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DISCRETE STOCHASTIC SEQUENTIAL
PROGRAMMING: A PRIFIER

Jeffrey Apland and Harry kaiser

The use of mathematical programming has been widespread in analy-

ses of deciszon-making and economic behavior under risk. Most notably,

quadratic programming (EV) and MOTAD techniques have been employed as a

means of capturing random components of the ObJectiV@ functions of pro-

duction problems (Markowitz, Hazell). Cocks (1968) and Rae (1971a) have

presented the discrete stochastic sequential programming (DSSP) techni-

que for extending the specification of risk beyond that which influences

the obJective function directly to include stochastic constraint para-

meters (typically technical coefficients and resource endowments). The

DSSP model allows also for the incorporation of a sequential decision

J,I()(f:;:;I.pWllf.(:[}~}~L.&c7’-lL~l,B,?.k(’~s l,l)f)[~.i.c~[i~,(~of [)1 ?,;t:n~c~.;f~~~.-”

dom events changes through time as production decisions are made. The

purpose of this paper is to present an overview of discrete stochastic

sequential programming and to illustrate the technique through a numeri-

cal example. The application of the technique to empirical problems

involving farm decision making will be briefly discussed and an empiri-

cal application will be summarized.

Stochastic Programm~ng

Stochastic programming refers to a class of constrained optimiza-

tion problems in which some subset of constraint parameters (coefficients

and KHS’S) are stochastic. This class of decision problems may be sub-

divided into four categories involving the type of random variables and
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the nature of the decision process. The randon variables may be dis-

crete or continuous and the decision process may be consequential or

sequential. h example of a non-sequential problem with a continuous

random resource endowment appears in Anderson, Dillon, and Hardaker

(Pp. 216-221). The class of problems involving continuous random

variables and a sequential decision process cannot be handled with the

techniques discussed here. The reason is straightforward. Consider the

vectors selected in a later stage in the decision process. Each of these

vectors must be selected conditionally upon earlier stage decisions and

the outcomes of earlier random events (this is why the problem is sequen-

tial). If the variables representing the earlier random events are

continuous, the number of circumstances under which later decisions

must be made is infinite. Thus, continuous random variables in sequen-

tial decision problems must be modeled as discrete variables which take

1/
on a finite number of values.-

The focus of this paper is on the modeling of sequential decision

problems involving discrete random state variables (or, as is more often

the case in practice, the approximation of continuous random variables

using discrete distributions). This subcategory of stochastic program-

ming, discrete stochastic sequential programming (DSSP), was selected

as the class of decision problems which holds the greatest potential for

the heuristic conceptual or empirical address of farm decision problems.

1/

- The solution technique employed in the non-sequential stochastic
programming problem cited above gives solutlons which would seem to have
characteristics similar to solutions generated with a discrete treatment
of the random variables. However, the authors have not examined the
notion in detail.
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Discrete Stochastic Sequential Programming

Within this general class of stochastic programming problems, dis-

crete stochastic sequential programming (DSSP) includes a discrete

specification of random problem parameters and a multi-stage decision

process. In many cases, probability density functions of continuous

random variables are approximated

The use of a multi-stage decision

discrete time intervals (stages).

made with probabilistic knowledge

using discrete “states of nature””.

process involves a specification of

Decisions in a particular stage are

of the occurrence of particular states

of nature in various stages of the decision process. Central to the

specification of several interdependent decision stages is the condition

that the opportunity set restricting decisions in a later stage is influ-

enced not only by the occurrence of particular random events In that

stage, but also by random outcomes and decisions made in earlier stages.

The discussion of DSSP which follows is based largely on concepts developed

in papers by cocks and Rae (l$171a) and an article based on the application

of these concepts to a farm production problem, also by Rae (1971b).

The nature of a sequential decision process under risk as captured

in DSSp can be illustrated with a decision tree depicting the stages in

the decision process and the states of nature in each stage. An exemplary

decision tree for a two stage decision problem with two discrete states of

nature in each stage is shown in Figure 1. Borrowing from the notation

used in Rae (1971a) (and modifying that notion slightly), ekntt repre-

sents the occurrence of the kth state of nature in stage t subJect to

which the ntth set of stage t activities will be selected. Rae points

out that the structure of the mathematical programming matrix depends on

the underlying Information structure of the proble~.
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A discussion of three general information structures will help

illustrate the construction of a DSSP matrix; a particular decision

to

model may incorporate

made at the beginning

are made the decision

elements of each. Decisions are assumed to be

of each stage. If at the time stage t decisions

maker knows the outcomes of random events in sta-

ges t-fi,t-l-l, t-t-2,....l. the information structure where 2=0 is

complete knowledge of the past and present. With 2=1, the information

structure is complete knowledge of the past and !2>1implies incomplete

knowledge of the past. The events depicted in Figure 1 are for the case

of complete knowledge of the past. The general LP formulation for this

case will now be discussed.

A general linear programming (LP) formulation of the two stage, two

state DSSP problem is presented in Figure 2. At this point, stochastic

components are accounted for in the constraint function coefficients

(~ntt), the constraint constants or righthand sides (b
kntt

) and the ob-

2/ A decision strategy is repre-jective function coefficients (ckntt).–

sented by the optimal solution values to vectors X Stage I decisions
ntt”

are represented by vector XII. Because the outcome of stage I random

11 is selected, XII must be ‘“permanentlyevents is unknown when vector X*

feasible” - i.e., resource constraints (2.2) and (2.3) must be satisfied

regardless of which state of nature occurs. In a similar way, stage II

decisions must be permanently feas~ble, as well. However, two stage II

vectors (X12 and X22) are included since the decision maker having

2/
Variability of objective function coefficients is, of course, handled

in the more common EV and l.10TADmodels. The ability to deal with continuous
distributions of activity gross margins within these models make a hybrid
of the EV and DSSP approaches desirable.
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complete knowledge of the past, will know at the beginning of stage II

which stage I state of nature has occurred. Thus stage II decisions

will be made subject to the opportunities afforded jointly by stage 11

random events, by stage I decisions and the outcome of random events in

stage 1. The interdependence of decisions in the two stages is captured

through constraints 2.8 and 2.9 which allow for the continuance of stage

I activities in stage 11 and for the transfer of resources between the

first and the second stage activities. Matrices D
kntt

and E are
ntt

appropriately constructed to preserve these relationships between stages.

Given the outcome of random events in stage I, constraints 2.4 and 2.5,

and 2.6 and 2.7 render decision vectors X12
and ’22’

respectively, per-

manently feasible.

Activities Yl through Y4 represent total net revenue associated

with each possible sequence of random events in the two stages (joint

events (e111~e112)* (e111te212)~ (e211>e122) and (e211te222)) resPec-

tively)o ~ntt are vectOrS of objective function coefficients corres-

ponding to the associated events. Thus, through constraints 2.10, 2.11,

2.12 and 2.13, net revenue levels associated with the occurence of each

combination of events are summed into Y. Joint probabilities CYl,~,

‘3 and a~ are objective function coefficients for Y, so the objective

3/
(2.1) is expected net revenue, which is maximized.– With the problem

formulated in this way, the optimal stage I vector is then selected with

;/
Note that the appropriate marginal and joint probabilities could

have been used to weight the vectors Ckntt and these coefficients could

have been placed directly In the objective function. However, use of
vector Y provides useful solution information and will facilitate latter
discussions of expected utility models.



consideration of the expected explicit and Implicit values of stage 11

decision vectors.

Under an information structure of complete knowledge of the past

and present, stage

nature - they need

the stage t random

t decisions are unique for each stage t state of

not be permanently feasible since the outcome of

events is known. Here, the combination of optimal

decision vectors which constitutes an optimal strategy is comprised of

solutions derived from separate optimization problems - one for each

state of nature in the first decision stage. A decision tree showing

events corresponding to the two stage, two state problem under complete

knowledge of the past and present is shown in Figure 3. As the notation

in Figure 3 indicates, the problem

in stage I: one set which will be

and another which will be selected

now involves two sets of activities

selected in the event of state one

in the event of state two. Four

sets of stage 11 activities are implied. A vector of activities is

included for each stage II state of nature since the outcome of random

events in that stage will be known when the decisions are made. Further,

each set of decisions will be made as a consequence of one of two stage I

random events and decision vectors.

Incorporating Utility Functions Into the DSSP Model

Because the probability distributions of monetary outcomes are

explicitly considered in DSSP, the modeling technique can be readily

extended from the expected net revenue formulation presented above to a

formulation for the maximization of expected utility. The implications

of the introduction of utility concepts Into the DSSP model parallel
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those seen with other risk programming models except for special con-

siderations of time in the decision making process. Following a brief

discussion of time considerations, the incorporation of an implicit

single-dimensioned utility function into the DSSP model will be

demonstrated. In addition, the incorporation of an EV risk framework

will be discussed.

Two general formats may be used to incorporate one-dimensional

utility functions (i.e., utility as a function of monetary outcome)

into a DSSP model (Rae, 1971a). The first approach involves the use

of separate utility functions Ut(Yt) for each time period. The objec-

tive function, expressed as discounted utility, can then be specified

as follows:

Max: U = ? Ut(yt)(l+r)-t (1)
t=l

Where Yt is the monetary payoff at time t and r is the agent’s discount

rate. This approach may be difficult to implement because

estimating utility functions for each period in the model.

it requires

The second

approach involves the use of a single utility function which operates on

the present value of monetary payoffs. This formulation of the

problem can be written mathematically as:

Max: U =U( ~ (Yt)(l+r)-t). (2)
t=l

This method is more manageable because it only requires the estimation

of one utility function. In both formats, the choice

rate should reflect the decision-makers preference of

returns. There are two conditions where returns need

of the discount

present over future

not be discounted
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to present value terms. If the time period being analyzed is suf-

ficiently short, or if the agent has no preference for present over

future returns, the future payoffs should not be discounted.

Given an estimated utility

of the DSSP problem in Figure 2

utility function:

function, U(Y), the objective function

can be replaced by the following expected

Max: E[U(Y)] = ~ al U(yt) (3)
~=1

As in the original problem, Y1 is net revenue under the Lth joint event

and ak is the corresponding Joint probability. Thus the linear program-

ming problem becomes a non-linear program (assuming U(YL) is non-linear).

However, if U is concave, the functions ag U(Y2), 1=1...4 may be

4/
approximated using separable programming and solved using an LP algorithm. —

The separable programming formulation of the problem appears in Figure 6.

The separable programming formulation provides a piecewise linear

approximation of expected utility through the use of special activities

Q&i” An activity Qgi is specified for each of m discrete values of the

monetary outcome associated with the *th joint event (;21 < ~22 < “.”ftm).

By imposing constraints 6.9 through 6.12 and “convexity” constraints 6.13

through 6.16, net revenue under joint event L is constrained to equal Yti

(for some i=l...m; where Qfli=land Q2j=0 for j#i) or a convex combina-

tion of two adjacent values ~1iQ8i -t-~ki+lQfli+l(where QLi + Qfli+l = 1

4/
Unless U(YE) is concave over the opportunity set, separable program-

ming will generally yield only a local solution. Further, adjacency
restrictions on the special separable programming variables would be
necessary if U(Y ) is not concave.

2
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and Q&j=0 for j#i, j+i-1-1).The value of the utility function is thus

A

U(Yii)Qii where Q$i=l~ or utility is approximated as U(~ii)Q1i +

%i+l)Qii+l where Q2i + Qti+l = 1. For a more complete discussion of

separable programming, see Hillier and Lieberman (pp. 581-586), Duloy

and Norton~ or Roe.

The EV approach requires the measurement of expected returns and

the variance returns. The occurrence of a particular joint even in the

DSSP model iS characterized by the multinominal distribution (Cocks).

That is, one of m joint events will occur (for each trial) with

probabilities aj, j=l. ..m. The expected value of the jth Joint event

is a ., where a
J

j~Oand ~aj= 1, and the variance is a2 = Qj(l-aj).
j=l J

The covariance of joint events i and j is u
ij = ‘aiaj

(i#j). Referring
4

to the DSSP problem in Figure 2, expected returns equals ~ ajYj (as

44
j=l

noted earlier) and che variance of returns is ~ ~ Vijyiyj, where:
i=l j=l

‘ii
=ai (l-ai), i=l...4 (4)

and V
ij = ‘aiaj’ i=l.o.4, j=l..04, i#j (5)

Then, the EV objective function corresponding to the problem in

Figure 2 is:

where: 4 is a coefficient of risk aversion. An alternative formulation

could be used to find the minimum variance solution (i.e. Min: i!
i=l j=l

V .Y Y.) with an additional constraint on expected returns (e.g.,
iJiJ
4

~ aiyi~~)” ‘ince [viJ] ‘s positive ‘emi-definitey ‘bjective ‘unction

i=l

(6) is concave and a global solution to the DSSP/EV model is ensured.

Two procedural concerns may be apparent: the DSSP/EV quadratic
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programming (QP) problem may be too large for the available QP solver(s)

and the available QP solution algorithm may require a positive defi-

nite quadratic form. Therefore, an alternative solution procedure may

be desirable. McCarl and Tice present

Consider the following nonlinear

tive function (6):

LA

such a procedure.

and nonseparable porticm of objec-

(7)

Matrix V = [ViJ] is positive semi-definite and symmetric. Let W be a

matrix made up of eigenvectors of V (as columns) and let vectc)rZ be a

transformation of vector Y such that Y=WZ. Note that the variance Y’VY

now becomes:

Z’w’vwz

A desirable result of the transformation

is a matrix with diagonal elements equal

(8)

stems from the fact that !l=WtVW

to the eigenvalues of-V and off-

diagonal elements equal to zero. Therefore, the variance (7) is now:

Z’flz (9)

Which can be restated as:

~ Aiz* (10)
i=1

Where Ai is the ith diagonal element of $2(ith eigenvalue of V). Thus,

(10) can be substituted into (6) and, with the following consl:raint

added to the problem ...

. . . an

formed

Y -Wz=o (11)

exact transformation of the original QP IS formed. The trans-

problem has a separable quadratic ob3ective function which can
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be approximated using separable programming and solved with an LP

code.~/

Forecast Information

Thus far, various time patterns of information abo-utthe outcome of

random events have been discussed. For some empirical problems, it may

be appropriate to include information gathering as a decision variable

or to access the value of information made available to the decision

maker. Forecast information may be incorporated into a DSSP problem if

a finite number of discrete outcomes of the forecast (fk t) can be spe-nt

cified. Consider, for example, the two-stage two-state problem.

Suppose that at the beginning of each stage (when decision vectors are

selected), the decision maker has available the outcome of a forecast of

6/
random events in that stage.— Let there be two such outcomes for each

forecast. The decision tree for

is shown in Figure 7. Note that

1 or 2 may occur -- that is, the

the new stochastic sequential problem

given forecast outcome k, either event

forecast is not perfect. The problem

now has two decision vectors in stage I -- one for each forecast out-

come. When the stage 11 decisions are made, the outcome of thlefirst

stage random process will

forecasts will be known.

be known (as before), and the outcomes of both

Thus the new problem has eight stage 11

5_/
See McCarl and Tice for a more complete discussion of the procedure.

Intriligator includes a useful discussion of the dlagonalization of
quadratic forms (pp. 495-497).

6/
Generally, the forecast can augment information about any random

process in past, current, or future stages when the outcome of that
process is unknown at the time the forecast is receivecl.
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decision vectors -- one for each combination of first stage states of

nature, forecast one outcomes and forecast two outcomes.

The posterior probabilities of random events can now be used --

the probabilities of states of nature conditional on each forecast out-

come. By solving the problem with and without the forecast results, the

value of the forecast can be estimated. Rae points out that if receipt

of the forecast results imposes an added demand on scarce resources (for

example, a cash payment when cash flow restrictions exist), it will be

necessary to include the incidence of this resource requirement in the

model.

Some General Comments on the Use of DSSP

Dimensionality problems remain a concern with the DSSP model.

A stochastic programming matrix will generally grow in size more than

proportionally with increases in the number of sources of risk (random

variables), the number of discrete values taken by random variables

and the number of stages in the decision process. One might argue

that farm decision making is carried out in the face of hundreds of

sources of risk which are most accurately represented as continuous

random variables and that the decision making process is continuously

sequential. From this premise, the building of a DSSP model which

incorporates “the risk inherent in farm production and marketing deci-

sions” is more than a merely ambitious task. The central focus of

model building using DSSP must be on selecting an economical represen-

tation of the problem with the greatest level of detail specified in

components critical to Ehe analysis. Further, Anderson, Dillon and
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Hardaker point out that while decisions made in stage t are influenced

by prospects in later stages, they are influenced less by prospects in

more distant stages. Thus, it may be most appropriate to sacrifice

detail in later decision stages as the earlier strategies are derived.

A “rolling” process is implied because a complete strategy of optimal

decisions in each stage will eventually require that the sacrificed

detail be restored. These more exact later strategies must then be

derived for several optimization problems - one for each earlier stage

outcome (upon which the later strategies will be conditional). Such a

process may increase the involvement of the analyst in the solution pro-

cess, but may bring the model within the capacities of available solu-

tion software. Also, additional decision stages of only indirect

interest which otherwise may have been ignored may be added to a model.

Model size may be reduced by eliminating activities which under certain

states of nature can be determined as non-optimal prior to model solu-

tion. It may be useful to employ models of sub-problems to generate

sets of efficient activities which can be used in the more general

DSSP model. For example, a feed formulation model may be used to

create feeding strategies which are efficient (by some criteria) and

the strategies may be used as alternate activities in a whole-farm DSSP

problem. Or, efficient marketing activities (generated by techniques

such as generalized Monte Carlo programm~ng (King and Oamek), for

example) may be used to economize on the formulation of a model with

both production and marketing decisions.

While construction of the matrix data file for a large DSSP model

may in itself seem too burdensome, the replica~ions in coefficient place-
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ment and parameter use inherent with these aodels make the use of matrix

generating computer programs especially helpful. When matrix generators

have been written for a deterministic version of a particular system,

modification of the software to allow for stochastic

sequential decision process may be a straightfomard

of computer programs to generate the DSSP matrix may

parameters and a

process. The use

be especially use-

ful in that techniques for manipulating probability distributions and

calculating coefficients for separable programming activities can be

readily automated in such programs. Similarly, report generating com-

puter programs may be useful for analyzing

tion values associated with a DSSP model.

Summarv

the formidable set of solu-

Stochastic programming has not been

applications to agriculture. Model size

used frequently in empirical

and complexity is probably the

most often ciced reason that the technique is not employed. The com-

puter software for constructing DSSP models tends to be relatively

problem specific when compared to more commonly used risk programming

techniques. Thus the development of such software is costly. In sum-

marizing this discussion of DSSP, it may be appropriate to cite some

applications of stochastic programming to empirical problems in agri-

culture, and co comment about the,potential for future applications of

DSSP.

Stochastic programming has been used to analyze growth of farm

firms (Johnson, Tefertiller and Moore, 1967). Rae (1971) reported

results of a DSSP based analysis of crop mix decisions for vegetable
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farms under stochastic weather conditions. The potential for inte-

grating simulation and DSSP approaches was identified by Trebeck and

Hardaker (1972) in a paper reporting the application of these tools to

pasture management and cattle feeding decisions. More recent applica-

tions of DSSP have focused on optimal fertilization strategies (Tice,

1979), crop residue production (Apland, 1979; Apland, McCarl and Baker,

1981) and on-farm grain drier investments (Klemme, 1980). A bibliography

of stochastic programing theory and applications from 1955 through 1975

has been prepared by Stancu-Minasian and Wets.

A few observations may be made about the potential for further

applications of DSSP. As mentioned earlier, software development is a

critical issue. The increased availability of more general matrix

generating programs would, of course, enhance the use of DSSP.

Investment in the skills needed to design and implement computerized

matrix generators and other software will be paramount to both the devel-

opment of general and problexrspecific models. Existing software for

solving large linear and non-linear programming problems must be

accessible. Simulation techniques can be effectively integrated and

broaden the applicability of DSSP, especially in generating stochastic

problem parameters. Such an integration will rely heavily on further

efforts to quantify the stochastic elements of agricultural decision

problems.

A numerical example of DSSP is presented in the Appendix of this

paper. This simple decision problem was designed to illustrate critical

aspects of sequential decision making in a risky environment as they are

addressed in a DSSP model.
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APPENDIX

A Hypothetical DSSP Problem

A numerical example of discrete stochastic sequential programming

will be presented in this section. As with the general model used earlier,

the example has two stages with two states of nature in each stage. The

model depicts a firm which produces two products -- one in stage I and

the other in stage II. Four alternative production activities can be

used for each product. Each production activity uses two inputs which

are available in fixed supply. The stochastic component of the problem

is limited to the levels of inputs available -- .RHStsof the input use

constraints. The decision problem is sequential in nature in that en-

dowed quantities of input two in excess of that used in the first stage

may be held and

of input one in

use in stage I.

Figure 7

used in stage 11 production. Thus, the expected value

the second stage represents an opportunity cost to its

illustrates the problem in a decision tree framework with

the random events and the associated resource endowments and joint prob-

7/
abilities given.- Note that in each stage, input one is relatively

abundant under state one and relatively scarce under state two. An LP

tableau for the problem assuming an information structure of complete

knowledge of the past is provided in Table 1. The tableau is organized

:/
Following the notation presented earlier (ekntt, bkntt), an information

structure of complete knowledge of the past and present is implied in
Figure 7 (since nl = 1,2 and n2 = 1...4). Other information structures

WL1l be considered for the problem, also.
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in the same way as the general DSSP problem in Figure 2. Activities Y1

through Y4 are net revenues associated with joint events (e111,e112)~

(elll,ezlz), (e211,e122), and (e211,e222), respectively” Xlll through

’114 are alternative stage I production activities, and ’115 and ’116

provide for the transfer of input two from stage I to stage II under each

of the stage I states of nature. X121 through X124 and Xzzl through

X224 are alternative stage two production activities given stage I states

of nature one and two, respectively. Activities X125 and X225 complete

the transfer of input two from stage I to stage 11 under the correspond-

ing stage I states of nature.

Constraints (2) and (3) restrict the use of inputs one and two in

stage I to the endowed levels associated with state of nature one. Con-

straints (4) and (5) limit resource use in stage I to the state two

endowment. Constraints (6), (7), (8), (9), and (10), (11), (12), (13)

are, similarly, the stage 11 resource constraints rendering stage II

production activities permanently feasible following stage I states one

and two, respectively. Constraint (14) transfers input two from stage I

to stage II given state of nature one in stage 1. Constraint (15) per-

forms the same function given state two in the first stage. In con-

straints (16) through (19), total net revenue for each of the four

possible joint events is summed into vector Y. Coefficients on the pro-

duction activities in these rows are unit net revenues., Notice that

resource requirements and activity net revenues are unchanged when the

states of nature change (that i.s$these parameters are nonstochastic).

Only the resource endowments (RHS’S bkntc) are random.



29

The tableau shown in Table 2 is for the same DSSP problem under an

information structure of complete knowledge of the past and present, and

assuming the occurrence of state one in stage 1. As pointed out before,

the optimal strategy under this information structure includes the solu-

tions to separate optimization problems for each stage I state of

nature. Thus, for this example, a second LP problem is formulated for

the sequence of decisions implied under state two in stage 1, The LP

tableau for this case is shown in Table 3.

Optimal solutions for the complete knowledge of the past and for

the complete knowledge of the past and present information structures

are given with the tableaus in Tables 1, 2, and 3. Three other decision

problems were formulated to demonstrate the significance of information

structures as well as the sequential nature of the problem. First, the

problem was solved for the case of perfect foresight. Here four solu-

tions were generated -- one for each joint event -- with the outcomes of

random events in both stages known at the beginning of the decision

process. Second, the problem was solved with an information structure

of complete knowledge of the past with the sequential component of the

problem ignored (i.e.~ the first stage vector was selected without con-

sidering the opportunity to retain input two for use in stage II).

Finally, a non-sequential problem was solved under complete knowledge of

the past and present. The solutions to the five problems are summarized

in Table 4.

The optimal strategy derived under complete knowledge of the past

involves producing 6,400 units of product one in the first stage. Given

that state of nature one occurs in stage I, this production strategy leaves
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992 units of input two for use in stage II and 5,718 units of product two

will be produced. However, if state of nature two occurs, 3,692 units of

input two remain and the stage II strategy will be to produce 8,798 units.

Under complete knowledge of the past and present, 7,000 units of product

one will be produced given state one in stage I and 860 units of input two

will be transferred for use in stage II. If, subsequently, state one

occurs in stage 11, 5,875 units of product two will be produced. If

state two occurs, 10,350 units will be produced. Given state two in the

first stage, output of product one will be 6,400 and 3,692 unit of input

two will remain for later use. The resulting stage II strategy will

involve production 9,264 (12,836) units given the occurrence of state

one (two) in that stage.

Consider the differences in the optimal strategies under complete

knowledge of the past and complete knowledge of the past and present.

Under the second information structure, stage I output is greater under

state one (note that an output of 7,000 is permanently feasible). With

current stage resource endowments known, the selection of production

activities is less restricted. Further> given state one~ the relative

scarcity of the transferable resource (input two) in the first stage is

known when stage I production activities are selected. As a conse-

quence, fewer units of input two are held for use in the second stage.

Despite this, stage 11 production (which need not be permanently

feasible with complete knowledge of the past and present) was greater

under every Joint event. Net revenue was, likewise, greater under all

four joint events and expected net revenue was $129,507 compared to

$106,120 under complete knowledge of the past.
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Perfect foresight represents a higher information structure than

complete knowledge of the past and present. Although the additioni~l

knowledge did not drastically change the expected net revenue maximizing

solution, the differences in the two solutions are worth noting. When

perfect foresight was assumed, decisions changed only under the first

Joint event (state one in both stages). Recall that under this joint

event, input two is relatively scarce in both stages. With prior know-

ledge of this resource endowment, the decision maker produces less in

the first stage, transfers more of the input to stage II and produces

more in the second stage when compared to the case of complete knowledge

of the past and present (where the relative scarcity

stage 11 is unknown).

‘l’helast two solutions show the results for a

Here the expected value of the transferable resource

of input two in

myopic decision-maker.

in the seconclstage

is ignored. The holding of input two for later use is, thus, only a

consequence of the isolated stage I decision. Under complete knowledge

of the past, 2,700 units of input two are left for use in the second

stage when state two occurs in stage 1. With complete knowledge of the

past and present, the endowments of input two are totally enhausted under

both states of nature. When these two strategies are compared to stra-

tegies derived for sequential decisions under the same information
.

structures, stage I production is greater, stage II production is lower

and net revenue is lower under every joint event. Correspondingly,

expected net revenue is lower and the misallocation of resources

ciated with the non-sequential treatment of the decision process

demonstrated.

asso-

is
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The example problem was reformulated to account for risk using an

EV framework. The complete knowledge of the past information structure

was assumed. Two objective function formats were used. First, the

following obJective function

Max: .27Y1 + .18Y2 +

Where, as before ...

was specified:

44
.25Y3 + .30Y4 - 4 ~ ~ vijYiYj (12)

i=l J=l

‘ii
= aj (l-ai), i=l...4 (13)

‘ij = ‘aiaJ’ ‘=1
...4. j=l...4. i#~ (14)

For the probabilities used in this problem, matrix V takes on the following

values:

v.

[

.1971 -.0486 -.0675 -.0810

1
(15)

-.0486 .1476 -.0450 -.0540

-.0675 -.0450 .1875 -.0750

-.0810 -.0540 -.0750 .2100

The risk coefficient O was set at zero and a very large value to reveal the

extreme points on the EV frontier (the risk neutral and risk free solutions,

respectively). “ Then a series of solutions was generated with a minimum

constraint on expected net revenue ...

.27yl -1-.18Y2 + .25Y3 + .30y4

. . . and using the following objective function:

Min: ~ ! ‘i-jyiy~
i=l j=l

>T (16)

(17)

-,
– It can easily be reasoned that a risk free solution to the problem
exists. Variability of net revenue can be reduced to zero by reducing
output under joint events 3 and 4 to a level which would make

‘1=Y2=Y3=Y4” Such an adjustment ~s clearly feasible.
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Thus, intermediate points of the EV frontier were derived. The resulting

solutlons are shown in Table 5.

Within the framework of this problem, reducing net revenue vari-

ability essentially involves adjustments in activities which will tallow

the levels of net revenue associated with each joint outcome to con-

verge. For the example under complete knowledge of the past, only

two unique net revenue outcomes occur — one for each stage I state of

nature. Specifically, Yl equals Y2 and Y3 equals Y4= Relatively few

adjustments in decision vectors can be made to reduce the difference

between the net revenue outcomes. The contribution of stage I produc-

tion to the objective function will be the same regardless of the state

of nature because the activities are permanently feasible and the acti-

vity net revenues are deterministic. However, by reducing the use of

the second input in stage one, a greater amount of that input can be

transferred for use in the second stage -- thus more opportunities exist

for stage II production. The two unique net revenue outcomes become

closer in value if stage II production levels given each of the stage I

states become closer in value (and thus, the variance of net revenue can

decrease).

The first EV solution shown in Table 5 gives the risk neutral

result which was found before. The variance of net revenue is

234,742,664. When expected net revenue was constrained to be no less

than $105,000 and variance was minimized, stage I output decreased and

more of input two was transferred to stage 11 under both stage I states.

Production in stage II increased under both states, however, the dif-

ference between the two production levels declined and thus the variance
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of net revenue declined. When

decreased to $100,000, stage I

duction following state one in

the minzmum expected net revenue was

production declined again. Stage 11 pro-

stage one increased again. Given state

two in the first stage, stage II production is unchanged from the pre-

vious solution. As further decreases in expected net revenue were

allowed, net revenue variability was minimized by reducing stage II pro-

duction following state two in stage I. Other production vectors remained

unchanged.

The DSSP-EV problem was transformed into an equivalent problem

with a separable objective function using the technique discussed

earlier. The first step was to find the eigenvalues and eigenvectors of

matrix V. The eigenvalues A1...A4 are 0.00000, 0.19610, 0.25868, and

0.28742, respectively. The matrix used to transform variables Yi into

Zi (with columns equal to the eigenvectors of V) is:

w=

[

-0.50000 -0.28173 -0.62470 0.52250

1

(18)

-0.50000 0.86205 0.05594 0.05725

-0.50000 -0.35766 0.75497 0.22826

-0.50000 -0.22265 -0.19021 -0.81501

Special separable programming activities Qij were used, with Qid the

activity corresponding to the jth value

mation. The resulting approximation of

of Zi (~ij) used in the approxi-

variance is:

(19)

(20)
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Where m values are used in the approximation of each separable term.

Using prior Information about the solution values of Y from the QP exer-

cise, the following ranges were used for variables Zi.

A

ill = -225,000, .... ‘lm = -150,000

:21 = -20,000, ●.*, i2m- 0

i31 = o, ● ... i3m= 20,000

i=
41

-20,000, .... i4m= o

A matrix generating FORTRAN program was written to calculate m values

i2il<ii2< .*O iimat equal intervals for a user defined value of m.

Two models were used -- model one with five steps in each interval and

model two with 11 steps in each interval (i.e. m=5 and mall, respectively).

In addition to using more steps with model two, solution information

from model one was used to further restrict the range of ~ij values

over which the objective function was approximated. Solutions along the

EV frontier generated with the QP model are shown with the approxima~ed

separable programming (model one and model two) solutions in Table 6.

Note that the separable programming models over-estimate the

variance of net revenue at each level of expected net revenue (results

for the risk free solution were the same for all three models since zero

was used as a grid point for each Zi). However, with model two, the

approximation is improved by using more values for Zi over a smaller

range. Generally, an acceptable level of accuracy can be achieved by

using a large number of values in the piecewise linear approximation.

The associated increase in the number of parameters to be calculated

will be less burdensome if matrix generating computer programs are
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=.======= ========= =$=======.= ========== ===e====~= =ss ===-.-== ==== = ========= ==== ====-= ==

VARIANCE OF r’ET REVENUE
EXPECTED ----- ---------- ----- ----- ----- ----- ------ -------- ----- ---------- -----

NET C)UADRATIC PROGIWR!ING SEPARABLE PROGRM211i!G SEPARABLE PROGRMMIllG
REVENUE YODEL MODEL ONE MODEL TWO

===== ===== == ===== ===== ===== ===== ===== z==== =C=s= =S=z= =S.== =2==.:= .= === =.=== =.=== ====

$106,120 234,742,664 257,693,715 237,888,787
9.7870 1.34%

$105,000 200,703,135 204,455,948 200,731,744
1.87% 0.01%

$100,000 91,770,428 94,745,388 91,327,u72
3.24X 0.04%

$95,000 25,573,31? 28,118,649 25,597,959
9.95% 0.10%

$rlo,ooo 285,503 2,270,663 317,679
695.32% 11.27%

$89,409 0 0 0
0.0% 0.07:

=====================================================e====S==s===..===========~===

* THE PERCENT ERROR IS SHO1lNFOR EACH SEPARABLE PROGRAMMING SOLUTION.
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employed. If relatively few values can be used because the matrix is

“hand built” or the LP code imposes effective restrictions on matrix

size, improved accuracy can be achieved by solving with a few grid

points and solving again with the same number of steps in a closer grid

around the first solution. For the numerical example used here, a deci-

dedly modest increase in the number of steps and decrease in the range

over which the functions are approximated gave a substantial improvement

in the approxiution.


