

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Staff Papers Series

Matrix Generator and Optionals (MGAO):
Users Guide

Howard McDowell

Department of Agricultural and Applied Economics

University of Minnesota
Institute of Agriculture, Forestry and Home Economics
St. Paul, Minnesota 55108

Matrix Generator and Optionals (MGAO):
 Users Guide

Howard McDowe 11
September 1982

Staff papers are published without formal review within the Department of Agricultural and Applied Economics.
H. McDowe11

Table of Contents

Page
Preface
I. INTRODUCTION 1
II. THEORETICAL REVIEW 3
III. DATA ENTRY 10
Card Format 11
IV. SAMPLE PROBLEMS 23
Problem One 23
Problem One, Input Explanation 29
Problem One, Output Explanation 35
Problem Two 37
Problem Two Input Explanation 40
Problem Two Dual 46
VI. HEADER CARDS 47
VII. FINAL COMMENTS 50
APPENDIX A. Variable Name 52
APPENDIX B. Flow Chart 54
APPENDIX C. Program Listing 63

Preface

Matrix Generator and Optionals (MGAO) is a computer software package developed by Paul Chang and Terry L. Roe. The program is designed to generate input data for a linear programming problem approximating a nonlinear programming problem, submit the generated problem to an optimization package, from which the user receives standard computer output.

This paper results directly from efforts by the author to utilize the program and is the first comprehensive documentation written on the program. It is hoped that this paper will make available a useful computer program to those interested. Criticism and suggestions are welcome.

Terry L. Roe provided a significant contribution in the theoretical section and in the general organization of the paper. Reviews by Jeff Apland, Vernon Eidman, and Boyd Buxton are appreciated.

I. INTRODUCTION

Matrix Generator and Optionals (MGAO) is a fortran computer program developed to generate input matrices for mathematical programming algorithm.[1] Of primary importance is its capacity to generate a linear programming problem approximating a nonlinear programming problem.

Specifically, the program is capable of generating matrices for solving linear approximations of nonlinear programming problems incorporating linear or nonlinear supply and demand functions, linear and nonlinear production functions having multiple inputs, and substitutability in demand.

The program operates in conjunction with Multi Purpose Optimization System, MPOS, a system of mathematical programming algorithms developed for solving optimization problems on CDC 6000/CYBER computers. The system includes various linear programming (LP), integer programming (IP), and quadratic programming ($Q P$) algorithms, and an interface with CDC's APEX, a system designed for solving large scale linear programming problems. [2]

For purposes of exposition each mathematical program may be viewed as being composed of two parts, a nonaugmented and an augmented section. The nonaugmented portion is perhaps best illustrated or characterized by most traditional linear programming problems. Following Intrilligator, this portion of the problem may be stated as "choosing nonnegative values of certain variables so as to maximize or minimize a given linear function subject to a given set of linear inequality constraints....

```
... max}\mp@subsup{\operatorname{max}}{\underline{X}}{F}(\underline{X})=\underline{CX
    Subject to
    AX \leqb},X\geq
    (where A}\mathrm{ is mxn, X, nxl, ᄃ, 1xn, b, nxl)
```

"or, written out in full:

$$
\max F\left(x_{1}, x_{2}, \ldots x_{n}\right)=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}
$$

$$
x_{1}, x_{2} \ldots x_{n}
$$

subject to:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \leq b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \leq b_{2} \\
\cdot \\
\cdot \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} \leq b_{m} \\
x_{1} \geq 0, x_{2} \geq 0, \ldots, x_{n} \geq 0.1[3]
\end{gathered}
$$

Clearly, a problem of this nature requires nothing more than defining the activities ($x^{\prime} s$) the coefficients (c 's and $a^{\prime} s$) and the right-hand-side (RHS) parameters (b's). Therefore in this respect, MGAO is simply a means of entering the data for a linear programming problem, or the linear portion of a nonlinear programming problem. This specification is referred to as the nonaugmented problem, i.e. it has not been augmented to include a nonlinear function.

The augmented portion of the matrix is that portion generated by the program from input data in linear functional form. The principle involved is that a nonlinear function may be approximated by a number of linear steps each of which is a separate linear programming activity. Hence, this technique is also known as separable programming. As the number of steps increases the loss in accuracy decreases. The nonlinear programming problem is stated by Intrilligator below.
"The nonlinear programming problem is that of choosing nonnegative values of certain variables so as to maximize (minimize) a given quasi-concave (convex) function subject to a set of inequality constraints....
$\ldots \max F(\underline{X})$ subject to $g(\underline{X}) \leq \underline{b} \quad \underline{X} \geq \underline{0}$
or written out in full:

$$
\begin{gathered}
\max \\
x_{1} \ldots x_{n} \\
\\
\quad g_{1}\left(x_{1} \ldots x_{n}\right) \text { subject to } \\
\\
\\
g_{m}\left(x_{1}\right) \leq b_{1} \\
\\
\\
x_{1} \geq 0, \ldots, x_{n} \geq b_{m}
\end{gathered}
$$

This portion of the problem requires entering the objective function $F(X)$, and the constraints $g(X)$, in nonlinear form. MGAO then defines discrete linear programming activities with the appropriate objective and constraint activities according to the instructions provided by the user.

The augmented portion of the matrix is also referred to as the extended portion of the matrix.

In specification of problems with both nonaugmented and augmented matrices, the user is advised to design the matrices such that the nonaugmented portion of the matrix, i.e. that part not containing linear approximations of nonlinear equations, is in the upper left hand portion of the matrix and that all transfer or summary columns from the generated rows of the matrix containing the linear approximations of nonlinear functions be on the left hand side. This wi11 prevent respecification to fit the program input format. This will become apparent with examination of the same problems.

II. THEORETICAL REVIEW

Although the program can be used in solving many different types of problems it was designed to facilitate the solution of sectoral models. The user is referred to Duloy and Norton, and Klein and Roe.[5]

The concept is that given "well-behaved" supply and demand functions, a market equilibrium price and quantity may be found by maximizing the area bounded on the right by the supply and demand curves.

Referring to Figure 1. Equilibrium Solution, the equilibrium price and quantity, p^{*}, q^{*}, may be found by discovering the quantity that maximizes (area A and area B).

Figure 1. Equilibrium Solution.

Area A is the portion of the integral under the demand curve above $p *$, area B is the portion of the rectangle $p * q *$ above the integral under the supply function. Under certain conditions these areas are commonly referred to as consumer and producer surplus, respectively. The total area, $A+B=Z$ may be stated as follows:

$$
\begin{equation*}
Z=\int_{0}^{q^{*}} f_{d}^{-1}(q) d q-p^{*} q^{*}+p^{*} q^{*}-\int_{0}^{q^{*}} f_{s}(q) d q \tag{1}
\end{equation*}
$$

where:

$$
\begin{aligned}
& p=f_{d}^{-1}(q) \text { is an inverse demand function, } \\
& \begin{array}{l}
\text { where price is a function of } \\
\text { quantity demanded; and }
\end{array} \\
& M C=f_{s}(q) \text { marginal cost is a function of the } \\
& \begin{array}{l}
\text { quantity supplied. }
\end{array}
\end{aligned}
$$

Rearranging the equation for Z,
$Z=\int_{0}^{q *} f_{d}^{-1}(q) d q-\int_{0}^{q^{*}} f_{s} \quad(q) d q$.
Provided that Z is a quasi-concave function, is twice continuously differentiable, and in the domain of real numbers, q * may be found by maximizing Z with respect to q.

Applying the Kuhn-Tucker theorem, the necessary conditions for a maximum to exist are stated as follows:
(3) $\frac{\partial Z}{\partial q}=f_{d}^{-1}(q)-f_{s}(q) \leq 0$ and $\frac{\partial Z}{\partial q} q=0$

Rearranging, $f_{d}^{-1}(q)=f_{s}$ (q)
Substituting p for $f_{d}^{-1}(q)$ and MC for $f_{S}(q)$ results in the competitive solution of price and marginal cost being equal.

One may easily complicate this problem by moving to an interregional trade problem. Similarly, the total cost function, $\int_{0} q_{f}(q) d q$ could be replaced with input supply functions and a production function.

Following Klein and Roe, the following simple nonlinear programming problem is specified, and then converted to a linear programming problem. Both equation and tableau specifications are provided for the linear problem. For a simple case, deriviation of the economic information embodied in the dual variables of the LP problem is provided. [6]

Let the demand function for the j th commodity, $j=1, \ldots, \mathrm{~J}$, be specified in inverse form as:
(4) $p_{j}=a_{j}-b_{j} q_{j}$
where q_{j} is the quantity demanded, a_{j} is the intercept, and b_{j} is the change in the quantity of q_{j} demanded given a change in its own price, Pj_{j}.

Let the supply side be specified by the following total cost and conversion equations.
(5) Let $q_{j}=m_{j} x_{j}, j=1, \ldots, J$
where $m>0$ is the conversion factor for x into q.
Let c_{j} be the unit cost of $x_{j}, j=1, \ldots J$.
The nonlinear programing specification of this problem is
(6) $\max _{q, x} Z=\sum_{j} \int_{0}^{q}\left(a_{j}-b_{j} q_{j}\right) d q_{j}-\sum c_{j} x_{j}+\sum_{j} \lambda_{j}\left(m_{j} x_{j}-q_{j}\right)$
or in matrix form,
(7) $\max Z=Q^{\prime}(A-.5 B Q)-C^{\prime} X+\lambda\left((M X)^{\prime}-Q^{\prime}\right)$

Q, X
where:

```
Q is \(J x 1\) of elements \(q_{j}\)
\(B\) is JxJ of elements \(b_{j}\)
\(C\) is \(J x 1\) of elements \(C_{j}\)
\(X\) is \(J x l\) of elements \(X_{j}\)
\(\lambda\) is Jxl of elements \(\lambda_{j}\)
M is \(J x J\) of elements \(m_{i j}, \quad a l l m_{i j}=0\) for \(i \neq j\).
```

The procedure for linearizing the problem is to find the definite integral of each of the j demand equations,
$p_{j}=a_{j}-b_{j} q_{j}$, and evaluate the integrals for q_{j} varying over i, or
$q_{j i}, 1=1, \ldots, I$, over $j=1, \ldots, J$, or
$w_{j i}=a_{j} q_{j i}-0.5 b_{j} q^{2}$
For each commodity, q_{j}, the area under its demand curve is found for $i=1$ to I steps. Each of these steps, $w_{j i}$, are to be activities in the linear programming format, and enter the solution at levels $a_{j i}$. Certain restrictions (to be explained) are placed on the $a_{j i}$ in order to insure feasibility.

The linear programming problem may be stated as follows:
(8.1) $\max _{a, x} Z^{0}={\sum \sum \sum a_{j i} w_{j i}-\sum c_{j} x_{j}}^{j}$

Subject to the J commodity balance constraints
(8.2) $m_{j} x_{j}-\sum_{i} a_{j i} q_{j i} \geq 0 \quad j=1, \ldots, J$,
and J convexity constraints,
(8.3) $\sum_{i} a_{j i} \leq 1 \quad j=1, \ldots, J$
or $\underset{a, x}{\max } z^{\circ}={\sum \sum \sum a_{j i} w_{j i}}^{j}-\sum_{j} c_{j} x_{j}+\sum_{j} \lambda\left(m_{j} x_{j}-\sum a_{j i} q_{j i}\right)+\sum_{j}{\underset{j}{*}}_{\left(I-\sum a_{j i}\right)}^{i}$
This problem is shown in tableau form below in Table $1 .$.
The convexity constraints are crucial to the problem. Duloy and Norton
have shown that if the nonlinear problem is concave, a nontrivial solution will exist where the following will hold for each of the j activities. Either,
(a) $a_{j i}=1$, all other $a_{j s}=0$ for a particular j,
(b) $a_{j i}<1$, all other $a_{j s}=0$ for a particular j, or
(c) $a_{j i}+a_{j(i+1)}=1$ and all other $a_{j s}=0, s \neq i, i+1$.

Table 1. Specification of Commodity Market Demand in Linear Programming Format.

Constraint Constants		Supply Activities (x)	Demand Activities (λ)	Dual
Commodity Balance	$0 \leq$	m	${ }^{-q_{1}}-q_{2} \cdots-q_{I}$	Market Price (π)
Convexity Constraint	$1 \geq$		$1 \quad 1 \ldots 1$	Consumer Surplus
Objective Function	$\mathrm{z}=$	- c	$w_{1} \quad w_{2} \ldots w_{I}$	Consumer Plus Producer Surplus

Source: Klein, Harold E. and Terry L. Roe, "Agriculture Sector Analysis Model Design: The Influence of Administrative Infrustructure Characteristics," Table A.1, p. 299.

The implication is that depending on the difference between segments $q_{j i}$ and $q_{j(i+1)}$ the solution to the linear problem, Z°, can be shown to be an arbitrarily close approximation of the solution to the nonlinear problem Z.

Given this arbitrary closeness of the linear to the nonlinear problem, it can be shown that the duals of commodity balance rows are equal to the prices, and that the duals of convexity constraints are equal to consumer surpluses. Case (a) is used for simplicity, otherwise the problem is complicated by combination of $a_{j i}$, or fractional values of $a_{j i}$. For a positive $a_{j i}$, the Kuhn-Tucker conditions require that, $\frac{\partial Z^{\circ}}{\partial a_{j i}}=w_{j i}-\lambda_{j} q_{j i}-\lambda_{j}^{*}=0$.

For a basis variable, it follows from the nonlinear problem that

$$
\begin{aligned}
\frac{\partial Z}{\partial q_{j i}} & =\frac{\partial\left(w_{j i}\right)}{\partial q_{j i}}-\lambda_{j}=0 \\
& =p_{j i}-\lambda_{j}=0 .
\end{aligned}
$$

Therefore λ_{j}, the shadow price or dual for the commodity balance row is equal to the equilibrium commodity price.

Since $a_{j i}$ is assumed to be one, and Z° is an approximation of $Z, P_{j i}$ may be substituted for λ_{j} and

$$
\frac{\partial Z^{\circ}}{\partial a_{j i}}=w_{j i}-p_{j i} q_{j i}-\lambda_{j}^{*}=0
$$

That is, λ_{j}^{*}, the shadow price on the convexity constraint is shown to be the consumer surplus for $q_{j i}$ at $p_{j i}$.

These results can be extended to the production side in the case of total cost expressed as an integral of marginal cost instead of average cost times quantity. In the case of production functions, it is asserted that the shadow prices on the convexity constraints are producer surpluses accrued to the holder of the processes.

It should be pointed out that fixed factors having a positive opportunity cost are also included in calculations of other relevant shadow prices. The same is true for any other form of price or quantity restriction. In order to determine exactly what is involved in the determination of a dual value, Kuhn-Tucker conditions should be stated for each problem, from which expressions for all dual values may be derived.

In summary:

1. The shadow prices on comodity balance constraints for demand functions are equilibrium market prices for the commodities.
2. The shadow prices on convexity constraints for demand functions are consumer surpluses associated with the commodities.
3. The shadow prices on factor balance constraints for supply functions are equilibrium market prices for the factors.
4. The shadow prices on convexity constraints for supply functions are producer surpluses associated with the factors.
5. The shadow prices on convexity constraints for production functions are producer surpluses associated with production of the commodities.

III. DATA ENTRY

In proceeding to the section explaining the data entry it should be useful for the user to have a broad view of how the program operates.

The first block of information includes the dimensions of the nonaugmented portion of the matrix, the algorithm and/or system desired (one of several MPOS algorithms or APEX). The objective function, constraints, and if an integer program, the integer variables are read in.

The second possible block of information is in conjunction with an option to read in a second data set to be inserted some place within the data set previously read in for the initial
models. This option could be useful in the case of expanding the number of columns or rows somewhere in the middle of the nonaugmented portion of the matrix, without having to repunch a new data deck.

The third possible block of data includes the information necessary to generate linear activities approximating a nonlinear function. This block is further divided into two groups of functions and associated procedures.

The simpler of the two entails taking linear steps of a single variable function, and calculating the coefficients for the objective function and the row constraints. Examples of this type of function include supply and demand curves where quantity is a function of price. The program calculates the area under the curve at each quantity increment. These values are then placed into the objective and appropriate constraint specification by the algorithm.

The more complex of the two nonlinear functions involves the generation of an input substitution surface. An isoquant defining the relationship of an output, Q, two inputs X_{1}, and X_{2}, in Cobb-Douglas functional form is provided for. It is also conceivable that if Q were viewed as a composite consumption good, the surface could represent how X_{1} and X_{2} substitute in the consumption of Q. For example Q could be fruit, X_{1} oranges, and X_{2} apples, the program will calculate as many activities as necessary to satisfy the steps in Q desired.

Card Format

In moving through the data input cards, the user may wish to refer to the listing of variable names and options, the flow chart, and the program listing found in Appendices A, B, and C, respectively.

Input cards are listed in read statement form, each with its fortran format given. A short explanation is given where program branches occur, or where an explanation may otherwise be helpful.

1. READ $(5,500)$ IDM, M1, COL, ROW

500 FORMAT [I1, I2,2I5]
IDM $=0$ for maximum
$=1$ for minimum
M1, algorithm within MPOS
$=01$, - REGULAR -, 2 -phase simplex (LP)
$=02$, - REVISED -, revised simplex (LP)
= 03, - DUAL -, dual simplex (LP)
= 04, - MINIT -, primal-dual (LP)
$=05$, - BBMIP -, branch and bound mixed integer program (IP)
$=06$, - DSZ1IP -, direct search 0-1 integer program (IP)
$=07,-$ GOMORY -, Gomory's cutting plane (IP)
= 08, - WOLFE -, Wolfe's quadratic simplex (QP)
= 09, - BEALE -, Beale's algorithm (QP)
= 10, - LEMKE -, Lemke's complementary pivot algorithm ($Q P$)
= 11, - APEX 1 -, MPOS-APEX data file interface (GENERAL)
= 12, - APEX 2 -, MPOS-APEX data file interface (GENERAL)

COL, number of columns in nonaugmented matrix
ROW, number of rows in nonaugmented matrix.
2. READ $(5,501)$ TITLE

501 FORMAT (8A10)
3. If the problem is an integer programming problem, the following cards are punched indicating the number of integer variables and variable names. If the problem is not IP, then the card block is left out.
$\operatorname{READ}(5,503) \mathrm{N} 2,(\operatorname{ACT}(\mathrm{I} 1), \mathrm{II}=2, \mathrm{~N} 2)$
503 FORMAT (I3, 11A7/(3X, 11A7))
N2, the member of integer variables
ACT (I2), the activity names
4. Read in the nonaugmented or traditional LP activities
$\operatorname{READ}(5,505)(\operatorname{ACT}(I A), I A=1, C O L)$
505 FORMAT (3X, 11A7)
ACT (IA), activity names
COL, number of columns in nonaugmented matrix
5. Read in the nonzero coefficients of the objective function of the nonaugmented matrix. Activities such as transfer columns having no objective value need not be entered.

READ (5,506) (ICOL(IB), SIGN(IB), $\operatorname{COEF}(I B), I B=J 1, J 1+4)$
506 FORMAT (5(I4, A1, F11.2))
ICOL(IB), the integer number of the activity, ACT(IA) for which an objective value is entered. Numbers begin with the left hand side of the matrix with 1 , and run consecutively up through COL.

SIGN(IB), the sign, + or - , of the objective value
COEF(IB), the real value of the objective function.
Note that up to five such entries may be entered on each card.
FLAG - Once all objective values are read in, or if there are no nonzero values associated with the nonaugmented matrix, then $\mathrm{ICOL}=-999$. So at least one card, with entry -999 in the first four columns is necessary if any nonaugmented activities are entered.
6. Read in the constraints for the nonaugmented matrix.
$\operatorname{READ}(5,506)(I C O L(I F), S I G N(I F), \operatorname{COEF}(I F), I F=J 2, J 2+4)$
506 FORMAT (5(I4, Al, Fll.2))

Exactly as in the case of the objective function, only the nonzero coefficients need be entered. In order to signify the completion of input for each constraint, three possible values may be assigned to ICOL. These values coincide with the nature of the constraints.

ICOL $=-100, \longrightarrow$ RHS constraint
ICOL $=-200, \square$ RHS constraint
ICOL $=-300, \geq$ RHS constraint
Just as in the case of the column coefficients, the right hand side parameter is entered with SIGN and COEF along with the appropriate ICOL value. No other indicator is necessary to signify the completion of constraint input.

If this block of cards complete the data input, it is followed by an end-of-file (EOF) card. This card is multiple punched, 7-8-9, in the first column, and completes the input.
7. Read in data for the insertion option.
$\operatorname{READ}(5,511)$ ISID
511 FORMAT (I5)
If new activities are to be inserted, ISID is given the value of 99999, and a subroutine called INSERT is called. If the user does not desire to use the insert option, a blank card is necessary.

If the insert option is used, the cards following ISID, and used by the subroutine INSERT are listed below.

1. Location of insertion

READ (5,511) NINS
511 FORMAT (I5)
NINS is the column number of the existing nonaugmented matrix at which the new activities are to be inserted.
2. Number and name of inserted activities
$\operatorname{READ}(5,503) \mathrm{NAA},(\operatorname{AACT}(I A), I A=1, N A A)$
503 FORMAT (I3, 11A7/(3X, 11A7))

NAA, the number of new activites to be inserted.
AACT, names of the new activities.
3. Read in objective of inserted activites.
$\operatorname{READ}(5,506)(\mathrm{AICOL}(I B), \operatorname{ASIGN}(I B), \operatorname{ACOEF}(I B), I B=1, N A A)$
506 FORMAT (5 (I4, A1, F11.2))
This input is identical in format to the objective data entered above. However unlike the earlier case in which only nonzero coefficents were entered, an objective value for each inserted activity must be entered.

AICOL, the column number of the inserted activity, beginning with 1. ASIGN, the sign on the coefficient.

ACOEF, the objective coefficient.
4. Read in number of nonzero coefficients to be inserted.

READ (5,511) NBB
511 FORMAT (I5)
NBB, the number of nonzero constraint coefficients to be inserted.
5. Read in the coefficients
$\operatorname{READ}(5,512)$ (AEWROW(IX), AEWCOL(IX), AEWSIGN(IX), AEWCOEF(IX), $I X=1, N B B)$

512 FORMAT (4(2I3, A1, F13.2))
AEWROW, row number of the coefficient.
AEWCOL, column number of the coefficient.
AEWSIGN, sign of the coefficient.
AEWCOEF, the coefficient.
Note, this option has not been tested and it is unclear whether or not the numbers for $A E W R O W$ and $A E W C O L$ are row and column numbers of the new matrix. However, this appears to be the most logical first choice. As above, if this block of data is final, then an EOF card follows the insertion and the input is completed.
7. Read in information for extended functions from which the augmented portion of the matrix is composed.

This section is characterized by having two options. The first is to generate linear activites from a single nonlinear function, such as a supply or demand function, the second is to generate a substitution relationship between 2 variables according to an exponential function, such as a production function with 2 input variables. Data entry is given for both of these cases.

READ (5,510) EID, RM, $\operatorname{IDPV}(J A)$

510 FORMAT (I5, F10.2, I5)

IDPV, flag for two variable function,
$=0$, single variable function,
$\neq 0$, three variable function.

EID, for $\operatorname{IDPV}=0$, denotes the number of nonzero coefficients for activities in the nonaugmented matrix in the same row as the generated activities; for $\operatorname{IDPV} \neq 0$, $E I D=3$, denoting the number of rows necessary for the exponential function, one row each for X_{1}, X_{2}, and Y.

RM, the right-hand-side value for the extended row. This program is designed for the RHS value of an extended row to be either 1.0 or 0.0 . For each set of activities generated, a convexity constraint is generated automatically having a RHS value of 1.0. If a RHS value of zero is desired then RM is given a value of zero. Although no example is readily available for which it may be useful, it is possible to enter a negative RHS value but not possible to enter a positive RHS value. In general, RM will be given a value of 0.0 .

Case a. Single Variable Function
This type of function will require the use of a single quantity constraint row. In the case of a supply or demand function, the generated activities in the augmented portion of the matrix will require at least one transfer activity in the same row in the nonaugmented portion of the matrix. It is possible, however, to generate augmented activities with no other coefficients in the same row.

In this case, $\operatorname{IDPV}=0$, $E I D=K$, where K is the number of nonzero coefficients for the row in the nonaugmented portion of the matrix, and RM $=0.0$, unless a negative RHS is desired. Note that in the case where all three values equal zero, a blank card is still necessary for the program to proceed.

The following cards are punched in the case of IDPV $=0$.

1. If EID $\neq 0$, read in coefficients, otherwise, skip this card and proceed to 2.
$\operatorname{READ}(5,506)(\operatorname{ICOL}(I I), \operatorname{SIGN}(I I), \operatorname{COEF}(I I), \operatorname{II}=1, E I D)$
506 FORMAT (5(I4, A1, F11.2))
ICO6, the number of columns in which the coefficient is to be entered.
SIGN, the sign of the coefficient, + or -.
COEF, the coefficient to be entered.
2. Read in mathematical function to be extended.

The program is designed for input of exponential functions of the following form:
$w=C_{1} x^{\alpha}+C_{2} x^{\alpha_{2}}+\ldots+c_{n} x^{\alpha}{ }^{n}$.
Note that in the case of X being a commodity for which a supply or demand function is defined, the equation entered is the integral of the supply or demand function. In the case of supply, the equation above would represent the total cost function associated with a marginal cost or supply function of the form:

$$
\frac{\partial W}{\partial X}=M C=\alpha_{1} C_{1} X^{\alpha_{1}-1}+\alpha_{2} C_{2} x^{\alpha_{2}-2}+\ldots+\alpha_{n} C_{n} x^{\alpha_{n}-1}
$$

If the first term were an intercept, α_{1} would have the value of 1 , so that the value would simply be C_{1}.
$\operatorname{READ}(5,508) \mathrm{IJ},(\mathrm{CC}(\mathrm{IK}), \operatorname{IEXP}(\mathrm{IK}), \mathrm{IK}=1, \mathrm{IJ})$
508 FORMAT (I5,5(F10.4, F5.0))
IJ, the number of terms in the function.
$C C$, the coefficients C_{i} for the function.
IEXP, the exponents α_{i} for the function.
3. Read in the initial value, the magnitude, and number of steps to be taken in the linearization procedure.

READ $(5,509)$ A(1), DELTA Q, STEP
509 FORMAT (2F10.4, I5)
$Q(1)$, initial value of the function.
DELTAQ, the increment value, $\left(Q_{i}-Q_{i-1}\right) \forall_{i}=1, n$.
STEP, the number of steps, n, taken.
From the function and linearization information, the program adds the number of columns consistent with the number of steps, and calculates the area under the function at each step for the objective function. Two constraints are generated, a quantity allocation constraint containing the quantity steps specified, and a convexity constraint.

A11 quantity steps are generated having negative signs. The direction of the constraint is determined by the program to be, \leq, in the case of a supply function, \geq, in the case of a demand function.

Case b. Multiple Variable Function
As stated above, the most obvious use of this option is to incorporate a production function where two inputs, X_{1} and X_{2}, are combined in the production of various quantities of some Y, specified by a Cobb-Douglas type function.

The concept used is to define several input ratios, or expansion paths at various levels of Y. From the ratio and Y values, values for X_{1} and X_{2} are determined. The calculation of the ratios follow:
$\mathrm{Y}=\mathrm{AX}_{1}{ }^{\alpha_{1}} \mathrm{X}_{2}{ }^{\alpha_{2}}$
RATIO $=\left(X_{1} / X_{2}\right)$, rearranging
$X_{1}=X_{2} R$, where $R=$ RATIO.
Substituting for X_{1}, and solving for X_{2}.
$Y=A\left(X_{2} R\right)^{\alpha} 1_{X_{2}}{ }^{\alpha}{ }_{2}$
$Y=A X_{2}{ }^{\alpha} 1_{R}^{\alpha} 1_{X_{2}}{ }^{\alpha}$
$X_{2}{ }^{\alpha}{ }^{+\alpha} 2=Y^{-1} R^{-\alpha} 1$
$X_{2}=\left(Y^{-1} R^{-\alpha} 1, \frac{1}{{ }_{\mathrm{a}}} 1^{+\alpha_{2}}\right.$

For each ratio $r_{i}, i=1, \ldots, n$, and for varying levels of r, a unique value of X_{2} is calculated which in turn determines the appropriate value of X_{1}.

This grid linearization is illustrated in Figure 2. The Linearized
Specification of $Y=f\left(X_{1}, X_{2}\right)$.
The number of activities generated in the number of steps in Y times
the number of ratios. Three quantity constraint rows, one each for X_{1},
X_{2}, and Y, and a convexity constraint row are generated by the program.
Zeroes are placed in the objective function.

Figure 2. The Linearized Specification of $Y=f\left(X_{1}, X_{2}\right)$.
Source: Roe, Terry. "Modeling of Nonlinear Functions into A Linear Programming Format'. Staff Paper P75-9 [8]

Values for the first card of this group are as follows:
IDPV $\neq 0$, the value 99999 is given in some sample decks
$E I D=3$, the number of quantity rows to be generated
$R M=0.0$, right hand side values.
For each of the three rows, the following sequence of cards is necessary.

1. Read in the number of coefficients in the row in the nonaugmented portion of the matrix.

READ $(5,507)$ IEID
507 FORMAT (I5).
IEID, the number of coefficients.
2. Read in the column, sign, and value of the coefficients

READ (5,506) (ICOL(I1), SIGN(II), COEF(I1), I1=1, IEID(I3)+1)
506 FORMAT (5(I4, A1, F11.2))
ICOL, the column number in which the coefficient is to be entered.
SIGN, the sign of the coefficient.

COEF, the value of the coefficient.

Important! Note that the right hand side value and the constraint type must be entered by the user. Therefore the final entry will have one of the following values for ICOL:

ICOL $=-100 \leq$ RHS constraint,
ICOL $=-200=$ RHS constraint,
ICOL $=-300 \geq$ RHS constraint.
3. Read in information pertaining to the ratios to be used in generating activities.

READ (5,584) NOR,(RATIO(I2), I2=1, NOR)
584 FORMAT (I3, 11F7.2/(3X, 11F7.2))

NOR, the number of ratios.
RATIO, the ratio, $\left(X_{1} / X_{2}\right)$.
4. Read in the Cobb-Douglas function parameters
$\mathrm{Q}=\mathrm{AAX}_{1}^{\alpha} 1 \mathrm{X}_{2}^{\alpha}$
READ $(5,585)$ AA, ALPH1, ALPH2
585 FORMAT (3F10.2)
AA, the multiplicative coefficient
ALPH1, the exponent on X_{1}.
ALPH2, the exponent on X_{2}.
5. Read in the initial value, the magnitude, and the number of steps to be taken.

READ $(5,509) ~ Q(1), ~ D E L T A Q, ~ S T E P$
509 FORMAT (2F10.4, I5)
$Q(1)$, initial value of the function.
DELTAQ, the increment value.

STEP, the number of steps taken.
This concludes the data input section. It should be pointed out that once the input is complete, end of file (EOF) card is required. This card is punched $7-8-9$ in the first column.

IV. SAMPLE PROBLEMS

For illustrative purposes, two sample problems developed by Roe are provided. The first problem is stated in nonlinear form and then restated in linear form. Results concerning the values of shadow prices on commodity balance and convexity constraints are provided.

Provided for both problems are verbal and mathematical specification, tableau representation, data input deck, MPOS specification, and finally MPOS summary of results.

Problem One

The first problem is one of maximizing the sum of producers' and consumers' surplus, with a variety of perfectly inelastic and elastic, and sloping supply and demand functions, and a production function.

Three commodities which are perfectly inelastically supplied may be combined. One of these inputs and an input supplied with an upward sloping function, may be combined to produce another commodity. The produced commodity faces a downward sloping demand.

The nonlinear programming specification of the problem follows:
MAX $Z=.5 L A C T 1+.9 L A C T 2+.7 L A C T 3-1.5 X_{1}$
$-\int_{0}^{X_{2}}\left(X_{2}\right) d X_{2}+\int_{0}^{Y}(90-1.2 Y) d Y$
$+\lambda_{1}(90-.4 \mathrm{LACTI}-.3 \mathrm{LACT} 2)$
$+\lambda_{2}(80-.3 L A C T 1-.2 L A C T 3)$
$+\lambda_{3}\left(200-.4 L A C T 2-.9 L A C T 3-X_{1}\right)$
$+\lambda_{4}\left(4 X_{1}^{.3} X_{2}^{.5}-Y\right)$
where:
$X_{2}=$ supply or marginal cost of X_{2}, and 90-1.2Y = Inverse demand function for Y .

The nonlinear programming problem is now converted to a linear programming problem. Notice that each of the constraints stated in Lagrangian form corresponds exactly to a row constraint in the tableau specification of the problem found below.

$$
\begin{aligned}
& \underset{L, X_{1}, a}{\operatorname{Max}} z^{0}=.5 L A C T 1+.9 L A C T 2+.7 L A C T 3-1.5 X_{1}-\sum_{m=1}^{M} a_{m} \gamma_{m}+\sum_{n=1}^{N} a_{n} W_{n} \\
& +\lambda_{1}(90-.4 \mathrm{LACT} 1-.3 \mathrm{LACT} 2) \\
& +\lambda_{2}(80-.3 \mathrm{LACT} 1-.2 \mathrm{LACT} 3) \\
& +\lambda_{3}\left(200-.4 \text { LACT2 }-.9 \mathrm{LACT} 3-\mathrm{X}_{1}\right) \\
& +\lambda_{4}\left(X 2-\sum_{m=1}^{M} a_{m} X_{2 m}\right) \\
& +\lambda_{5}\left(1-\sum_{m=1}^{M} a_{m}\right) \\
& +\lambda_{6}\left(\sum_{p=1}^{p} a_{p} X_{1 p}-X_{1}\right) \\
& +\lambda_{7} \underset{p=1}{\left.\stackrel{P}{\Sigma} \quad a_{p} X_{2 p}-X_{2}\right) ~} \\
& +\lambda_{8}\left({ }_{p} \sum_{1} a_{p} Y_{p}-Y\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\lambda_{9}\left(1-\sum_{p=1}^{\sum_{1}} a_{p}\right) \\
& +\lambda_{10}\left(Y-{ }_{n=1}^{N} a_{n} Y_{n}\right) \\
& +\lambda_{11}\left(1-{ }_{n-1}^{N} \sum_{1} a_{n}\right)
\end{aligned}
$$

Where:
$\gamma_{\mathrm{m}}=\int_{0}^{\mathrm{X} 2 \mathrm{~m}}(\mathrm{X} 2) \mathrm{dX} \mathrm{X}_{2}=\left[0.5 \times 2^{2}\right]_{0}^{\mathrm{X} 2 \mathrm{~m}}$, the area under marginal cost curve, or total cost, of $X 2$, at the $\mathrm{m}^{\text {th }}$ quantity of X 2 .
$W_{n}=\int_{0}^{Y_{n}}(90-1.2 Y) d Y=90 Y-0.6 Y^{2}$, the area under the demand function (marginal revenue under competitive assumptions), or total revenue for Y , at the $n^{\text {th }}$ quantity of Y.
a_{m}, the level at which the $m^{\text {th }}$ quantity steps of X_{2} is supplied in the solution
a_{n}, the level at which the $n^{\text {th }}$ quantity step of Y is demanded in the solution.
a_{p}, the level at which the $p{ }^{\text {th }}$ step in the production of Y, from inputs X_{1} and X_{2}, enters the solution. Note that the index P embodies both ratios and quantities. Referring to Figure 2 may be of some help. Given a particular input ratio i, as quantities j of Y are changed, quantities of X_{1} and X_{2} change accordingly. Therefore the index p runs over both ratio numbers, and the quantity steps in Y, or $P=($ ratios $)(M)$.

Linearization Parameters, Problem 1.
Supply of X_{2} :
Total cost: $W=-0.5 \times 2^{2}$ area under supply

```
Initial \(X_{2}=0\)
    \(\Delta X_{2}=10\)
    STEPS \(=12\)
Production of \(Y\)
\(Y=4 X_{1}^{.3} X_{2}^{.5}\)
Initial \(Y=10\)
        \(\Delta Y=10\)
    STEPS \(=5\)
RATIOS
\(\mathrm{R} 1=.4 \quad \mathrm{R} 2-.8 \quad \mathrm{R} 3=1.4 \quad \mathrm{R} 4=1.8\)
Demand for \(Y\)
\(W=90 Y-.6 Y\)
    (area under demand)
Initial \(Y=0\)
    \(\Delta Y=7.5\)
    STEPS \(=12\)
```

The matrix, data input, computer specification and results follows:
Table 2. Problem 1 Tableau Specification

Problem $O_{n e}$ Input


```
        \(1+0.3 \quad 2+0.9 \quad 3+0.7 \quad 4-1.5\). 9.906
        \(1+0.4 \quad 2+0.3 \quad-100+90.0\)
        \(1+0.3 \quad 3+0.2 \quad-100+80.0\)
        \(2+0.4\) - \(3+0.9 \cdots 4+1.0 \quad-10+200.0\)
        \(5+1.0\)
        \(1-0.5 \quad 2.0\)
        \(\begin{array}{lll}6.0 & 10.0 & 22\end{array}\)
```



```
14. 1
15. \(4 \cdots 2.0 \quad-100+0.0\)
1.6. \(\quad 1 \quad\). \(\quad . \cdots \cdots \cdots\)
18. \(\frac{b-1.0}{1}\)
19. \(0-1.0 \quad \cdot \quad-300 ; 0.0\)
\(20.40 .4 \quad 4.8 \quad 1.4 \quad 1.8\)
21. \(4.0 \quad 0.3 \quad 0.5\)
22. 10.0 .. \(10.0 \cdots \cdots \cdots \cdots\)
23. 1
24. \(\quad 4+1\).
25. \(290.0 \quad-\cdots .0-0.0 \cdots \cdots-2.0\)
26. \(3.0 \quad 7.5 \quad 12\)
7
\(>\)
خ
An explanation for each card follows
```


Problem One, Input Explanation

1. maximum problem, MPOS regular algorithm, 6 columns and 3 rows in the nonaugmented matrix
2. title
3. variable names
4. objective, nonaugmented
5. row 1 , coefficients by column, constraint type, RHS value
6. row 2 , coefficients by column, constraint type, RHS value
7. row 3 , coefficients by column, constraint type, RHS value
8. blank card for no data insertion

9-12 generate supply of X2
9. 1 nonzero coefficient in nonaugmented portion of row 4
10. entry of row 4 , column 5, equal to 1.0 .
11. integrated supply function, 1 term, coefficient $=-0.5$, exponent $=2.0$
12. initial step $=0.0$, increment $=10,12$ steps

13-22 generate production surface $Y=A X^{\alpha 1} X^{\alpha 2}$
13. 3 rows generated, $99999=$ DEPV subroutine
14. 1 nonzero coefficient in row 6, (X1)
15. row 6 , coefficient by column, constraint type, RHS value
16. 1 coefficient row 7 , (X2)
17. row 7
18. 1 coefficient row 8 , (Y)
19. row 8
20. 4 ratios, $\gamma 1=0.4, \quad \gamma 2=0.8, \quad \gamma 3=1.4, \gamma 4=1.8$
21. production function $Y=4 X_{1}^{0.3} X_{2}^{0.5}$
22. initial $Y=10$, increment $=10,5$ steps

23-26 generate demand for Y
23. 1 coefficient row 10
24. row 10 coefficient
25. integrated demand function, 2 terms, coefficient $1=90$, exponent $1=1.0$, coefficient $2=-0.6$, exponent $2=2.0$
26. initial $Y=0.0$, increment $=7.5,12$ steps

Following is the computer output generated for problem one.

Output Interpretation - Problem One
A brief description of the output follows. Those needing further explanation should refer to the MPOS manual.[2]

REGULAR - The particular MPOS algorithm requested by the user.
TITLE - Followed by user provided title
VARIABLES - The names of variables in the nonaugmented position of the matrix are given first, followed by the augmented or generated variables. Variables associated with the supply of X2 YA1 through YA12; production, YB1 to YB20; demand for Y, YCl to YC12. MAXIMIZE - The type of optimization requested for the objective function that follows. Note that the sign and objective value for each variable is provided. CONSTRAINT - Followed by each row constraint in the problem. Variables having zero coefficients are not listed, Note that constraint (4) is the commodity balance row for $X 2$. The values at each step are the quantities associated with the total cost values in the objective function. Constraint (5) is the convexity constraint for X 2 .

Summary of Results
For each variable the following information is provided.
STATUS - Whether the variable is in the optimal basis at a zero or positive value. LB indicates zero; B positive value.

ACIIVITY LEVEL - The level or value a variable takes on in the optimal solution.

OPPORTUNITY COST - The cost in terms of a change in the objective function given a marginal increase in the particular variable. This item is used synonymously with shadow price or dual. LOWER, UPPER BOUNDS - The lower and upper limits of a variable within which the opportunity cost is unchanged.

Interpretation of the slack variables of the row constraints is the equivalent of finding the values of the dual problem.

The first three slack variables are associated with row constraints of the nonaugmented portions of the matrix. They are the commodity balance rows of fixed resources.

STATUS - Whether the slack variable is in the optimal basis at a zero or positive level. LB indicates zero; B a positive value.

That is, SLACK takes on a positive value only when the resource
is not totally exhausted.
OPPORTUNITY COST - The change in the objective function given an additional unit of the commodity constrained, or the value of an additional unit of the commodity.

The resource in row 2 has a positive value (69.76), indicating that it is not used up or is not a constraining resource. Since it is not constraining, its worth or value is zero as indicated in the opportunity cost column.

Additional units of the resources in rows 1 and 3 would be worth $\$ 1.96$ and $\$ 0.78$ respectively.

The interpretation of the Lagrangians or dual values of the rows of the augmented portion of the matrix was discussed in the theory review above. Again this value is given as the opportunity cost here. These values, taken from the computer output are listed below.

$\lambda 4$ - dual row 4 - price of X_{2} -	15.00
$\lambda 5$ - dual row 5 - producer surplus X_{2} -	100.00
$\lambda 9$ - dual row 9 - producer surplus Y -	1214.89
$\lambda 10$ - dual row 10 - price of Y -	31.50
$\lambda 11$ - dual row 11 - consumer surplus Y -	1417.50

The value of the objective function is 3064.61 .

Problem Two

In problem two, surplus is maximized from two limited resources, which may be combined by two different production functions into a commodity facing a downward sloping demand.

The nonlinear programming specification follows:
Max $\quad Z=2.0 \mathrm{X}_{11}-2.0 \mathrm{X}_{12}-1.8 \mathrm{X}_{21}-1.8 \mathrm{X}_{22}+\int_{0}^{\mathrm{Y}}(90-1.2 \mathrm{Y}) \mathrm{dY}$
$+\lambda_{1}\left(25-\mathrm{X}_{21}-\mathrm{X}_{22}\right)$
$+\lambda_{2}\left(75-\mathrm{X}_{11}-\mathrm{X}_{12}\right)$
$+\lambda_{3}\left(\mathrm{Y}-4 \mathrm{X}_{11} \cdot \mathrm{X}_{21} \cdot{ }^{-3} \mathrm{X}_{12} \cdot \mathrm{X}_{22} \cdot{ }^{15}\right)$
Linearization Parameters
Production Y_{1}
$Y_{1}=4 X_{11}^{.3} x_{21}^{5}$
Initial $Y_{1}=10$

$$
\begin{aligned}
\Delta Y_{1} & =10 \\
\text { STEPS } & =5
\end{aligned}
$$

RATIOS

$$
R 1=.4 \quad R 2=.8 \quad R 3=1.4 \quad R 4=1.8
$$

Production Y_{2}

$$
Y_{2}=3 x_{12}^{6} X_{22}^{\cdot 15}
$$

Initial $\mathrm{Y}_{2}=10$

$$
\Delta Y_{2}=10
$$

$$
\text { STEPS }=5
$$

Demand for Y

$$
\mathrm{W}=90 \mathrm{Y}-.6 \mathrm{Y}^{2} \quad \text { area under demand }
$$

Initial $Y=0$
$\Delta \mathrm{Y}=5$
STEPS $=12$
The matrix, data input, computer specification and results follow:
Table 3. Problem 2 Tableau Specification

Input Deck - "roblem 2

```
1. U01 0
2. \(0 * N 0.2\)
```



```
\(5 . \quad 5+1.0 \quad 6+1.0 \quad-100+25.0\)
6. \(3+1.0 \quad 4+1.0 \quad-100+75.0\)
8. 3 gy994
    \(\begin{array}{rcr}9 . & 1 \\ 10 . & 3 \times 1.0 & - \pm 00+0.0\end{array}\)
\(\begin{array}{lcl}11 . & 1 & \\ 12 . & 5-1.0 & -100+0.0\end{array}\)
\(\begin{array}{lcl}13 . & 1 & -\cdots \\ 14 . & 2-1.0 & -300+0.0\end{array}\)
\(\begin{array}{ccccc}15 . & 40.4 & 0.0 & 1.4 & 1.8 \\ 16.4 .0 & 0.3 & 0.0 & \end{array}\)
\(\begin{array}{lllll}15 . & 40.4 & 0.8 & 1.4 & 1.8 \\ 16.4 .0 & 0.3 & 0.0\end{array}\)
17. 10.0 10.0
\(\begin{array}{llll}18 . & 3 & & 39994 \\ 10 & 1 & \ldots . . & \end{array}\)
\(\begin{array}{llll}18 . & 3 & & 39999 \\ 18 . & 1 & \cdots & \cdots\end{array}\)
20. \(4=1.0 \quad-100+0.0\)
\(\begin{array}{cccc}21 . & 1 & & \\ 22 . & 6-1.0 & -100+0.0\end{array}\)
\(\begin{array}{ccc}23 . & 1 & \\ 2 i_{i} . & 1-1.0 & -300+0.0\end{array}\)
\(\begin{array}{cccc}2 i_{i} . & 1 * 1.0 & -300+0.0 \\ 25 . & 4+0.4 & +0.8 & 1.4\end{array}\)
\(\begin{array}{cccc}25 . & 4+0.4 & +0.6 & 1.4 \\ 26.3 .0 & 0.0 & 0.15\end{array}\)
26. U.0.0.15
27.20.0 \(10.0 \quad 5\)
\(\begin{array}{lcll}28 . & 2 & \cdots & \cdots \\ 29 . & 1+1.0 & & 2+2.0\end{array}\)
\(\begin{array}{cccccc}30 . & 2+90.0 & 1.0 & -0.0 & 2.0 \\ 31 . & 0.0 & \cdots .0 & \ldots .0 & 10 & \cdots\end{array}\)
```

7.

Problem Two Input Explanation

1. maximum, MPOS regular algouthm, 6 columns and 2 rows in the nonaugmented matrix.
2. title
3. variable names
4. objective, nonaugmented
5. row 1 , coefficients by column, constraint type, RHS value
6. row 2 , coefficients by column, constraint type, RHS value
7. blank card for no data insertion
$8-17$ generate production surface $Y_{1}=4 X_{11}^{.3} X_{21}^{.5}$
8. 3 rows generated, 99999 = DEPV subroutine
9. 1 nonzero coefficient in row 3, (XII)
10. row 3 , coefficient by column, constraint type, RHS value
11. 1 nonzero coefficient in row $4,\left(X_{21}\right)$
12. row 4, coefficient by column, constraint type, RHS value
13. 1 nonzero coefficient in row $5,\left(\mathrm{Y}_{1}\right)$
14. row 5, coefficient by column, constraint type, RHS value
15. 4 ratios,
16. production function $Y_{1}=3 X_{11}^{0.3} X_{21}^{0.5}$
17. initial $Y=10$, increment $=10$, 5 steps

18-27 generate production surface $Y_{2}=3 X_{12}^{0.6} X_{22}^{0.15}$ similar to $8-17$ 28-31 generate demand for Y
28. 2 nonzero coefficients in row, $11\left(Y_{1}\right.$ and $\left.Y_{2}\right)$
29. row 11 , coefficients by column
30. integrated demand function, 2 terms, coefficient $1=90$, exponent $1=1.0$, coefficient $2=-0.6$, exponent $2=2.0$
31. initial $Y=0.0$, increment $=5.0,18$ steps

MFUS viKOIUN 4.0 NORIMESSERT URIVEKSITY

**** Phustrim inumotr i *****

mitus vambluti4. 0
HORTHESTENG URIVERS! TY

Usine revelitr


```
4十为********&*********
```


maximing Vatue ur tire vautctave fuivethoil $=\quad 3192.750883$
Galcularion iline was .2200 sECONUS fok 30 IIERATIONS.

Problem Two Dual
For problem 2, the dual values are taken from the computer output
and 1 isted below:

```
\lambda6 - dual row 6 - producer surplus Y Y -
91.18
\lambda10 - dual row 10 - producer surplus Y ( 
    30.79
\lambda11 - dual row 11 - price of Y - 9.00
\lambda12 - dual row 12 - consumer surplus Y - 2730.00
```


VI. HEADER CARDS

Three groups of JCL header cards are given. The first is to generate maximum output for troubleshooting. The second is to utilize a previously compiled program and to generate only output pertinent to problem solving. The third is to address APEX-1.

1. Maximum output, No LP output
NAME, T10.

ACCOUNT, GQM1111,PASSWORD.
bIN CARD IF NECESSARY
RFL (77000)
ACQUIRE (MGAO) .
FETCH (MINNLIB/V=MNF)
$\operatorname{MNF}(\mathrm{I}=\mathrm{MGAO}, \mathrm{B}=\mathrm{CMG})$
RETAIN, CMG/CT=PU.
CBR(INPUT,TAPE5)
R, TAPE5.
SETTL (20)
CMG.
COST.
${ }^{7} 8_{9}$
Data Deck
${ }^{7} 8_{9}$
${ }^{6} 7_{8}{ }_{9}$
${ }^{6} 7_{8}$
2. Reduced output using compiled deck, CMG, with LP output NAME, T10. ACCOUNT, GQM1111,PASSWORD.

RFL (77000)
FETCH (MINNLIB/V-MNF)
ACQUIRE, CMG.
CBR(INPUT, TAPE5)
R,TAPE5.
SETTL (20)
CMG.
R,TAPE1.
COPYSBF,TAPE1, OUTPUT.
R,TAPE1.
MPOS (TAPE1)
COST.
${ }^{7} 8_{9}$
Date Deck
7_{8}
${ }^{6} 7_{8}$
${ }^{6} 7_{8}$
3. APEX-1

In order to access APEX, the following cards are inserted between the MPOS (TAPE1) and COST cards in deck 2.

R,APXFIL.
COPYSBF(APXFIL, OUTPUT)
RETURN, TAPE1.
R,APXFIL.
RENAME,TAPE1=APXFIL.
APEX(SOLV--------)
VII. FINAL COMMENTS

This computer program has not been fully tested and problems may be found. However, initial testing and use indicate that the program could be extremely useful in solving certain types of problems. The fortran program itself is rather straight forward and appears to be organized in a way that would facilitate user provided modification.

Some comments regarding the use of MGAO with APEX are in order. Currently, only APEX-I one is operable. APEX-II may be accessed, however format errors are incurred. If the user accesses APEX-I directly, parametric and/or ranging procedures are difficult if not impossible to perform. An alternative is to use MGAO to punch out the data deck and then put together a completely new problem specification for the APEX problem. This may be done with cards or through the use of permanent files and interactive terminals.

The user should not be limited by the mathematical forms of the functions as currently read. One need only to change the format and the read statements to fit different needs and problems.
[1] Program developed by Terry L. Roe and Paul Chang
[2] Multi Purpose Optimization System User's Guide Version 3, Claude Cohen and Jack Stein, Manual No. 320, Copyright 1976, Voeglback Computing Center, Northwestern University, Evanston, Illinois 60201.

APEX-1 Reference Manual
[3] Intrilligator Michael D., Mathematical Optimization and Economics Theory, 1971, Prentice-Hall, Inc., p. 72.
[4] Intrilligator, p. 44 .
[5] Duloy, John H. and Roger D. Norton, "Prices and Incomes in Linear Programming Models," American Journal of Agricultural Economics, Volume 57, Number 4 (November 1975) pp. 591-600.

Klein, Harold E. and Terry L. Roe, "Agriculture Sector Analysis Model Design: The Influence of Administrative Infrastructure Characteristics," in Planning Processes in Developing Countries: Techniques and Achievements, eds. W.D. Cook and T.E. Kuhn (Amsterdam-London: North-Holland, 1982) pp. 273-308.
[6] Klein and Roe, pp. 297-299.
[7] Duloy, John H. and Roger P. Norton, "The CHAC Demand Structures, Chapter 3 in Programming Studies for Mexican Agricultural Policy, eds. Roger D. Norton and Leopoldo M. Solis, forthcoming.
[8] Roe, Terry, "Modelling of Nonlinear Functions into a Linear Programming Format," Staff Paper P75-9, June 1975, Dept. of Ag. and Applied Econ., U of M, St. Paul.

Appendix A. Variable Name

	$\begin{aligned} & \text { CuRITE } \\ & \text { EID } \end{aligned}$	AN ARRAY GTORE THE COEF. OF MATNIX TO BE DUNRED Exreorys yove Fag	
**	- EO. 0		*
**		(ONi.Y AJJ ONE 3LaNK Eard)	
**	- NE. 0		
**		(punch the No. Of COEF. NinICH wILL 3 E AOJEO.)	
**	$10 M$	MAX. OR MIN. IDEVTIFIER	
**	$=0$	VEANS MAXIMILE	
**	$=1$	Means minimize	
**	İPV		
**	$=9.9999$	2 INDFD. VAR. FUNC. EXTEVGION	
**	$=0$	OrHER CASE	
**	ISIO	INSERTION FLAG	*
**	$=0$	NO NEW AOTIVITIES ARE TO -E. ADOED.	
**	$=90999$	NEW ACTIVITIES ARE TO BE TNSERTES.	
**	I\#RITE	Jump Majrix tajle flag	
**	$=0$	UONFT JUAP THE TABLE	
**	$=1$	DUMP THE TABLE	*
**	$=2$	Dumi part of the table	*
**	$A C T$	ACTIVITIES	
**	AACT	NEW ACTIVITIES	*
**	CC	COEF. OF THE FORMULA	*
**	COEF	ABSOLTTE VALUE OF THE COEFFIENT.	*
**	COL	COLUMN VO. OF THE MATEIX(vo. OF FNTRTES)	*
*	delmas	DELTA 0	*
**	1 COL	COLUM: COORD. OF THE ACTXUITY	*
**	IEXP	ExPONEYT OF EACH ITEM OF THE FORVULA	*
**	1J	NO. OE ITEMS JF THE FURYJA.	*
**	$\checkmark \mathrm{J}$	NO. OF ExTENOING PROCEDUR-S.	*
**	N2	NO. Of INTESLR VARIABLES $=0 \mathrm{R}$ I.P.	*
**	inaa	No. Of ACTIUITIES NEEJS ro be Incerting	*
**	Ni3	TOTAL VO. OF NON-ZERO COEF.	*
**	NINS	ThE Placevent of vew activities winl be tngerted	*
**	NCOL	ARRAY STORE THE VEl.UES OF COL OF EXtENOING	*
**	NEID	array sture the velues of eio of extenuing	
**	inobu	No. Of gounos	*
**	NOCD	NO. OF CONSTRAINTS	*
**	NoCo	ARRAY StORE THE VELUES OF NOCO OF EXtENDING	*
**	Nrow	ARRAY STORE TIE VELUES OF ROW OF EXtENUI'IG	
**	NSTEP	ARRAY Store the velues of step of extending	
**	ONE	F1\%. COVSTANT ONE.	*
**	u(1)	INITIAL VALUE OF a	*
**	ROW	ROW NO. OF THE MATRIX	*
**	Rui	THE SPECIFIED R.H.S VALUE DIFFEREVT =ZOM DEFAULT	OVE*
**	SIGN	SIGV OF THE ACTIUITY	*
**	STEP	STEPS	*
**	tact	TEMP. LOC. STORES THE ACTIVITIES OF zounns	*
**	1coef	TEMP LOC. STORES THE ABSaLUTE VALUE OF BOUVDS	*
**	TITle	TITLEOE THE PROSLEM (RESTHICTED OVE GARD)	*
**	TGIGN	TEMP. LOC. STORES THE SISM OF BOMVJS	*
**	IT1	TEMP. LOC. STORES THE RE.ATIONS OF DOJNDS	*
**	TT2	TEMP. LOC. STORES THE SISM OF R.H.S.	*
**	TT3	TEMP, LOC. STORES THE A3SNLUTE VALUE OF z.H.S.	*
**	${ }^{*}$	The values of the forvula mith pitting o values	*
**	nSIGV	The sigvs of a mrzay	*
**	XGIGN	$\ddagger-7$, MIVJS SISV.	*
**	Ysign	ま+F, plus SIS\%.	*
**	cepo	tut, CONSTANS - Tマo	*

Appendix B. Flow Chart

Appondix C. Program Listing


```
        <EAL. BG- HH|, IF XF,L
        lategE, :MCOL.armCGI. AFwWOW
        HNEGE., COM OUNO PFD.STFP
```



```
    * CuFF(12|u),MFTHO(1%),VaRS(26)
    Common /T11t/TALT(1nu)!Tiว(10.1),TT{(10n)
```



```
    Ccomuiv /ilin/y(zfi.lnu)
```


－F\％ıFID．15．tF／0．0．－1．6／									
			\＃．\ddagger iscuISFn	t．\ddagger \＃n！${ }^{\text {a }}$		F．timivit		± 1	
＊\ddagger ghmip			F．IGOMORY	7．IWNLFF		t．\ddagger RFALF		\pm 。	
＊ilfame			F．tAPEX？	± 1					
LiATA		－LE．.$⿰ ㇒ ⿻ 土 一$ ， E		± 1					
Data varkeit		TITIF：	ま． F JNFFGER	$\pm . \pm$ VARIA\＆LFS		$\pm \pm \pm 4 \mathrm{CaHIT}$		\ddagger ，	
－Fivinimat		\％．760．65tRas	INTH：IPOUNOS	\pm. PPstiNT					z。
－＋E゙NTAP－x		z．Finwual L	\＃，mbivi）Tist	\＃．trnagoaj			Fingric		\pm ，
－+ YOLEK．NCF		F．7FPSIION	Frarsivonis	F．FLisit			mosear F		\pm 。
＊+ Check			$\pm . \pm$ O	$\pm . \neq 5$ TOP		＋	RFSCAIF		7 ，
		7．FindxFrs	＊／						
lata									
	＊ACt．TT？，T13／2！u＊		$\pm 1.100 * 0.01$						
UATA	－Y（1．mA	）．Nム＝1．1（n）／$+\times \begin{aligned} & \text { a }\end{aligned}$		士．tyA？	\＃，FYA． 3		F，\ddagger YA 1		\pm.
＊Y Y ¢	\＃，								
＊	．Yath	2．2Ya7	I，\＃YAR	F．FY：a		EYA1号			
＊	－YAI？	10＋y：13	J．tyAlı	F．JYA15			L．tyal		
＋	－YA］	よ．おүala	ま，zYa？n	\pm－		FYイン1	まッチソ＾つ？		
＊	－YAン3				1．	1YAつ7	$\pm \not \pm Y \wedge>8$		
＊	－YA＞a	ま． Fa 3 n	I．IYast	\＃．EYA3？	\pm.	LYAzz			
＊	－YA．s5	1．19033n	F．JYS．ST	ғ．tyaje	F．	trazo	ますメットロ		
	$-Y A+1$		－J．tyatz	F．7Ya44	\pm.	IYA45			
＊	－YA47	\＃．FYa4R	F，FYA4C	土．tYa50	\％．	IYAF，			
＊	－YAna		L．fYAS5		± 0	\pm Y戌 7	まりまY吅		
－	－Yato	E．IYAno	t．fyát	$\pm, \pm Y \triangle 5$ ？		むYAにz	む。 \ddagger YロG4		
＊	－YAnsi	z，fratan	F．IYÁT	H．\pm Yash		キ Yán	む．\ddagger Y＾70		
＊	－YA71	む．よYロ7\％	\pm \＆YA7\％	ま． $\mathrm{FY} \times 74$		d．YA75	まもY		
＊	－yay7	Fロ＋Ya7R	\％．syn7a	$\pm . \pm Y$ aso		¥raal	まりまり＾タコ		
．	－Yムふ⿱		$\ddagger 口$ Yムßら	I．XY，		\pm YAM 7			
	－yana	－x，AYn90	F．tyag	7．tY49？		fragz	t．tysal		
	－YAMS，		A．tY247	f．zysan	\pm ，	fyaia	f：キY：100		
jata			（1）Ertil		$\pm . \pm$	YR.3			

＊	－rth		a．rira	－¢1この	よ．7ヶトヶ！	キッチャ！	ま．
＊	－YFi2	＋1．4．Y－13	d，tYF14	＋．7\％15	子．Fivia	wityeil	\pm.
＊	－YFif	± 1＋ricla	I．tyF2n	玉．	キソジ八9	より年ここの	\％
＊	－YFO3	お，＋rF24		エ，彻			\pm.
＊	－YF－C	L，$+\mathrm{Y}=3 \mathrm{l}$	\pm＋YF 31	土． $\mathrm{FYES3}$	I，IYFマz	むはYにろ4	\pm.
－	－YFith	L．FYF36	F，TYF． 37	D．ty63H	む，IYFRO	いまYには号	\pm 。
＊	－YF゙い	F，FY54\％	A，TYF43	む．まY：44	\pm, YFEム	いまりといた	\pm 。
\cdots	－YE47	1，GFF4A	F． F YF4O	＋． $\pm Y=50$	1．WYE～9	ェは「くら？	\pm 。
＊	－YF53	－LYE5：	土．TYF55	土．ty－56	1．7YF二゙ 7	まりまりにちR	\pm 。
＊	－YFSO	工，JYFEA	1．1．YF号	ま．EYFら？	又，JYFa\％		＊．
＊	－YFins	LIFYFGA	¥． 2 YF F 7	L．\＃．YFina		\pm JYETO	\pm 。
＊	－YF71	f．fifla	$\neq, 1$ YF7．3	む．EYF74	7．$=$ YF－75	fatye7n	\pm.
＊	－YF77	エロよドアル	\＃．tyF79	士．FYFRリ	士口才YFM？	ざよYにRア	\pm 。
＊	－YFAS 3	z．ryfril	\pm. YFBS	工． 5 Y\％я	\＃，IYFa？	I＇fYERA	\％．
＊	－YERO	士 \＃YF9	ま・エYFG1		\＃，\＃YFOQZ		\pm.
＊	－YFU5	L．＋Y F96	ホ，大YF97	x：\pm YF9R	L．IYFOO	大．才Y「100	± 1
$\begin{array}{r} \text { OHTA } \\ \times 2 Y F S \end{array}$	$\underset{\neq 0}{Y(\ln \operatorname{lin})}$		／fYF9	\＃．\ddagger YF？	\＃．\pm YF． 3	キ。まY「い	t 。
＊	$\xrightarrow{\text {－}}$ Fh		F．\pm YFB	f．ty	$\pm, \pm Y F 90$	まッYE1	\pm.
$*$	－YFIO		F：\pm YFil	$\pm . \pm Y$ ¢15	大，FYFía	むやYど7	\pm.
＊	＋YF18	\＃．fyFla	\pm＋＋YF2n	\pm ，	\pm YFP9	士．むYヶっ？	\neq
＊	－YFir 3	FifyF24	士，IYF？		土．LYF＞ 7	まッチンでつ	\pm 。
＊	\triangle YFPO	च． 2 YFJO	\pm IYF31	1．士Y：3？	むごヶヶ\％	z．も．	\pm 。
＊	－YFAS	\＃．2yF3\％	F1＋YF37	$\pm \cdot \pm Y=32$	士，士YFマロ		\pm 。
＊	，YF4，	F．FYFES	\pm IYF4．3		ま，むYFiif	まっさY＝ムK	\pm 。
＊	＋YF47	7．19rum	\pm ，IYF4O		\＃，\ddagger YF5，		\pm.
＊	－．YFっ\％	L． FYF 5 SH	\pm ，＋YF5 5		亡りまり下ら7		\pm 。
＊	．．YFSu	よ．よりたち	\pm AYFOI	工．FYF6？	ま，ІVFに，		\pm 。
＊	－YFins	2．LyEfin	\pm \＆YFǴ7	L． F YESH	\pm I．YFGA	」－大YEフ0	\pm 。
＊	＋YF゙1		士．LYF73	ま，\pm Y67 4	\pm JYF75		\pm 。
＊	－YF＇7	土．⿰yF7R	\＆，£YFTG	上，＝ YFGa	L，LYFM	fotyera	\pm 。
＊	$\triangle \mathrm{YFi} 3$	士．大YFR4	士，tYFBG	L．才YFQS	士，よYFらの	\pm FYEAR	\pm 。
＊	－YFiga	士． 4 YFgil	\pm ，tYF91	I，IYF9？	土，IYFG\％	\pm キYFQ4	\pm 。
＊	－YFus	L．FrFgh	\＃．IYF97		\pm ，\＃YFGO	\pm まY＝10n	± 1
data	．Y（ $7 . \mathrm{MA}$ ）		$/$＋rgo	む． F YG\％	$\pm \cdot \pm \mathrm{YG} 3$	\pm 擼	\pm 。
－ 765	\pm ，						
＊	．．ran	2．2YE7	土．＋YGR	д．\pm YGa	ま．\ddagger YG1n		\pm.
＊	－YGiz	Lutarioz	F，fYG14		\pm キVG1の	さりまりに17	\pm 。
＊	AGGIA	forrciu	F．ryis？n	\pm ，	fVGつ9	むけYヶってつ	\pm.
＊	－rgas		\＃，\ddagger YGZ	L．\pm Ya？	む．EYGつ7	まりまりrアア	\pm 。
＊	．－rgat		$\neq 1$ tyg． 31	\％．\pm Yに3？	\pm ，士YG33		\pm 。
＊	－rgita	F．LyG3m	$\pm . \pm$ Y6．37	F．tyo3q	J．$:$ YG：	よりさYくは号	\pm •
＊	$-\mathrm{rgat}$		F。＋Y intz	士．t．Ye4t	\pm－LYGGE	む．\ddagger Yr．un	\pm.
＊	－Yfit 7			む．$=$ YG50	士，EYGら9	むrキYに5？	\pm.
＊	－rg53	\＃，IYGE．	$\pm . \pm$ Y655		む．すそGに7	LっまYっちR	\pm 。
＊	－rgha	L．JYヶG6a		ま．\pm Yán？	H． HYGR F	よせさYにちム	\pm 。
＊	－Yions	foryagis		z．t．Y的SR	土，\＃YGina	I＊JY¢70	\pm.
＊	－rG\％	1．1467．		む．\pm YG7 74	\pm ¢ \ddagger YG75	むはYG76	\pm.
＊	－YG：7	f．LYに：7a	L．IMGTO	\＃．\pm YGRn		\pm \＃YGR？	\pm 。
＊	＋YG\％3			ま．JYハRG	ま，末YGA7	tetrean	\pm ．
	－Ygese	z 5 Yrial		\％．tyras	む．LYGOz		\pm ．
＊	－YGinf	1．＋ragn	\pm ¢ Y （ロヲ）	1． tY Y FOM	L．LyGua	\pm まY＝100	± 1
DATA	，Y（m． $\mathrm{Ma}_{\text {c }}$ ）		／fyHi	F． FYH	F．7．Y4．3	$\downarrow_{0} \neq Y H_{11}$	\pm.


```
    HEAD (makili) TliLFF
```



```
    IF IT . M I.Ö. HGOALEV, 2EAD THF IN!T. VSRS ANN mZITF TO TAPF 1.
    U.W. GmivTi wlë TME んROCES&.
```



```
    MEAN (, &,|.S) ivp.(ucT(I1),I,=1,N2)
    vikITE,1,HM1/ Varici2), (ACT(11),II=1,N2)
    \leftarrowCUNTLiN,F
*** rEAD I. TO &IL OF TmE ACTIVTTIES
```



```
*: REAU I.,TO THE GOEFFIFINTG OE GG.IECT FIMRTINN.
    ~1=2
    1| CUNTINM,F
```



```
    l,0 15 rC=N1:N1+4
```



```
15,CuN|LiN.,F
    <l=\l+_
    0u 10.n
*** NUOHS 1- TME ivO. UF NOM-7FGO CUFF. aF ORJEGTIVE FIMCTIOM.
    2# 6ONTLN.,F
    ivuOG = 16 - 1
```



```
    CUNSTR,TNY *aTHIR.
```



```
2., ひUNT1%.6
    LiN 3U •F゙=1.RO%
27 CuinT bin,F
```



```
    IF (IC.l (IG) .LT. 11) GO TO 40
3n COい:Tdu.F
    いこ=い2+.,
    Gu TO -7
4| GUNIN,F
```



```
    If YES. THFN Part it tiv TFMO. LorC.
    GHFERW, CO CONTINNF THE PRUCFGS.
    Ir (fo ent. 2) mn TU 4S
    Ir (ICal (in) .1 i. -100) (in TO 4.5
    K1二人1+.
    1aCT(K.) = aCr(1C,OL(1))
    |゙つ(Kl, =5\GM(IG)
```



```
    Gu) ro ..K
45 CuNTIN,t
*** NOCO CNINTmTSS THE NO. OF INON-ZFRO COFF. SF CONSTRATNT.
    1F以=IE .+1
    ivjCu(1-w) = IG - I
*** URITE ..ITT THE COEF. AND R.H.C. OF FACH CO.|TRAINT.
```



```
    IvEL=ír)l(rG)/(-1!n)
```



```
4& CONTIN,F
    いてこ1
Fa CUNTIN.,F
*** inofilu CmivTaiNo trie rio. Of mollidDe.
```



```
4* CovidTliw.f
```



```
    THE FU.(It (ARTIX. (ISTO)= GQUNO)
```



```
    UTHERN-GF, CUNTINHF THF NMWMAL PRCCESS.
    LOOP = 1
    lriper = -
4a ConTIN.f
    READ (..5|!) IGIJ
    IF (EUM(5) .NE. H.1 IOU TO 65
```



```
    ITAPEI = ' mITmPF'% = ?
no CONTIm,ir
    Call risciasi
    Gu TO :.4
S: CONTIN.F
*** TeST Im Traz P!OmLFa weEnS TO BF EXTF\DFO (CramCK EOE)
    \zeta; C.NNTIM,F
        ふんこ.おんt.
        (EAD (..,S(i) Eli,ot% , LOPV( AA)
        IF (Eu..(!s) ,V|E. U.) GU TO &5
        IF (A!s-(!a.) .LF. 11.**(-1,1)) GO TO 5a
        BNF = Nw
    Gu conTlio.f
```



```
    IF YES TaIN CAl L c|HiROMTINE FOEPVS
    O.b. C.nitiamin the pRONESS.
    white, },mazl F[O.ONE
```



```
    CHiL mfRy
    00 TO . 7
    ha CoinTlin,or
        AF (ElN.F.I. (B) (O) TO FA
```



```
*** GPIMATE TIF COL. COMRI. OF VON-TFRO COEE. TF COL. .ET. NING.
```



```
    心42 - に1.FIC
    IF (ILat(1T) .Gi. NIMS) ICOL(IT)=ICOI(TT)+ivAn
4) 6LNTL.s.F
4m Comatlia.F
    GRITE,*.r(1) (S1min(T1),COFF(IT),IGO(TI),IT=1,FIN)
    Fin G(NGT:N,G
```



```
    NEAW 1.TO imE FuM: L.A
```



```
    MEAL (-.GNHA) O(I).NEI INN.STEP
*** SET UH Jmf゙ ivew nc:TIVITIFS.
    Hy COHT Liv..F
    00 5& ,&=1.5TEF
```



```
Ga COUNTLN..F
*** CALI. r,F GIRKOIIIINF GEN TO GFNFRATE THE VALIIFS OF O ANO W.
    IF (IU,V(Na) &NF. O) 6O TU 6%
    CALL_ GmiN
```



```
    lv=1
    |O n0, P= COL+1, COL+STEP
    SIGN(1..)=mく{GN(i.d)
```



```
    IN=INt.
    mit Cutatima,G
    GO T0.4
    in) COMTliv.,F
        IN=1
        |u h.3, F=CO#+1.CUL+STEP
        SIGけ(j...) = &+ま
        CUEF(L..) - O.U &ICUL(IP) = rOL+TO
        IW=1a+1
    nz COHTIIv.f
*** STORE whF valuFS OF RO* , COL, &NO GTFPC
    O.. COIJTIN.,F
```



```
    {F (I@,|(.,A) •NF. n) G(G Tu Gón
```



```
    nov CuINlL:*,i
        COL#Cb, +STन̈P - RO% = RaW+2
```



```
        GU 10 -3
    n= CU:NTMN.F
        \^こЈん-.
    ** SET Ui
```



```
    KE:||Nj IT&DF?
    - me:wlives a
    REvilvos 4
*** SeT lif TriF EINAL nRJFCT FisncTInfle
    IOA= IU..4.+
```



```
    wKITE(., i|つ) (GAG:u(IT),COEF(IO).ACT(TCOL(TO)),IO=1,NOOH)
    IF (UA •r゙w. |) \u тO m&
```



```
*** SET UP THE FINAI GONGTRAINTS.
    ni\alpha CuNTLiv.,F
```



```
        0U 7# , C=1.WBCO
```



```
        wKITE(., 1, 人) (GIGN(IH),COE=(IH),ACT(TCOL(IH)),IH=, NOCO(JC))
```



```
        wRITE(..PHय) TTVI,TTTユ.TTI{
    7n CONTIN.F
        IF (JA .FN. ()) &U TO ME
        Inw = .COL(1)
        DO K| N=1.NA
```



```
        IF (IU,V(U^) &F心. n) GO TU 74
```



```
        ILF=,FI:(13) + 1
```



```
    INT = .COL (;|E)/(-1ON)
```



```
K&い CU'vTLN.%
    WUNG = 1.W
```



```
    1,j TO -11
7n 亿んiviliw.F
    1F (F1N.F!. (0) OU TO 7S
```



```
    wKITE(.,1"\} {GYoN(IT),COCF(II),mCT(ICOL(TI)),IY=1.FIO)
7ヶ\mp@code{UNTlv.F}
```



```
    -@STEP(,K))
    1v=3
    lwn=1*S-FF(,NK)/P + 1 +iNN
```



```
    IV=1
77 COMTIN.,F
```



```
    WrIIE ,1,み|?) BEL(1).YSIGIN.ONE
H|GCONTIM,F
*** IF wuBm FGrAAL TO H. THEN IMFKE IS :OO Bn|MO FXITS.
```



```
    RS CONTINA.F
```



```
    WKYTE , 1,1,T) VANS(7)
```



```
    whTTE,1,1目) T,GCT(KR),GFL(1),TT2(KH),TT3(KH)
*ia CUNTIN,F
GHCUNTINA.F
```



```
    WNITE: , 1, 11,3) VakS(9)
*** IF IT rS FGF MPMG-APF&. THIFN PRINT &FNONMFXま A|IM &TOP
    FLSESSOF.
    IF ((N, .|FF. I|\ . aNN. (VIL .NE. 1?)) STOP
    WRTTE,1,1(13) VAKG(1H)
*** FU゙イMA!T..
```



```
U< FOKMAI (ainmm,Fl!.5)
U0 F(wR-mal (x-1G.ऐ)
```



```
U1 FORM,il (sumir)
```



```
03 FU~rinimi (1.{.11A7/(3x,11A7))
U4 Fum(tini (&(3x,A7))
```



```
OG FUHimA{ (5,14,Ai,F11.2j)
07 Fu@Fin\ (Jn,F1́n.*)
```



```
11 FU\tilde{*Nat (fり)}
g( Fumakl (5,m1,F1S.3))
    ST(%P
    Eivij
    SuminOU., 1:IF GE.IN
    INTEGE゙, C.ル,NUA GFTD.STF%
    KEAL :MTH:NTFXN,&
```



```
*** SET UP A,|; CMLCULATE THE FORNUI A
    0心 & L, =1.らTr゙人
    m(IL)=...1
    心0 3 1.=1.T, 
```



```
    * CurTlla.f
```



```
    m SuNTIM,.F
*** DEFIINE TMF GIGNS OF w.
    (BU 1.3 N=1.STE?
```



```
    nSİiN(+iv) =r-m
13 CuNTI.N.F
    *ET|Mr.小
    Fivi
```

```
    Gurimuis.atar isepv
    INTEGE., COH ORD. ,Fr!!.STFP
    REAL MCNHWI, IEXP.L
```



```
*
```



```
*** ReAf I.TO THE NO. OF INON-フERO COEF. OF FACH ROW
    DO &由% I.%ニ1,ETO
    REART (-.si|%) lF|j(r.3)
```



```
*** UPOATE TMF COL. GOFIRD. OF NOM-7ERO COEE. IF COL. .GT. iNINS.
    IF (IS.F •NF. G.#Gu) GO Ti) 7nl
    LO 7(3) 11=1,IETM(1&)
    IF (IC.I (II) .if. mINS) ICOL(IT)=ICOI (r1) +iNAA
7H|, CUNTLIN,F
701 COINTIIv.F.
*** wRITE M|Y TO PFWWFGANT FIL= (TAPE 子)
```



```
Bun ひ̈ONT IN.,F
```



```
    KEA! (E.5H') NOR,(KATIO(TO),I2={,NGR)
*** &EAO L..TO THF F(VR゙m|LLA.
```



```
    AxX = .|PH1 + Al PHO
    xa4 =./Xxx
    xNH=_.4LFH!/xxx
*** RFA| L.,TO THF. TivitrAI VAL|ES OE O. FFLTA a* a|n STEPS.
```



```
*** Cuvipul.. Taf valare OF o, L. ANMC.
    |O KUn In=1.NOR
    Du Blib In=1.STFP
```



```
    G(IIIt.) : (O|I|)+!F| {AN
```



```
    C(IIL) = *aTIO(1%)*L(III)
801: COMTIM,F
    o(111t.) = 0(1)
ABM CutwTid.f
```



```
    NKKK = .OKR STEP
    |N ARUU T,i=1.NRRK
    GSDGiv(rN) = F+z
    CSIGH(,iv)=士+L
    LSIfiv(,N)=ま+む
    If (o(riv) .GE. I.) GO TO तIG
    G(T1な) -.. #ー末
BI二 GONTIM,F
    IF (C(viv) .GE. H.) Ga TO M17
    C.(IN) - Zー上
B1% Cur,T liv,F
```



```
    L.(IM) - 7-L
Hala CuNT[lw.f
MD| CGinTLi*,F
    STFH = WINK
```



```
    *NlTF (&,墔(C,1GN(&R),C(IN),I&=1,NRO)
    wi\ITE,4,haa) (1.5imN(ia),L(TG). (q#:,NRR)
```



```
F*.FWrnduTM.
    F(whimpr (36-1,F9M.F.A7))
    Furgmai (mllo)
```



```
    FOR`ar (atu,a1.F)m.5)
    Futimat (3a.11A%)
    FOHmid (F5(FG,d)PFil.0))
    FuRi.id) (Ib)
    FuRia& (วF10.4.7n)
    Furimar (IS.ilF%.2/(3x.11F7.?))
    FUR|AT (3F1n.?)
```



```
    WETUKG
    Ei|)
    SWCHOU-INF TNCFRRT
    INTEGEN COI ,WON OFID.STFF
    INTEGE, ATCOL,AF:MCOL,AF&つO.凶
```



```
    *
```



```
    *
```



```
*** REAO) L.TO TriF PL.MCFMFNT OF IIFW ACTIVTTRES(NINS) IN
```



```
    OF OHveCTIVF FIINSTION.
    ISIE= GCMMa
    REAO (..511) NTNG
    REAU (m.Gい3) NuA!(AACT(IA),IA=1.NAA)
```



```
*** REAU I.,TO THE COFF. OF CO.NTRAINTS.
    <EAD (me&11) Nism
```



```
    *1(vima)
```



```
    अ0 3n, 1=1.CいL
    lF (ivin,S .iff K1) &O TO 4il
    3H G|NTLNE
    4| COINTLN.F
```



```
        kai)=(6, +Nma+1-x>
        KんF=Cu, +1-a分
        AC.l(Кشm)=nCT(ズaE)
    44 COMTI|v.F
        0心47 D=1.\thereforeAA
        n+C=iv1n.5+n;
        ACT(Ka, ) =a&CT(x)
    47 LUUNTIN.,F
*** |PणATE THF ivU心. औF actluTTIFS.
    CuL=COM +NAN
```



```
    NEMI!vu \THmF!
```



```
*** START rO I:vGERT InF mE゙M ALTIVITIES I UTO THE OLO OR I. FINNC.
    00 कO ,1=1.NWNO
```



```
5a EUNTIN.,F
    GO TO-3
5a Conrliv.f
```



```
    AAO = .O(In+vaAA+1-kinH
    KAF = .OOM+1-A,N-G
    S1GN(n,O)=STいN(AMF)
    CUFF(R.O))=CSFF(NaF)
```



```
nor CumTi,v.f
Gz CONTING.F
    0心 6S ,% = 1.NAM
    KAC = .INNS + Kう
```



```
\therefore\mp@code{CUNTIN.,F}
*** |HMate THF NO. UF rOFF. OF ORJ. F(J:C. (nOOA)
    NOOB = NO(r-2twAL
*** wRITE N|T THF L,NFsI OHN. F|NC. TO ITAPE?.
```



```
    |N nu +F=1,䃼い*
```



```
*** arbate Trif cul. U|ORN. OF NOM-YFRO COEF. TF COL. . OT. NINS.
    @ 71 , 1=1.|いCO(LF)
    |F(ICN(1) •GT• WINS) ICOL.(I1)=IGOL_(11)+NAA
    71 COM:HN..F
```



```
    1F (4F..RO*(1U) . VF. IE) GO TO 70
    iO n7 +F=1.N机J(rE)
```



```
    * TO ves
G7 CONTIN.,F
    GU TU %G
    Gm COMTl\u.F
```



```
    SlGiv(L..+1) = !ifov(TH)
    GOF()+,: = CorFF(rH)
    ICOL(1..+1)=ICUI(rH)
    nu COUN|,N,F
    7G CNMTLN.F
```



```
    COFF(I..+1)=6F:WCUFF(In)
```



```
*** IfPliATE THF ND. uF rOFF. OF CONGTRAIONT.
    NOCO(L-) = INOCO(IE)+1
    7n CuN「IM,F
```



```
    *,l (UNTIIN,.F
*** KF*:Mivis Trif ofRririvinat FTLF (ITAFP)
    RF口\\\, ITMWF?
*** FUR脑手...
    F(u<<mial (亏(..1,Fim.'.Iu):
    Fuikinar (atweml,Fim.5)
U.3 Fu@mA1 (1.3.11A7/(3*.11A7))
```



```
1? Fumival (ulati,al,F13.2))
    rit.llloiv
    EMi"
```

