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DISCRETE STOCHASTIC SEQUENTIAL
PROGRaMMING: A PRIMER

Jeffrey Apland and Harry kaiser

The use of mathematical programming has been widespread in analy-
ses of decision—making and economic behavior under risk. Most notably,
quadratic programming (EV) and MOTAD techniques have been employed as a
means of capturing random components of the objective functions of pro-
duction problems (Markowitz, Hazell). Cocks (1968) and Rae (1971la) have
presented the discrete stochastic sequential programming (DSSP) techni-
que for extending the specification of risk beyond that which influences
the objective function directly to include stochastic constraint para-
meters (typically technical coefficients and resource endowments). The
DSSP model allows also for the incorporation of a sequential decision

"a knovliedge of tle rabaoves 2f ran—
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dom events changes through time as production decisions are made. The
purpose of this paper is to present an overview of discrete stochastic
sequential programming and to illustrate the technique through a numeri-
cal example. The application of the technique to empirical problems

involving farm decision making will be briefly discussed and an empiri-

cal application will be summarized.

Stochastic Programming

Stochastic programming refers to a class of constrained optimiza-
tion problems in which some subset of constraint parameters (coefficients
and RHS's) are stochastic. This class of decision problems may be sub-

divided into four categories involving the type of random variables and



the nature of the decision process. The random variables may be dis-—
crete or continuous and the decision process may be nonsequential or
sequential. An example of a non-sequential problem with a continuous
random resource endowment appears in Anderson, Dillon, and Hardaker

(pp. 216-221). The class of problems involving continuous random
variables and a sequential decision process cannot be handled with the
techniques discussed here. The reason is straightforward. Consider the
vectors selected in a later stage in the decision process. Each of these
vectors must be selected conditionally upon earlier stage decisions and
the outcomes of earlier random events (this is why the problem 1is sequen-
tial). If the variables representing the earlier random events are
continuous, the number of circumstances under which later decisions

must be made is infinite. Thus, continuous random variables in sequen-
tial decision problems must be modeled as discrete variables which take
on a finite number of values.l/

The focus of this paper is on the modeling of sequential decision
problems involving discrete random state variables (or, as is more often
the case in practice, the approximation of continuous random variables
using discrete distributions). This subcategory of stochastic program-
ming, discrete stochastic sequential programming (DSSP), was selected
as the class of decision problems which holds the greatest potential for

the heuristic conceptual or empirical address of farm decision problems.

1/

" The solution technique employed in the non-sequential stochastic
programming problem cited above gives solutions which would seem to have
characteristics similar to solutions generated with a discrete treatment
of the random variables. However, the authors have not examined the
notion in detail.



Discrete Stochastic Sequential Programming

Within this general class of stochastic programming problems, dis-
crete stochastic sequential programming (DSSP) includes a discrete
specification of random problem parameters and a wulti-stage decision
process. In many cases, probability density functions of continuous
random variables are approximated using discrete "states of nature”.

The use of a multi-stage decision process involves a specification of
discrete time intervals (stages). Decisions in a particular stage are
made with probabilistic knowledge of the occurrence of particular states
of nature in various stages of the decision process. Central to the
specification of several interdependent decision stages is the condition
that the opportunity set restricting decisions in a later stage is influ-
enced not only by the occurrence of particular random events 1in that
stage, but also by random outcomes and decisions made in earlier stages.
The discussion of DSSP which follows is based largely on concepts developed
in papers by Cocks and Rae (1971a) and an article based on the application
of these concepts to a farm production problem, also by Rae (1971b).

The nature of a sequential decision process under risk as captured
in DSSP can be illustrated with a decision tree depicting the stages in
the decision process and the states of nature in each stage. An exemplary
decision tree for a two stage decision problem with two discrete states of
nature in each stage 1s shown in Figure 1. Borrowing from the notation
used in Rae (1971a) (and modifying that notion slightly), ekntt repre-
sents the occurrence of the kth state of nature in stage t subject to
which the n.th set of stage t activities will be selected. Rae points
out that the structure of the mathematical programming matrix depends on

the underlying information structure of the problenm.
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A discussion of three general information structures will help to
illustrate the construction of a DSSP matrix; a particular decision
model may incorporate elements of each. Decisions are assumed to be
made at the beginning of each stage. If at the time stage t decisions
are made the decision maker knows the outcomes of random events in sta-
ges t-%£, t-2-1, t-£-2,...,1; the information structure where 2=0 is
complete knowledge of the past and present. With 2=1, the information
structure is complete knowledge of the past and ¢>1 implies incomplete
knowledge of the past. The events depicted in Figure 1 are for the case
of complete knowledge of the past. The general LP formulation for this
case will now be discussed.

A general linear programming (LP) formulation of the two stage, two
state DSSP problem is presented in Figure 2. At this point, stochastic
components are accounted for in the constraint function coefficients
(Akntt)’ the constraint coustants or righthand sides (bkntt) and the ob-
),g/ A decision strategy 1s repre-

jective function coefficients (ck
ntt

sented by the optimal solution values to vectors Xntt° Stage I decisions
are represented by vector Xll' Because the outcome of stage I random
events is unknown when vector X:l is selected, X;, must be "permanently
feasible” - i.e., resource constraints (2.2) and (2.3) must be satisfied
regardless of which state of nature occurs. In a similar way, stage II

decisions must be permanently feasible, as well. However, two stage II

vectors (X12 and XZZ) are included since the decision maker having

2/

Variability of objective function coefficients is, of course, handled
in the more common EV and MOTAD models. The ability to deal with continuous
distributions of activity gross margins within these models make a hybrid

of the EV and DSSP approaches desirable.
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complete knowledge of the past, will know at the beginning of stage II
which stage I state of nature has occurred. Thus stage 11 decisions
will be made subject to the opportunities afforded jointly by stage II
random events, by stage I decisions and the outcome of random events in
stage I. The interdependence of decisions in the two stages is captured
through constraints 2.8 and 2.9 which allow for the continuance of stage
I activities in stage II and for the transfer of resources between the
first and the second stage activities. Matrices Dkntt and Entt are
appropriately constructed to preserve these relationships between stages.
Given the outcome of random events in stage I, constraints 2.4 and 2.5,
and 2.6 and 2.7 render decision vectors x12 and x22’ respectively, per-
manently feasible.

Activities Y1 through Y4 represent total net revenue associated
with each possible sequence of random events in the two stages (joint
events (e);7,€115)s (€177:8915)s (851)5815,) and (eyy;.€95,), respec-
tively). Ckntt are vectors of objective function coefficients corres-—
ponding to the associated events. Thus, through comstraints 2.10, 2.11,
2.12 and 2.13, net revenue levels associated with the occurence of each
combination of events are summed into Y. Joint probabilities U Gy,
aq and a, are objective function coefficients for Y, so the objective
(2.1) is expected net revenue, which is maximized.gj With the problem

formulated in this way, the optimal stage I vector is then selected with

3/

Note that the appropriate marginal and joint probabilities could
have been used to weight the vectors C, t and these coefficients could
t

have been placed directly in the objective function. However, use of
vector Y provides useful solution information and will facilitate latter
discussions of expected utllity models.



consideration of the expected explicit and implicit values of stage II
decision vectors.

Under an information structure of complete knowledge of the past
and present, stage t decisions are unique for each stage t state of
nature - they need not be permanently feasible since the outcome of
the stage t random events is known. Here, the combination of optimal
decision vectors which constitutes an optimal strategy 1s comprised of
solutions derived from separate optimization problems - one for each
state of nature in the first decision stage. A decision tree showing
events corresponding to the two stage, two state problem under complete
knowledge of the past and present is shown in Figure 3. As the notation
in Figure 3 indicates, the problem now involves two sets of activities
in stage I: one set which will be selected in the event of state one
and another which will be selected in the event of state two. Four
sets of stage II activities are implied. A vector of activities is
included for each stage II state of nature since the outcome of random
events in that stage will be known when the decisions are made. Further,
each set of decisions will be made as a consequence of one of two stage I

random events and decision vectors.

Incorporating Utility Functions Into the DSSP Model

Because the probagility distributions of monetary outcomes are
explicitly considered in DSSP, the modeling technique can be readily
extended from the expected net revenue formulation presented above to a
formulation for the maximization of expected utility. The implications

of the introduction of utility concepts into the DSSP model parallel
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those seen with other risk programming models except for special con-
siderations of time in the decision making process. Following a brief
discussion of time considerations, the incorporation of an implicit
single-dimensioned utility function into the DSSP model will be
demonstrated. In addition, the incorporation of am EV risk framework
will be discussed.

Two general formats may be used to incorporate omne—~dimensional
utility functions (i.e., utility as a function of monetary outcome)
into a DSSP model (Rae, 1971a). The first approach involves the use
of separate utility functions Ut(Yt) for each time period. The objec-
tive function, expressed as discounted utility, can then be specified
as follows:

T
Max: U = ] U(Y)(l+r) - (1)
t=1
Where Yt is the monetary payoff at time t and r is the agent's discount
rate. This approach may be difficult to implement because it requires
estimating utility functions for each period in the model. The second
approach involves the use of a single utility function which operates on
the present value of monetary payoffs. This formulation of the
problem can be written mathematically as:
T
Max: U =U( § (¥ )(+r)""). (2)
t=1
This method is more manageable because it only requires the estimation
of one utility function. In both formats, the choice of the discount
rate should reflect the decision-makers preference of present over future

returns. There are two conditions where returns need not be discounted
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to present value terms. If the time period being analyzed is suf-
ficiently short, or if the agent has no preference for present over
future returns, the future payoffs should not be discounted.

Given an estimated utility function, U(Y), the objective function
of the DSSP problem in Figure 2 can be replaced by the following expected
utility function:

4
Max: E[U(Y)] = ) @, U(Yl) (3
=1

As in the original problem, Yz is net revenue under the f£th joint event
and oy is the corresponding joint probability. Thus the linear program—
ming problem becomes a non-linear program (assuming U(Yz) is non-linear).
However, if U is concave, the functions ay U(YR)’ 2=1...4 may be
approximated using separable programming and solved using an LP algorithm. 5/
The separable programming formulation of the problem appears in Figure 6.

The separable programming formulation provides a piecewise linear
approximation of expected utility through the use of special activities
Qli' An activity in is specified for each of m discrete values of the
monetary outcome assocliated with the *th joint event (§£l < §22 < "'fzm)'
By imposing constraints 6.9 through 6.12 and "convexity"” constraints 6.13
through 6.16, net revenue under joint event % is constrained to equal Yﬁi

(for some i=l...m; where in=l and Q2j=0 for j#1) or a convex combina-

tion of two adjacent values Y, ,Q,, + Y., ,Q,, ., (where Q,, + Q.. . =1

4/

~ Unless U(Y,) is concave over the opportunity set, separable program—
ming will generally yield only a local solution. Further, adjacency
restrictions on the special separable programming variables would be
necessary 1if U(Yz) is not concave.
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and QZJ=0 for j*i, j*#i+l). The value of the utility function is thus
U(Yli)Qii where in=l, or utility is approximated as U(Yzi)Qli +

U(§ l. For a more complete discussion of

214109 341 WheTe Qpy * Qpyyy =
separable programming, see Hillier and Lieberman (pp. 581-586), Duloy

and Norton, or Roe.

The EV approach requires the measurement of expected returns and
the variance returns. The occurrence of a particular joint even in the
DSSP model is characterized by the multinomial distribution (Cocks).
That is, one of m joint events will occur (for each trial) with

probabilities aj, j=l...m. The expected value of the jth joint event
n
2
is ., where a. > 0 and Z a, = 1, and the variance is o, = a_(l1-a,).
J J- 3=1 J 3 J
The covariance of joint events 1 and j is Gij = —aiaj (i#j). Referring
4
to the DSSP problem in Figure 2, expected returns equals Z anj (as
b4 =1
noted earlier) and the variance of returns is 2 2 Vinin, where:
i=1 j=1

and Vij = _aiaj, i=lot-4’ j=lno-4, i#j (5)

Then, the EV objective function corresponding to the problem in

Figure 2 is:

4 4 4
Max: 121 a ¥, - ¢ 121 jZl Vy5¥iY, (6)
where: ¢ is a coefficient of risk aversion. An alternative formulation
could be used to find the minimum variance solution (i.e. Min: % %
Vinin) with an additional constraint on expected returns (e.g.f=1 =
4

Z oY, 2_?3. Since [ViJ] is positive semi-definite, objective function
i=1

(6) is concave and a global solution to the DSSP/EV model is ensured.

Two procedural concerns may be apparent: the DSSP/EV quadratic
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programming (QP) problem may be too large for the available QP solver(s)
and the available QP solution algorithm(s) may require a positive defi-
nite quadratic form. Therefore, an alternative solution procedure may
be desirable. McCarl and Tice present such a procedure.

Consider the following nonlinear and nonseparable portion of objec-
tive function (6):

4

4
y ol V..X.Y, (7
=1 =1 A E

Matrix V = [ViJ] is positive semi~definite and symmetric. Let W be a
matrix made up of eigenvectors of V (as columns) and let vector Z be a
transformation of vector Y such that Y=WZ. Note that the variance Y'VY

now becomes:

Z'W'VWZ (8)

A desirable result of the transformation stems from the fact that Q=W'VW
is a matrix with diagonal elements equal to the eigenvalues of V and off-
diagonal elements equal to zero. Therefore, the variance (7) is now:
2'Qz (9)
Which can be restated as:
4
Lo Ag2* (10)
i=1
Where Ai is the ith diagonal element of @ (ith eigenvalue of V). Thus,
(10) can be substituted into (6) and, with the following constraint
added to the problem ...
Y-WZ =20 (1)
..+ an exact transformation of the original QP 1s formed. The trans-

formed problem has a separable quadratic objective function which can
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be approximated using separable programming and solved with an LP

5/

code.=

Forecast Information

Thus far, various time patterns of information about the outcome of
random events have been discussed. For some empirical problems, it may
be appropriate to include information gathering as a decision variable
or to access the value of information made available to the decisiomn
maker. TForecast information may be incorporated into a DSSP problem if
a finite number of discrete outcomes of the forecast (Ekntt) can be spe-
cified. Consider, for example, the two-stage two~state problem.

Suppose that at the beginning of each stage (when decision vectors are
selected), the decision maker has available the outcome of a forecast of
random events in that stage.é/ Let there be two such outcomes for each
forecast. The decision tree for the new stochastic sequential problem
is shown in Figure 7. ©Note that given forecast outcome k, either event
1 or 2 may occur —— that is, the forecast is not perfect. The problem
now has two decision vectors in stage 1 —— one for each forecast out-
come. When the stage II decisions are made, the outcome of the first
stage random process will be known (as before), and the outcomes of both

forecasts will be known. Thus the new problem has eight stage II

5/

See McCarl and Tice for a more complete discussion of the procedure.
Intriligator includes a useful discussion of the diagonalization of
quadratic forms (pp. 495-497).

6/

Generally, the forecast can augment information about any random
process in past, current, or future stages when the outcome of that
process is unknown at the time the forecast is received.
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decision vectors -~ one for each combination of first stage states of
nature, forecast one outcomes and forecast two outcomes.

The posterior probabilities of random events can now be used --
the probabilities of states of nature conditional on each forecast out-
come. By solving the problem with and without the forecast results, the
value of the forecast can be estimated. Rae points out that if receipt
of the forecast results imposes an added demand on scarce resources (for
example, a cash payment when cash flow restrictions exist), it will be
necessary to include the incidence of this resource requirement in the

model.

Some General Comments on the Use of DSSP

Dimensionality problems remain a concern with the DSSP model.
A stochastic programming matrix will generally grow in size more than
proportionally with increases in the number of sources of risk (random
variables), the number of discrete values taken by random variables
and the number of stages in the decision process. One might argue
that farm decision making is carried out in the face of hundreds of
sources of risk which are most accurately represented as continuous
random variables and that the decision making process is continuously
sequential. From this premise, the building of a DSSP model which
incorporates "the risk inherent in farm production and marketing deci-
sions” is more than a merely ambitious task. The central focus of
model building using DSSP must be on selecting an economical represen—
tation of the problem with the greatest level of detail specified in

components critical to the analysis. Further, Andersom, Dillon and
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Hardaker point out that while decisions made in stage t are influenced
by prospects in later stages, they are influenced less by prospects in
more distant stages. Thus, it may be most appropriate to sacrifice
detail in later decision stages as the earlier strategies are derived.
A “"rolling"” process is implied because a complete strategy of optimal
decisions in each stage will eventually require that the sacrificed
detail be restored. These more exact later strategies must then be
derived for several optimization problems - one for each earlier stage
outcome (upon which the later strategies will be conditional). Such a
process may increase the involvement of the analyst in the solution pro-
cess, but may bring the model within the capacities of available solu-
tion software. Also, additional decision stages of only indirect
interest which otherwise may have been ignored may be added to a model.
Model size may be reduced by eliminating activities which under certain
states of nature can be determined as non—optimal prior to model solu-
tion. It may be useful to employ models of sub—-problems to generate
sets of efficient activities which can be used in the more general
DSSP model. For example, a feed formulation model may be used to
create feeding strategies which are efficient (by some criteria) and
the strategies may be used as alternate activities in a whole-farm DSSP
problem. Or, efficient marketing activities (generated by techniques
such as generalized Monte Carlo programming (King and Oamek), for
example) may be used to economize on the formulation of a model with
both production and marketing decisions.

While construction of the matrix data file for a large DSSP model

may in itself seem too burdensome, the replications in coefficient place-
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ment and parameter use inherent with these models make the use of matrix
generating computer programs especially helpful. When matrix generators
have been written for a deterministic version of a particular system,
modification of the software to allow for stochastic parameters and a
sequential decision process may be a straightforward process. The use
of computer programs to generate the DSSP matrix may be especially use-
ful in that techniques for manipulating probability distributions and
calculating coefficients for separable programming activities can be
readily automated in such programs. Similarly, report generating com-
puter programs may be useful for analyzing the formidable set of solu-

tion values associated with a DSSP model.

Summary

Stochastic programming has not been used frequently in empirical
applications to agriculture. Model size and complexity is probably the
most often clted reason that the technique is not employed. The com—
puter software for constructing DSSP models tends to be relatively
problem specific when compared to more commonly used risk programming
techniques. Thus the development of such software is costly. In sum-
marizing this discussion of DSSP, it may be appropriate to cite some
applications of stochastic programming to empirical problems in agri-
culture, and to comment about the potential for future applications of
DSsP.

Stochastic programming has been used to analyze growth of farm
firms (Johnsoun, Tefertiller and Moore, 1967). Rae (1971) reported

results of a DSSP based analysis of crop mix decisions for vegetable
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farms under stochastic weather conditions. The potential for inte-
grating simulation and DSSP approaches was i1dentified by Trebeck and
Hardaker (1972) in a paper reporting the application of these tools to
pasture management and cattle feeding decisions. More recent applica-
tions of DSSP have focused on optimal fertilization strategies (Tice,
1979), crop residue production (Apland, 1979; Apland, McCarl and Baker,
1981) and on~farm grain drier investments (Klemme, 1980). A bibliography
of stochastic programming theory and applications from 1955 through 1975
has been prepared by Stancu-Minasian and Wets.

A few observations may be made about the potential for further
applications of DSSP. As mentioned earlier, software development is a
critical issue. The increased availability of more general matrix
generating programs would, of course, enhance the use of DSSP.
Investment in the skills needed to design and implement computerized
matrix generators and other software will be paramount to both the devel-
opment of general and problemspecific models. Existing software for
solving large linear and non-linear programming problems must be
accessible. Simulation techniques can be effectively integrated and
broaden the applicability of DSSP, especially in generating stochastic
problem parameters. Such an integration will rely heavily on further
efforts to quantify the stochastic elements of agricultural decision
problems.

A numerical example of DSSP is presented in the Appendix of this
paper. This simple decision problem was designed to illustrate critical
aspects of sequential decision making in a risky envirounment as they are

addressed in a DSSP model.
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APPENDIX

A Hypothetical DSSP Problem

A numerical example of discrete stochastic sequential programming
will be presented in this section. As with the general model used earlier,
the example has two stages with two states of nature in each stage. The
model depicts a firm which produces two products -— one in stage I and
the other in stage II. Four alternative production activities can be
used for each product. Each production activity uses two inputs which
are available in fixed supply. The stochastic component of the problem
1s limited to the levels of inputs available —~- RHS's of the input use
constraints. The decision problem is sequential in nature in that en-
dowed quantities of input two in excess of that used in the first stage
may be held and used in stage II production. Thus, the expected value
of input one in the second stage represents an opportunity cost to its
use in stage I.

Figure 7 illustrates the problem in a decision tree framework with
the random events and the associated resource endowments and joint prob-
abilities given.zj Note that in each stage, input one 1s relatively
abundant under state one and relatively scarce under state two. An LP
tableau for the problem assuming an information structure of complete

knowledge of the past is provided in Table 1. The tableau is organized

7/

Following the notation presented earlier (ekntt’ bkntt)’ an information

structure of complete knowledge of the past and present is implied in
Figure 7 (since n, = 1,2 and n, = l...4). Other information structures

w1ill be considered for the problem, also.
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in the same way as the general DSSP problem in Figure 2. Activities Yl
through Y4 are net revenues associated with joint events (8111’6112)’
(8111’8212)’ (e211,e122), and (e211,e222), respectively. X111 through
X114 are alternative stage I production activities, and X115 and X116
provide for the transfer of input two from stage 1 to stage II under each
of the stage 1 states of nature. X121 through X124 and X221 through
X224 are alternative stage two production activities given stage 1 states

of nature one and two, respectively. Activities X125 and X225 complete

the transfer of input two from stage I to stage II under the correspond—
ing stage I states of nature.

Counstraints (2) and (3) restrict the use of inputs one and two in
stage I to the endowed levels associated with state of nature one. Con-
straints (4) and (5) limit resource use in stage I to the state two
endowment. Constraints (6), (7), (8), (9), and (10), (11), (12), (13)
are, similarly, the stage II resource constraints rendering stage II
production activities permanently feasible following stage 1 states one
and two, respectively. Constraint (14) transfers input two from stage I
to stage II given state of nature one in stage I. Constraint (15) per—-
forms the same function given state two in the first stage. In con-
straints (16) through (19), total net revenue for each of the four
possible joint events is summed into vector Y. Coefficients on the pro-
duction activities in these rows are unit net revenues. Notice that
resource requirements and activity net revenues are unchanged when the
states of nature change (that is, these parameters are nonstochastic).

Only the resource endowments (RHS's bkn t) are random.
t
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The tableau shown in Table 2 is for the same DSSP problem under an
information structure of complete knowledge of the past and present, and
assumning the occurrence of state one in stage I. As pointed out before,
the optimal strategy under this information structure includes the solu-
tions to separate optimization problems for each stage L state of
nature. Thus, for this example, a secoud LP problem is formulated for
the sequence of decisions implied under state two in stage 1. The LP
tableau for this case is shown in Table 3.

Optimal solutions for the complete knowledge of the past and for
the complete knowledge of the past and present information structures
are given with the tableaus in Tables 1, 2, and 3. Three other decision
problems were formulated to demonstrate the significance of information
structures as well as the sequential nature of the problem. First, the
problem was solved for the case of perfect foresight. Here four solu-
tions were generated —— one for each joint event -— with the outcomes of
random events in both stages known at the beginning of the decision
process. Second, the problem was solved with an information structure
of complete knowledge of the past with the sequential component of the
problem ignored (i.e., the first stage vector was selected without con-
sidering the opportunity to retain input two for use in stage II).
Finally, a non-sequential problem was solved under complete knowledge of
the past and present. The solutions to the five problems are summarized
in Table 4.

The optimal strategy derived under complete knowledge of the past
involves producing 6,400 units of product one in the flrst stage. Given

that state of nature one occurs in stage I, this production strategy leaves
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992 units of input two for use in stage II and 5,718 units of product two
will be produced. However, 1f state of nature two occurs, 3,692 units of
input two remain and the stage II strategy will be to produce 8,798 units.
Under complete knowledge of the past and present, 7,000 units of product
one will be produced given state one in stage T and 860 units of input two
will be transferred for use in stage II. 1If, subsequently, state one
occurs in stage II, 5,875 units of product two will be produced. 1If
state two occurs, 10,350 units will be produced. Given state two in the
first stage, output of product one will be 6,400 and 3,692 unit of input
two will remain for later use. The resulting stage II strategy will
involve production 9,264 (12,836) units given the occurrence of state
one (two) in that stage.

Consider the differences in the optimal strategies under complete
knowledge of the past and complete knowledge of the past and present.
Under the second information structure, stage I output is greater under
state one (note that an output of 7,000 is permanently feasible). With
current stage resource endowments known, the selection of production
activities is less restricted. Further, given state one, the relative
scarcity of the transferable resource (input two) in the first stage is
known when stage I production activities are selected. As a conse-—
quence, fewer units of input two are held for use in the second stage.
Despite this, stage 1I production (which need not be permanently
feasible with complete knowledge of the past and present) was greater
under every joint event. Net revenue was, likewise, greater under all
four joint events and expected net revenue was $129,507 compared to

$106,120 under complete knowledge of the past.
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Perfect foresight represents a higher information structure than
complete knowledge of the past and present. Although the additional
knowledge did not drastically change the expected net revenue maximizing
solution, the differences in the two solutions are worth noting. When
perfect foresight was assumed, decisions changed only under the first
joint event (state one in both stages). Recall that under this joint
event, input two is relatively scarce in both stages. With prior know-
ledge of this resource endowment, the decision maker produces less in
the first stage, transfers more of the input to stage 11 and produces
more in the second stage when compared to the case of complete knowledge
of the past and present (where the relative scarcity of input two in
stage II is unknown).

The last two solutions show the results for a myopic decision-maker.
Here the expected value of the transferable resource in the second stage
is ignored. The holding of input two for later use is, thus, only a
consequence of the isolated stage I decision. Under complete knowledge
of the past, 2,700 units of input two are left for use in the second
stage when state two occurs in stage I. With complete knowledge of the
past and present, the endowments of input two are totally enhausted under
both states of nature. When these two strategies are compared to stra-
tegies derived for sequential decisions under the same information
structures, stage I production 1s greater, sgage IT production is lower
and net revenue is lower under every joint event. Correspondingly,
expected net revenue is lower and the misallocation of resources asso-
ciated with the non-sequential treatment of the decision process is

demonstrated.
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The example problem was reformulated to account for risk using an
EV framework. The complete knowledge of the past information structure
was assumed. Two objective function formats were used. First, the

following objective function was specified:

4 4
Max: .27Y) + .18Y, + .25Y5 + .30Y, - ¢ ] NARAS (12)
i=1 j=1
Where, as before ...
Vig = % (1-a,), i=1...4 (13)
Vij = "(!iaJ, i=1...4, j=lo--4, i¢] (14)

For the probabilities used in this problem, matrix V takes on the following

values:
v=[ .1971 -.0486 -.0675 -.0810 7 (15)
-.0486 <1476 -.0450 ~.0540
-.0675 -.0450 .1875 -.0750
| -.0810 -.0540 -.0750 .2100

The risk coefficient ¢ was set at zero and a very large value to reveal the
extreme points on the EV frontier (the risk neutral and risk free solutionms,
respectively). 8/ Then a series of solutions was generated with a minimum

constraint on expected net revenue ...

.27Y, + .18Y, + .25¥5 + .30, > ¥ (16)

.+. and using the following objective function:

4 4
Min: § ) V..Y.Y 17)
ga1 j=1 1313

8/

It can easily be reasoned that a risk free solution to the problem
exists. Variability of net revenue can be reduced to zero by reducing
output under joint events 3 and 4 to a level which would make
Y1=Y2=Y3=Y4. Such an adjustment 1s clearly feasible.
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Thus, intermediate points of the EV frontier were derived. The resulting
solutions are shown in Table 5. 4

Within the framework of this problem, reducing net revenue vari-
ability essentially involves adjustments in activities which will allow
the levels of net revenue associated with each joint outcome to con-
verge. For the example under complete knowledge of the past, only
two unique net revenue outcomes occur — one for each stage I state of
nature. Specifically, Y1 equals Y2 and Y3 equals Y4- Relatively few
ad justments in decision vectors can be made to reduce the difference
between the net revenue outcomes. The contribution of stage I produc-
tion to the objective function will be the same regardless of the state
of nature because the activities are permanently feasible and the acti-
vity net revenues are deterministic. However, by reducing the use of
the second input in stage one, a greater amount of that input can be
transferred for use in the second stage —— thus more opportunities exist
for stage II production. The two unique net revenue outcomes become
closer in value if stage II production levels given each of the stage I
states become closer in value (and thus, the variance of net revenue can
decrease).

The first EV solution shown in Table 5 gives the risk neutral
result which was found before. The variance of net revenue is
234,742,664. When expected net revenue was constrained to be no less
than $105,000 and variance was minimized, stage I output decreased and
more of input two was transferred to stage II under both stage I states.
Production in stage II increased under both states, however, the dif-

ference between the two production levels declined and thus the variance
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of net revenue declined. When the minimum expected net revenue was
decreased to $100,000, stage I production declined again. Stage II pro-
duction following state one in stage one increased again. Given state

two in the first stage, stage II production is unchanged from the pre-
vious solution. As further decreases in expected net revenue were
allowed, net revenue variability was minimized by reducing stage I1 pro-
duction following state two in stage I. Other production vectors remained
unchanged.

The DSSP-EV problem was transformed into an equivalent problem
with a separable objective function using the technique discussed
earlier. The first step was to find the eigenvalues and eigenvectors of
matrix V. The eigenvalues Al...A4 are 0.00000, 0.19610, 0.25868, and
0.28742, respectively. The matrix used to transform variables Yy into

Zi (with columns equal to the eigenvectors of V) is:

Ww=[ -0.50000 -0.28173 ~-0.62470 0.52250 7] (18)
-0.50000 0.86205 0.05594 0.05725
-0.50000 -0.35766 0.75497 0.22826

| -0.50000 -0.22265 -0.19021  ~0.81501 _

Special separable programming activities Qij were used, with QiJ the
activity corresponding to the jth value of Zi (iij) used in the approxi-

mation. The resulting approximation of variance is:

1
A, 25, Q (19)
IR R '

4 4

I 1 Q=1 (20)

i=1 j=1
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Where m values are used in the approximation of each separable term.
Using prior information about the solution values of Y from the QP exer—

cise, the following ranges were used for variables Zi'

211 = -225,000, ..., Z; = -150,000
Zy, = 20,000, ..., Z, - 0
231 = 0, «es) Zy_ = 20,000
241 = -20,000, ..., iém = 0

A matrix generating FORTRAN program was written to calculate m values
iil < 212 < e iim at equal intervals for a user defined value of m.
Two models were used —— model one with five steps in each interval and
model two with 11 steps in each interval (i.e. w=5 and m=l1l, respectively).
In addition to using more steps with model two, solution information
from model one was used to further restrict the range of iij values
over which the objective function was approximated. Solutions along the
EV frontier generated with the QP model are shown with the approximated
separable programming (model one and model two) solutiomns in Table 6.
Note that the separable programming models over—estimate the
variance of net revenue at each level of expected net revenue (results
for the risk free solution were the same for all three models since zero
was used as a grid point for each Zi)' However, with model two, the
approximation is improved by using more values for Z; over a smaller
range. Generally, an acceptable level of accuracy can be achieved by
using a large number of values in the piecewise linear approximation.

The associated increase in the number of parameters to be calculated

will be less burdensome if matrix generating computer programs are
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TADLE 6: POINTS OMN THE EV FRONTIERS USING CQUADRATIC AYD SEPAPARLE PROGRAMINING.

L T R R S N T R e N N N T N N N Y N N N T I NI NN NSRS TN SRR T O RNE RS EET S EEmET T EE s

VARIANCE OF VET REVENUE

EPE C T E D mem e e o e e e e e e e e e e e e e e e e e e e s o e e e o e e e e
RET OUADRATIC PROGRAIMMING SEPARABLE PROGRAIZI{ING SEFARABLE PROGRAIMING
REVENUE MODEL MODEL ONE MODEL TVWO
$106,120 234,742,664 257,693,715 237,888,787
9.78% 1.34%

$105,000 200,703,135 204,455,948 200,731,744
1.87% 0.01%

$100,000 91,770,428 94,745,388 91,807,072
3.24% 0.04%

$95,000 25,573,318 28,118,649 25,597,959
9.95% 0.10%

$00,000 285,503 2,270,663 317,679
695.32% 11.27%

$89,409 0 0 0
0.0% 0.0%

T B I e i e e e e T M o T et o e S o A T e e m e S SR e e S e s o e T T e B I 250 S A e Y S e S e e o ey e s e 3 o v S T e e e e e e e e e R
R R N RN N S e T I R S S S T S N I N T O S T SRR OSSR ESN SRR E=m=

* THE PERCEKT ERROR IS SHOUN FOR EACH SEPARABLE PROGRAMMING SOLUTION.
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employed. 1If relatively few values can be used because the matrix is
"hand built"” or the LP code imposes effective restrictions on matrix
size, improved accuracy can be achieved by solving with a few grid
points and solving again with the same number of steps in a closer grid
around the first solution. For the numerical example used here, a deci-
dedly modest increase in the number of steps and decrease in the range
over which the functions are approximated gave a substantial improvement

in the approximation.



