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Dynamic Productivity Growth in the Spanish Meat Industry 

Magdalena Kapelko, Alfons Oude Lansink, Spiro Stefanou 

Abstract:  This paper develops a dynamic Luenberger productivity growth indicator and 
decomposes it to identify the contributions of technical change, technical efficiency change and 
scale change. The Luenberger productivity growth indicator is estimated using Data Envelopment 
Analysis. The empirical application focuses on panel data of Spanish meat processing firms over 
the period 2000-2010. The dynamic Luenberger indicator shows productivity decrease of on 
average -0.003 in the period under investigation, with technical regress being the main driver of 
change, despite technical and scale efficiency growth.   
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1 Introduction 

The characterization and measurement of economic performance in both theory and practice 
continues to claim considerable attention in the literature. The major attention of these 
economic performance measures continues to address the measurement of efficiency and 
productivity growth. The economics literature on efficiency has produced a wide range of 
productivity growth measures (see e.g. Balk (2008) for a comprehensive treatment).  

The setting of the decision environment plays a crucial role in the modeling 
framework and the characterization of results. The static models of production are based on 
the firm’s ability to adjust instantaneously and ignore the dynamic linkages of production 
decisions. The business policy relevance to distinguishing between the contributions of 
variable and capital factors to inefficiency or productivity growth is clear. For example, when 
variable factor use is not meeting its potential, remedies can include better monitoring of 
resource use; when asset use is not meeting potential, remedies can include training programs 
to enhance performance or even a review of the organization of assets in the production 
process to take advantage of asset utilization. The weakness underlying the static theory of 
production in explaining how some inputs are gradually adjusted has led to the development 
of the dynamic models of production where current production decisions constrain or enhance 
future production possibilities.  

The characterization of dynamic efficiency can also build on the adjustment cost 
framework that implicitly measures inefficiency as a temporal concept as it accounts for the 
sluggish adjustment of some factors. In a nonparametric setting, Silva and Stefanou (2007) 
develop a myriad of efficiency measures associated with the dynamic generalization of the 
dual-based revealed preference approach to production analysis found in Silva and Stefanou 
(2003). In a parametric setting, Rungsuriyawiboon and Stefanou (2007) present and estimate 
the dynamic shadow price approach to dynamic cost minimization.  

An intriguing prospect is to incorporate the properties of the dynamic production 
technology presented in Silva and Stefanou (2003) into the directional distance function 
framework, which can exploit the Luenberger productivity growth measurement. The 
directional distance function offers the powerful advantage of focusing on changes in input 
and output bundles, inefficiency and the technology. Such a productivity measure based on 
the directional distance function has its origins in Chambers, Chung and Färe (1996) who 
defined a Luenberger indicator of productivity growth in the static context. A growing 



literature employing this approach has emerged more recently1. However, in the presence of 
adjustment costs in quasi-fixed factors of production, the static measures do not correctly 
reflect productivity growth. Recently, Oude Lansink, Stefanou and Serra (2012) proposed a 
dynamic Luenberger productivity growth measure based on an econometrically estimated 
dynamic directional distance function and decomposed this into the contribution of technical 
change and technical inefficiency change.  

This paper extends the dynamic Luenberger productivity growth measure of Oude 
Lansink, Stefanou and Serra (2012) to make a richer decomposition into the contributions of 
technical efficiency change, scale efficiency change and technical change. The empirical 
application uses a nonparametric method (Data Envelopment Analysis) to estimate the 
dynamic directional distance function. The focus of the application is on panel data of Spanish 
meat processing firms over the period 2000-2010. The meat processing industry is the most 
important food sector in Spain, generating approximately 20% of total sales and employment 
within food industry and 2% of Spanish GDP in 2009 (National Association of Meat 
Industries of Spain). Its significance is emphasized by the fact that it is one of the main 
exporting sectors of Spain. The Spanish meat industry is characterized also by a low level of 
innovations and by the predominance of small and medium-sized enterprises (European 
Commission, 2011). The period analyzed concerns the time of increasing regulation in the 
European Union (EU) with regard to food safety, consumer information, the mandatory 
adoption of environmentally-sustainable practices and the functioning of internal market. In 
order to cope with the increasing regulation, European firms had to undertake additional 
investments and deal with more administrative burdens (European Commission, 2004; 
Wijnands, Van der Meulen and Poppe, 2006). Another impacting event is the increase in 
production costs of meat producers resulting from the increase in the costs of animal feed in 
2007 and 2008. This increase in feed costs decreased the supply of slaughter cattle which 
serves as an input for the meat industry. Finally, from 2008 onwards the Spanish meat 
industry is being affected by the economic crisis as reflected by the decrease in the demand 
for meat.  

The next section develops the measures of dynamic productivity growth and its 
decomposition. This is followed by the empirical application to the panel of Spanish meat 
processing firms showing productivity change and its decomposition. The final section offers 
concluding comments. 

 

2 The Primal Luenberger Indicator of Dynamic Productivity 
Growth 

The primal Luenberger indicator of dynamic productivity growth is defined through a 

dynamic directional distance function. Let 
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1 See Chambers, Färe and Grosskopf (1996), Boussemart, et al. (2003), Färe and Primont (2003), Briec and 
Kerstens (2004), Färe and Grosskopf (2005), Balk (2008).   
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, otherwise. 

The distance function is a measure of the maximal translation of ( ),t tx I  in the direction 

defined by the vector ( )Ix gg , , that keeps the translated input combination interior to the set  

( : )t t t tV y K ,L . Since xgβ  is subtracted from tx  and Igβ  is added to tI , the directional 

distance function is defined by simultaneously contracting variable inputs and expanding 

gross investments. As shown by Silva and Oude Lansink (2012), , , ) 0i
t t t t t tD ≥x I(y ,K ,L ,x I ;g g
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fully characterizes the input requirement set ( : )t t t tV y K ,L , being thus an alternative primal 

representation of the adjustment cost production technology.  

Building on the Luenberger indicator of productivity growth defined by Chambers, 
Chung and Färe (1996) to the dynamic setting by using the dynamic directional distance 
function (assuming CRS) leads to: 
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This indicator provides the arithmetic average of productivity change measured by the 
technology at time t+1 (i.e., the first two terms in equation 2) and the productivity change 
measured by the technology at time t (i.e., the last two terms in equation 2).  



 
Fig.1. Luenberger indicator of dynamic productivity growth. 

 
The Luenberger indicator of dynamic productivity growth is illustrated graphically in     
Figure 1. The quantities of inputs and investments at time t and time t+1 are denoted as 

,t t(x I )  and 1 1,t t+ +(x I ) , respectively. The dynamic directional distance function measures the 

distance to the isoquants at time t and time t+1, which is denoted as 

1( , , )i
t t t t t tD + x Iy ,K ,L ,x I ;g g
r

. The Luenberger indicator of dynamic productivity growth can be 

decomposed into the contributions of technical inefficiency change (∆TEI) and technical 
change (∆T):  
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The decomposition of productivity growth is obtained from (2) by adding and subtracting the 
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. Technical change is 

computed as the arithmetic average of the difference between the technology (represented by 
the frontier) at time t and time t+1, evaluated using quantities at time t (first two terms in (4)) 
and time t+1 (last two terms in (4)): 
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Technical change can be seen in Figure 1 as the average distance between the two isoquants.  
This involves evaluating the isoquants using quantities at time t, 
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inefficiency change is the difference between the value of the dynamic directional distance 
function at time t and time t+1: 
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Technical inefficiency change is easily seen from Figure 1 as the difference between the 
distance functions evaluated using quantities and technologies in period t and period t+1. 
We can decompose the Luenberger measure further to allow for scale efficiency change          
( SEI∆ ). With the Luenberger measure historically being developed in the context of constant 
returns to scale, this further decomposition relaxes the technology assumptions of constant 
returns to scale to permit variable returns to scale.   
From a primal perspective, the technical inefficiency change component in (5) can be 
decomposed as follows: 
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Where ∆PEI is technical inefficiency change under variable returns to scale and ∆SEI is scale 
inefficiency change. 
 

3 Data 

The data used in this study come from the SABI database, managed by Bureau van Dijk, 
which contains the financial accounts of Spanish companies. The study sample includes the 
firms belonging to the category of firms in processing and preserving of meat and production 
of meat products (NACE Rev. 2 code 101). This study focuses on firms of all size categories: 
micro, small, medium-sized and large. After filtering out companies with missing information 
and after removing the outliers2, the final data set consists of between 928 and 1527 firms that 
operated in Spain at least two consecutive years during the period from 2000 to 2010. The 
dataset is unbalanced and it sums up to 13103 observations (in total 26206 observations if we 
consider that each observation is repeated two times in two consecutive years).  

One output and three inputs (material costs, labour costs and fixed assets) are 
distinguished. Output was defined as total sales plus the change in the value of the stock and 
was deflated using the industrial price index for output in meat processing industry. Material 
costs and labour costs were directly taken from the SABI database and were deflated using 
the industrial price index for consumer non-durables and labour cost index in manufacturing, 
respectively. Fixed assets are measured as the beginning value of fixed assets from the 
balance sheet (i.e. the end value of the previous year) and are deflated using the industrial 
price index for capital goods. All prices used to deflate output and inputs are obtained from 
the Spanish Statistical Office (various years). Gross investments in fixed assets in year t are 
computed as the beginning value of fixed assets in year t+1 minus the value of fixed assets in 
year t plus the value of depreciation in year t. Table 1 provides the descriptive statistics of the 
data used in this study, for the whole period 2000/2001-2009/2010.  
                                                 
2 Outliers were determined using ratios of output to input. An observation was defined as an outlier if the ratio of 
output over any of the three inputs was outside the interval of the median plus and minus two standard 
deviations.  



Table 1. Descriptive statistics of input-output data, 2000/2001-2009/2010. 

Variable   Mean Std. dev. Min  Max 

Fixed assets 2066.131 15233.260 0.134 896472.800 

Employee cost 671.038 3465.618 1.420 87188.160 

Material cost 5064.267 23834.010 0.333 737417.900 

Investments 375.900 4609.822 -41366.180 400870.600 

Production 6465.920 30897.880 0.490 859756.100 
Note: the values of variables are presented in thousands of euros, constant prices from 1999.  
 
The data in Table 1 shows that the average meat processing company in our sample is 
relatively small in terms of the EU size classification, with a mean turnover of approximately 
6 million euros. On the other hand, the standard deviations relative to their respective means 
are relatively high showing that the firms in our sample differ considerably in size.  
 

4 Results and Discussion 

Table 2 summarizes the arithmetic means of dynamic Luenberger productivity indicator and 
its decomposition for the pairs of consecutive years. It should be noted that the mixed 
directional distance functions used to compute dynamic Luenberger indicator might not have 
a bounded solution. Literature mentions two possible solutions to this problem in the context 
of static Luenberger, which can be adapted to the dynamic context: (1) to omit the infeasible 
observations in the computation of averages or (2) to assign to the indices the value equal to 
no change in indicator (in our case the value equal to 0), which is the strategy we have 
followed. In general, Briec and Kerstens (2009) recommend reporting the infeasibilities that 
occurred in the empirical application as shown in Table 2. Out of 13103 observations, only 
204 observations are found to be infeasible (that is 1.6% of the entire sample). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2. Evolution of dynamic Luenberger productivity change. 

Period Number 
of firms 

Luenberger 
productivity 
change 

Technical 
change 

Technical 
inefficiency 
change 

Scale 
inefficiency 
change 

2000/2001 1000 -0.018 0.043 -0.083 0.023 

2001/2002 1157 0.009 0.083 -0.006 -0.069 

2002/2003 1340 -0.003 -0.099 0.093 0.002 

2003/2004 1418 -0.001 0.014 -0.008 -0.008 

2004/2005 1465 -0.001 0.021 0.009 -0.031 

2005/2006 1499 -0.003 -0.070 0.012 0.054 

2006/2007 1527 -0.002 -0.078 0.040 0.037 

2007/2008 1412 -0.012 -0.131 0.090 0.029 

2008/2009 1357 -0.003 0.000 0.036 -0.039 

2009/2010 928 0.004 -0.057 0.002 0.059 

Arithmetic 
mean 
2000/2001-
2009/2010 

13103 -0.003 -0.031 0.022 0.005 

Note: Out of 13103 observations, 204 (1.6%) were found to be infeasible. 

 
The results show consistently a decline in dynamic productivity in Spanish meat processing 
industry. However, there is a productivity growth from 2001 to 2002 and an upward trend of 
productivity growth from 2008 to 2010. From 2007 to 2008 the dynamic productivity decline 
has a mean value of -0.012, from 2008 to 2009 of only -0.003, but from 2009 to 2010 there is 
a productivity growth with mean value of 0.004. From the three components of dynamic 
Luenberger productivity change we can observe that the negative growth of productivity is 
mainly due to technological regress observed in most years. Especially the period from 
2005/2006 to 2009/2010 is characterized by a consistent technological regress (with an 
exception of 2008/2009 when technical stagnation is observed). This finding might be 
interpreted that in these periods the technology eliminates some productive options that were 
previously available for the firms in the Spanish meat processing industry. Under the 
regulatory environment of EU with regard to food safety, the firms are forced to adapt to new 
standards by undertaking additional investments and absorbing additional costs without a 
productive impact. As a result some production practices could not be undertaken anymore 
after the new regulation and consequently the situations of technical regress are produced. In 
the period from 2006 to 2007 and from 2007 to 2008, especially high technical regress is 
observed. In these years, the increase in animal feed costs occurred and also the financial 
crisis added its negative effects on the Spanish meat processing sector. These two factors may 
also explain the highest decline occurring from 2007 to 2008. On the other hand, the period 
under investigation is characterized by inefficiency decline, with exception of 2000/2001, 
2001/2002 and 2003/2004. The decrease in technical inefficiency might reflect the reaction of 
the firms in the meat processing industry to the new regulations. Therefore, summarizing, 
although the best practice frontier moved back, the firms in the sample moved towards the 
frontier.   
Overall, Table 2 indicates a decline in productivity over the 2000-2010 time-period (the 
Luenberger productivity indicator has a mean value of -0.003), which can be attributed to 



technological regress (the technical change indicator with a mean value equal to -0.031), not 
being fully compensated by a positive technical inefficiency change (mean value of 0.022) 
and a positive scale inefficiency change (mean value equal to 0.005).    

Figure 2 shows the evolution of dynamic Luenberger productivity growth and its 
decomposition into technical change, technical inefficiency and scale inefficiency change.  
 

 
Fig. 2. Evolution of Luenberger and decomposition. 

 
Figure indicates that dynamic Luenberger productivity indicator varies only slightly between 
pairs of years. The biggest changes are associated with technical inefficiency and technical 
inefficiency change. Efficiency growth clearly dominates the analyzed period with the highest 
increase between 2002 and 2003. On the other hand, the technical regress is observed in most 
periods with highest decline in 2007/2008.  

Dynamic productivity change and its decomposition by firm size is analyzed next and 
reported in Table 3. The comparison is made across four firms’ size intervals: micro, small, 
medium-sized and large.  Following EU definition, the category of micro/small/medium firms 
in made up of enterprises which employ less than 10/50/250 employees and which have an 
annual turnover not exceeding 2/10/50 million euros, respectively. The firms with more than 
250 employees and an annual turnover exceeding 50 million euros are defined as large. 
Differences in the components of Luenberger productivity growth between these groups are 
assessed using the test proposed by Simar and Zelenyuk (2006)3. 
 
 
 
 
 
 
 
 
                                                 
3 Simar and Zelenyuk (2006) adapt the nonparametric test of the equality of two densities developed by Li 
(1996). In particular, they propose two algorithms and among them they found the Algorithm 2 to be more 
robust, hence we apply it here. In essence, the algorithm is based on computation and bootstrapping the Li 
statistic using DEA estimates, where values equal to unity are smoothed by adding a small noise. As productivity 
change and its decomposition indices are not truncated, we omit the step of smoothing in the algorithm. The 
implementation of this algorithm is done in R using 1000 bootstrap replications.  



Table 3. Dynamic Luenberger productivity growth by firms’ sizes (2000/2001-2009/2010). 

Size 
class 

Number 
of firms 

Luenberger 
productivity 
change 

Technical 
change 

Technical 
inefficiency 
change 

Scale 
inefficiency 
change 

Large 378 0.005a -0.026a,b -0.003a 0.033a 

Medium 1499 -0.003b -0.030a 0.000b 0.026b 

Small  5932 -0.003b -0.031c,b 0.020c 0.009c 

Micro 5294 -0.004c -0.031c 0.034d -0.006d 
a,b,c,d) difference between a,b,c and d significant at 5% level. 
 

The results reveal that during 2000/2001-2009/2010 large firms experience productivity 
growth, while medium, small and micro firms experienced a productivity decline. 
Productivity growth decreased more for micro rather than for small and medium-sized firms. 
With regard to technical change, although all groups of firms experience technical regress, the 
difference between size classes is not always significant. Finally, both technical inefficiency 
change and scale inefficiency change differ significantly across size groups. Technical 
inefficiency change decreases with size: micro firms experience the highest contribution of 
technical inefficiency change, while large companies had a negative contribution of technical 
inefficiency change. The opposite pattern is observed with respect to the change in scale 
inefficiency as micro firms undergo scale inefficiency increase and large firms have the 
highest scale inefficiency decline. We also note that technical regress observed in the entire 
sample is driven mainly by medium, small and micro firms, while technical efficiency growth 
in the sample is due to micro and small firms.   
 

5 Conclusion 

This paper extends the dynamic Luenberger productivity growth indicator to decompose it 
into the contributions of technical efficiency change, scale efficiency change and technical 
change. The empirical application focuses on panel data of Spanish meat processing firms 
over the period 2000-2010. The results show that dynamic Lueberger productivity growth was 
overall small but negative in the period 2000-2010. Technical change made a large (on 
average 3%) negative contribution to TFP growth, particularly in the years after the beginning 
of the financial crisis. Technical inefficiency reduced on average in the period under 
investigation, to make 2% positive contribution to TFP growth. The analysis of results for 
firms in different size classes showed that productivity growth has been more favorable on 
large firms than small firms. Large firms benefitted from a positive contribution of scale 
inefficiency change yielding an overall productivity improvement of 0.5% over analyzed 
period; medium, small and micro firms all had productivity decreases ranging from -0.3% to -
0.4% on average over analyzed period. 

The results suggest that the introduction of hygiene regulations in the slaughter 
industry have caused a negative technical change in the period under investigation. Hence, 
policy makers should be aware of the negative impacts on competitiveness of on-going 
regulation. The results also suggest that the financial crisis had a large negative impact on the 
productivity of the meat processing sector. 
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