, which in turn forms 
the first pair in the HT. Next is the UG—UD pair, which again forms a pair in the HT. In the 
same way, the C—W and SC—SB pairs are formed. The next lowest distance is between 
GG—UG link. Now, both nodes are already present in the HT so that we connect the pairs 
GG—GD and UG—UD but assign the distance 0 9181ijd∗ = .  to all pairs which might be 

formed by these four nodes. Therefore, the distance between the pairs is now 0.9181. This is 
graphically shown in Fig. 1b. The next lowest distance in the MST is present for C—S pair. 
Corn is already a part of the HT and forms a pair with wheat. We now check what the 
maximum distance between soybeans and wheat is and we find that it is the distance between 
corn and soybeans. In turn, we assign 0 9369ijd∗ = .  to both possible pairs formed from the 

three. Graphically, we connect S to the pair C—W. Again, if we follow these simple rules, we 
finally arrive at the HT presented in Fig. 1b. In the same way, we constructed the HT for 
monthly frequency.  
Let us first focus on the minimal spanning trees for a higher frequency – a trading week. It is 
clearly visible that the minimal spanning tree is formed from two parts – a food part (SC, SB, 
W, C, S) and a fuels part (CO, GD, GG, UG, UD, E, BD). In the MST charts, we also show 
the distances ijd  between nodes (regular font) as well as a bootstrapped value ijb  (italics in 

brackets). The bootstrapped value represents the proportion of times when the specific link 
has been present in the bootstrapped MST. For example, the value of 0.783 for S—CO link 
means that out of 1,000 bootstrapped realization, the S—CO link has been found in 783 final 
MSTs. Using these values, we can comment on a strength or a stability of a link in the MST. 
In the food part of the MST, we observe a triple W—C—S and a pair SC—SB which have 
been found in all bootstrapped realizations. These links are thus very stable. The connection 
between the triple and the pair is quite weaker (0 428ijb = . ). We can see similarly strong 

connections in the fuels part of the MST, mainly for a foursome GD—GG—UG—UD which 
has been found in almost all the bootstrapped cases. Both biofuels are linked to the US fuels. 
Relatively low bootstrapped value for CO—GD link ( 0 388ijb = . ) is caused mainly by the fact 

that crude oil is correlated to GG, GD, UD and UG at similar levels so that the links alter 
between the four in the bootstrapped cases.  



 

 
  
  
 

   
 

Figure 1a, b. Minimal spanning tree (upper picture) and hierarchical trees (lower picture) 
for network of returns with weekly frequency 

 
 
Very similar results can be read from the HT. Here, we can see that there are several clusters 
– a fuels cluster, a sugar cluster and a fodder cluster. The other commodities – crude oil, 
ethanol and biodiesel – are quite far from these clusters and thus do not interact much in the 
short term. Importantly, the biofuels are quite remote from the rest of the network, which can 
be interpreted in a way that in a short term horizon, the behavior of these biofuels is not 
dependent on the other analyzed commodities.  



 

 

Figure 1c, d. Minimal spanning tree (upper picture) and hierarchical trees (lower picture) 
for network of returns with monthly frequency 

 
 
When we look at the relationships between commodities at the lower (monthly) frequency, 
both MST and HT are getting more structured. The core of the connections remains the same 
– we still have the three clusters. However, the behavior of the biofuels changes. Ethanol 
becomes more connected with the food part and biodiesel with the fuels part. Interestingly, 
the whole network practically splits into two branches – one branch contains all the retail 
fuels, crude oil and biodiesel and the other branch includes all the analyzed food and ethanol. 
However, it has to be noted that a distance between the branches is quite low so that the whole 
system is well correlated. Moreover, difference in the distances between ethanol and C—W—
S cluster, then SC—SB from C—W—S—E cluster and then between the whole food cluster 
and the fuels cluster is very small (all three ultrametric distances are between 1.08 and 1.12), 
which means that this separation is very unstable. Nevertheless, the average distance between 
the analyzed commodities decreases from 0.98 for the weekly frequency to 0.84 for the 
monthly frequency, which implies that the system gets more interconnected with the lower 
frequency. Apart from the connections of the biofuels to the rest of the network, we observe 
some other interesting features. First, compared to the weekly frequency, where the GG—GD 
and UG—UD clusters were well separated, this separation almost disappears for the monthly 



frequency. This implies that in a short term, behavior of the retail fuels is dominated by 
geographical features but in medium term, this separation vanishes. Second, crude oil is very 
well connected to the retail fuels cluster in the medium term, which was not the case for the 
short term. This implies that it takes several weeks until the effect of the price change of crude 
oil is reflected in the prices of retail fuels. And last, the feedstock and sugar clusters are well 
separated for both frequencies.  
To summarize the most important findings for ethanol and biodiesel returns with respect to 
different frequencies, we can say that in the short term, both of these are very weakly 
connected with the other commodities. Moreover, there is no clear inclination to either of 
fuels or food parts of the network. In the medium term, biodiesel becomes connected to the 
fuels section of the system, whereas ethanol gets more connected to the food branch of the 
system.  
Unfortunately, the MST and HT analysis is not capable to find the direction of the effects, i.e. 
whether the effect comes from food to ethanol or the other way around. However our 
supplementary follow-up analysis of Granger-causality based on the whole sample of data 
used in this paper shows that prices of corn Granger-cause prices of ethanol in both short and 
medium term. We found out that this effect is positive, so that increase in price of corn leads 
to increase in price of ethanol in relatively short time and the effect disappears quite quickly 
since the aggregate effect is insignificant starting by the 12th week. We did not find 
statistically significant Granger causality in the other direction (from ethanol to corn). This is 
in agreement with the findings of Wixson and Katchova (2012)  who show on monthly US 
data from 1995 to 2010 that price of corn Grange-causes price of ethanol and that ethanol 
does not Grange-cause wheat. Similar results are reported by Saghaian (2010)  who shows 
that corn price Granger-causes price of ethanol with statistical significance on all 
conventional levels, but the reversed direction of Granger causality is statistically significant 
only on 10 percent significance level. 
 However there also exist studies indicating different causality patterns. For example Zhang et 
al. (2009) did not find any long-run causality relation between prices of ethanol and corn 
while in the short-run they found out that prices of ethanol Granger-cause the price of corn. 
Serra et al. (2011) show that positive causal relationship from ethanol prices to corn prices 
does not only prevail in the short-run but also in the longer term. However they also show that 
a shock to corn price when the ethanol price is far away from its equilibrium level will cause 
an adjustment in the ethanol price in the same direction.  
An important starting point for further discussion of our results is the comparison of two 
major biofuels markets covered in our analysis - US and EU. The EU is historically the 
largest producer, consumer and importer of biodiesel, which is the most important biofuel in 
EU. According to Flach et al. (2011)  on energy basis biodiesel represents about 80 percent of 
the total EU biofuels market in the transportation sector. Biodiesel was the first biofuel 
developed and used in the EU in the transport sector in the 1990s. At the time, the rapid 
expansion was driven by an increasing crude oil price, the Blair House Agreement of 1992 
between US and EU on export subsidy and domestic subsidy reduction and resulting 
provisions of the EU’s set-aside scheme, and generous tax incentives mainly in Germany. The 
Blair House Agreement allowed the EU to produce oilseeds for non-food use of up to 1 
million MT of soybean equivalent. EU biofuels goals set in directive 2003/30/EC (indicative 
goals) and in the RED 2009/28/EC (mandatory goals) further pushed the use of biodiesel. In 
addition, the Fuel Quality Directive gave the industry considerable latitude to market higher 
blends in the fuel supply. This means that the EU orientation on biodiesel was very much 
induced by public policies originating in 1990s. On the contrary to the EU situation, the US 
biofuels markets are dominated by ethanol.  
The EU policy of setting a single target for all types of biofuel provides a flexibility for EU 
fuel markets to select a cost-effective biofuels types and technologies. The US approach of 
sectoral targets is missing this market flexibility, but it may provide market players a long-



term confidence for introducing new investments in a broad range of renewable energy 
sources. More detailed comparison of the US and EU biofuels markets and policies is 
provided by Tyner (2010a) and Ziolkowska et al. (2010). Because of crucial determining role 
of government policies in biofuel markets development both in US and EU, it is important to 
realize that US biofuels mandate was designed in volumes while the EU targets are in energy 
units. This means that in the US a liter of ethanol was equivalent to a liter of biodiesel as far 
as volumetric mandates were concerned, while in the EU a kilojoule of ethanol is equivalent 
to kilojoule of pure biodiesel. According to Tyner (2010a) 1.65 liters of ethanol have an 
energy equivalent of 1 liter of biodiesel which means that EU system provides an incentive 
for private sector to use the biodiesel in order to meet the biofuels mandates while the US 
policy is biased towards the use of ethanol.  
Another important difference among EU and US motor fuel markets is much higher share of 
diesel-engined cars in Europe than in US. This historical difference was again caused by 
government policies, primarily by taxation of motor fuels. Since the fuel taxes in US were 
historically much lower than in Europe, the higher fixed cost of diesel engines, as compared 
to gasoline engines, were more important than variable cost advantage of diesel fuel. In 
addition the relative tax differences among diesel and gasoline in Europe and US meant that 
over the period covered in our paper the consumer price of a liter of diesel was higher than 
that of gasoline in US and vice versa in EU.  
From economic point of view, our results show that short-term adjustments, which correspond 
more to random changes than systematic forces, do not form strong price links in the whole 
system of biofuels and related commodities. The picture changes by extending the analyzed 
horizon to one month since the MST and HT constructed with monthly data exhibit 
considerably more complex structure.  
While some earlier evaluations (Mitchell, 2008) pointed to biofuels as a major cause of 
2007/2008 food crisis, subsequent research of Hochman et al. (2011) and other authors shows 
that biofuels were only one of many contributors of price increase. Majority of this research 
dealing with the role of biofuels in the 2007/2008 food crisis concentrates on ethanol and 
main agricultural commodities (corn, soybean, rice, wheat) and concludes that the role of 
biofuels in the price increase was noticeably stronger for corn than for soybeans, with soybean 
prices driven primarily by the increase in demand due to economic growth. This is in line 
with our results separating soybeans into a “food subgroup” of MST/HT and placing biodiesel 
into a distinctive “fuels group” as opposed to ethanol with strong connections to food 
commodities.  
An important policy lesson of our analysis is to emphasize that the general statements about 
biofuels driving up the prices of agricultural commodities miss a critical distinction between 
different biofuels. We show that ethanol prices and biodiesel prices have clearly different 
places in a wide system of biofuels-related commodities. Our results confirm that discussion 
about food and biofuels prices is primarily relevant for ethanol, but not so much for biodiesel. 
While we present a strong correlation between prices of ethanol and its major feedstock corn 
and to a lesser extent other feedstocks, we do not obtain such results for biodiesel. The close 
connection of major biodiesel feedstock – soybeans – with corn and other grains shows that 
pricing of soybeans is more driven by its competition with corn for land and water resources 
and as major components of animal feed in livestock production in US and abroad, especially 
in China.  

  

6 Conclusions and suggestions for further research 

We analyzed the relationships between biodiesel, ethanol and related fuels and agricultural 
commodities with a use of minimal spanning trees and hierarchical trees. To distinguish 



between short-term and medium-term effects, we constructed the trees for different 
frequencies (weekly and monthly).  

We found that in the short term, both analyzed biofuels are very weakly connected with the 
other commodities. In the medium term, the network structure becomes more interesting. The 
system practically splits into two branches – a fuels part and a food part. Biodiesel tends to 
the fuels branch and ethanol to the food branch.  

Our results contributed to the policy debate about biofuels as possible (major) source of rises 
in food prices leading to food crises. We confirmed positive correlations among the prices of 
biofuels and food, but we shoved that the distinction should be made between different 
biofuels. The policy recommendation of carefully distinguishing between different biofuels is 
not new to the biofuels and food debate, but so far the distinction was drawn primarily 
between first generation and second generation biofuels with emphasis on ethanol related 
feedstock. Our contribution is in highlighting the differences among biodiesel and ethanol 
with respect to co-movements with food commodity prices and to emphasize time-varying 
nature of these co-movements. The investigation of time and price varying dynamic causal 
relations among prices of various biofuels and related commodities is a topic of our further 
ongoing research in this food-policy relevant area.  

Finally, even though the methodology of taxonomy for economic time series is very simple 
and only transforms the correlations into distances, we were able to find several important 
results. We identified different biofuel prices network clusters corresponding to different 
binding constraints for the biofuels price equilibrium formation. The connections among 
different elements of biofuels network identified in this paper may be used as starting points 
for more detailed econometric time series investigations (identification of the most important 
connections in the system, identification of potential collinearity, or even a basis for an 
optimal portfolio construction). The simplicity of the minimal spanning trees and hierarchical 
trees methodology allows to include a large number of prices and we therefore expect future 
research to expand our analysis both in terms of goods and locations in more detail. This will 
eventually create a good picture of how the relative food and fuel prices relate over space and 
time.  

The taxonomy methodology opens new possibilities for further research. First, a broader 
range of commodities and assets which might be important in the biofuels discussion – 
exchange rates, interest rates, commodities futures, stocks, climate conditions, exports and 
many others – can be included in the MST and HT analysis. A range of possible factors 
influencing clustering of commodity prices is suggested by Savascin (2011). Second, the 
proposed methodology can be accompanied by principal component analysis (Pearson, 1901)  
to give a more complex view on the cluster analysis. Third, conditional (time-varying) 
correlations can be taken into consideration and incorporated into MST/HT methodology to 
better describe the evolution in time. However, this would impose a specific model on the 
data-generating process of the analyzed series, which we wanted to avoid in this paper. 
Fourth, the time-dependent correlations analysis can be expanded to the frequency domain 
through wavelets which are able to separate time and frequency characteristics of the series 
(Vacha and Barunik, 2012). Discrete wavelets and corresponding coherences can be 
incorporated into the proposed methodology as well while still keeping the framework model-
free. And fifth, the biofuels network can be analyzed with a 3D generalization of MST/HT 
methodology proposed by Song et al. (2011). As a starting point, the proposed methodology 
and obtained results uncover new frontiers in the biofuels systems research.  
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