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ABSTRACT

~Shadow pnce# in linear progmmmmg problems can be obtained from the coeff'mcnts of
slack and surplus variables in the canonical form of the objective functiva at the optimal
solution, However, most introductory textbooks present a method for extracting shadow
prices from the canonical form of the ob_;ccnve funetion in conjunction with material on
: thc dual, An introductory course in opcmnon'é research would normally begin with the
~ graphical solution to simple linear programming problems including shadow prices and

then cover the simplex method and the related topics of artificial variables, the big M

method and the two phase method followed by material on the dual, It is desirable to teach
- a method for determining shadow prices in conjunction with the snmplex method because
the continuity of concepts introduced at the begmmng of the course is maintained and the
‘ xmcrpretatlon of dual variables us <hadow prices reinforced when the material on the dual
is covered. The student can Venfy that the shadow prices calculated in conjunction with
the solution to linear programming problems using the simplex method are numerically
identicai to the optimal values of the dual variables in each case. This article presents a
simple raethod for caleulating shadow prices from the optimal cancnical form of the primal
objective function, The method and its justification does not depend in any way on the
dual.
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1.  Introduction

In linear programming probicms the shadow pnw ofa consxramt is the mﬂ‘cmnce between
the optimised valuc of the objective fanction amd the value of the objccuvc function,
~ evaluated at the optimal b’asxs‘, when the right hand side (RHS) of a constraint is increased
by ore}unit It fmy be showﬁ,- usiﬁgs the approa‘ch 6f Winston (1995, pp. 250-255, 293-
300) lh.u the sh,ndc)w prices corresponding to the constraints of a primal LP problem are

kcqual to the Optmml values of tae dual variables,

Tht} impoxténc«: of shadow pﬁfcés ?st,ems from the fact that over the mnge‘for which
. changes to the RHS coefficient of a const;aisxr in a primal problem do not lead to a change
in the variables which are in the‘optima"l basis, the shudow "_price associated with the
k‘constraim givcsz the change in the maxumsv d value of the primal objective function per unit
of change in the RHS" coefficient of the constraint, Thus-, the shadow price of each
cons(ramt gives !hc marginal valuation of the fixed reSOurce rcpres‘cntcd by the RHS

coemclent of the constraint as dctermmcd by the optimal mluuon to the primal problcm

The optimal values of the dual variables may be ob tained from the cocfﬁcxcms of slack and
excess variables whic.h are in the canonical form of the pritaal objective function at the
~optimal solution. of the primal problem. However, it is an unfortunate fact from the
- pedagogic ﬁewpaim that most textbooks explain how to extract the shadow prices of the
| constraints from the canonical form of thc, objective function of the primal problcm at the

opumal solution- after cOVcnng a considerable ammmt of material on the dual (m for



example: Winiston (1995), 'Dncllcnbnch.’ George nnd McNickle (1983) and'Bmmn, |
BQn‘in{nnd Hausman (1985)). An i‘m,ppnnht exception is Wagaer (1970, pp.113-114) who
covers s‘liadow priccs in conjunction with material on ‘ﬁnding s range over which the
RHS coefficient of primal constraint may be changed and the marginal valuation
interpretation of the shadow price can be roaintained, before covering material on the

dual.!

A typical imraducto;y cqﬁrsc"in opcrationskr,ciscarch would start wifh the graphical
 solution to simple lincar programming problems including the definition and calculation of
shadow prices, proceed to the simpléx method for sdlving, standaxd lincar ‘progl'ammingt
problems and then "cov‘c‘t‘ mﬁﬁéial}variabl’cs and the sé_luﬁon of non-standard linear
fprogn;mz,ning problems using the big M and two ‘ph,asé mcthods, ‘Mat}c,xi.a.l* on the dual,
mixed integer linear programming and other topics would then be covered.
The au;hdr has ?qud it fiixsefful to incorporate material on how to extract shadéw prices
from the coefficients of slack and excess variables in the canonical form of the primal
objective function at the optimal solution, when the simplex method is taught. This
approach maintains ‘zh‘c cbnﬁnui_ty of the :idcasr introduced when the graphical solution to
simple line@r progmmming problemis is covered and prepares studcms for the

- interpretation of the solution to the dual as giving the marginal valuations of the résonrces
* represented by the RHS coefficicnts of the constraints of the primal problem. After

material on the dual is covered, students can use the solutions to standard and non-
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standard linear programming problems they have solved and the complementary slackness
theorem, to obtain the solutions 1o the corresponding dual problems Thus they can vmfy |
that the optimal vaiues of the dual variables correspond numerically to the shadow prices

they have already calculated for cach problem,

The mm:undcx of the papcr is as fullows. In the next section a sxmplc mcthod for
computing shadow prices is amhnf:,d‘ Two cxnmplcs are provided and i cach case it is
shown that the shadow pnc«:_s are 1d¢ﬂ!l¢al to zhe optimal values of the corresponding dual
variables. In section 3 the mlanonshxp betwccn the shadow price of a constraint of a lincar
pmgrammmg problcm and thc co::fﬁcicnt of the corrcspondmg slack or surplus vanablc in
| :upunwl ‘squum‘ is rigorously derived. It is also shown thm thc method: for mnpunng
‘shadow pncc.s which is outlined in qccuon 2 gwes coxrccz answcrs. The final scx'non

contnms some concludmg rcnmks. 3

2. - Cbmphting Shadow Prices '

~ Inthis section we shall outline a simple method for computing shadow prices which can be
mughtin conjunéﬁon with material on the simplex method, The method oﬁtlincd below for
: comyutmg shadow prices is bascd on thc followmg two propositions:

(1) The cocffiucnt of & non»bnsw vanablc in the canonical form of the objochve

fum:uon at the optimal solution fo the linear programming p‘roblem‘gms: the



change in the value of the objective function per unit increase in the value of u.e
non-basic variable when all other non-basic variables are maintsined at a zero level
and the basic va,rié:b!c;s are allo@cd to 'chzmg@. (Hadley, 1962, p91)

(2)  The optimal solution to a lincar programming problem must satisfy the constraints
of the problem, Increasing the RHS of a constralnt (expressed in standard formn)
which has a slack oF excess variable which is not in the optimial basis, can be shown
to be equivalent to inducing a c‘hangc @f +1 to the optimal value of the. excess
variable (if applicable) or  change of -1 to the optimal value of the slack variable
Gf "applicable) which is in that equation. Using propcis‘il;ion' (1), the change in the
value of the excess or slack vaﬁnb’l’ck‘can. be used in conjunction with canonical
form of the objcétivg functioxi at the Opﬁmal solution to find the éhangc: in value of
the objective funétioa. 'l‘ms ,chéngg in the vé!ua of the bbjécﬁve function is the |

: shadow price of the constraint Whicu had its RHS cocfficient inérc/asam
If a c':onéifaint has a éiaék or excess variable which is in the optimal basis, |
~ increasing the RHS of the constraint by 1 anit will change the value of the slack or
excess variable but will not change the value of the objective function because th=
| slack or éxccss variable has a coefficient of zero in the primal 'dbjc:cﬁvex function.

“The shauow price of this constraint s zero,

We shall mw give two examples of the method of computing shadow prices outlined in :

proposition (2) above,



Example 1
Choose i, Xz
to maximise: 2= 5x, + X2
subject t0: A +x 520
Yaxi+x2815
X +x2210
% 20,% 20
This problem may be wﬁzt;n; in smﬁdar,d form
Choose Xy, Xz | |
mkmaximisa: z=5Kk+K ‘, i | | | N (1
subject to: 4%+ X2+ Xy =20 5 , (¢))
| : Yxidxy  Ax =15 I ' ()
Xtk exg=10 - @
Xi20,%20,%20,%20,xs20 | |
This problem may be solved by adding an artificial variable to (4) and using either thc big
M method or the two phase method, The opnmal basic solution is
(< =10/3,%; = 20/3,65 = 0,6 =35/6,x; =0) and the canonical fom of the objecﬁye;
function émﬁspondhg 1o the optimal basic solution is;
Z¥44/3%5 +1/3x; =T0/3 .
To obtain the shadow price of the first constraint, we note that:
A 4x; #x=20

 Increasing the RHS by 1:



xR =21, e
The basis variables x; and x; are not starred in (5) because thcy cannot buth be equal 1o
their 0pti'mal, values when x3 is held at its optimal value and the RHS of the constraint -
equation is increased by 1 unit,
Rearrange (5) to obtain:
axptx+{xs=1)=20. l . O]
| ‘Equation (6) shows that inczeasing the RHS of the first constraint by 1 unit is equi‘vaicn.t
to keaping the RHS of t‘hc first constraint constant, changing ‘x‘;‘ to (x} 1) and letting the
, basis variables change to satisfy the cmgsnnl consu’ﬁmt c;qu:mon. -
Let the vmue of the objccnve function when X3 is changed from x;, to {x, - 1) be 7 7 thcn,
*,;»v,ﬁ,:'yo/w/z(x; ~1)~1/3x; and: A71~q~z*ww4/3( ﬂxw,;,) 4/3, is the shadow
price of the first constraint. ; i e
~ The scmnd constraint has a slack variable whxch is in thc optimal basxs ( : ~35/6) and
hence & :shadow priw of zero, that is Az, =0, |
~ To find the shedow ijricu of the third constfnint, note that:
BT SELTYS
increasing the RHS by 1
| X Hx=xg=11
 Thisis equivalenttc):

xi g XZ (x, "*1) 10 ¥
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Let the value of the abjective function when x; is changed from X} 10 x{+1 be %, then
% =70/3= 4/3x; ~ /3(x§ +1) and: Az, =7, - ¢ =~ Y3(x} + 1= x}) =~1/3,

is the shadow price of the third constraint,

The dual of this problem is:
choose Wi, Wa, Ws
to minimise W =20 wi + 15 wj + 10 ws
' subject.té: V 4w +’—.‘A wy 4 "w; 25
St Wt w2l
w20, w20, w0,
Let wy, wj and w; solve the dual prﬁﬂblém The complementary slackness theorem gives:
- wildx 4w =20) =0, vi{fexs + % -15) =0, wilx} +x5 -10)=0,

¥

% (4w] +ofsw; + wy = 5)=0, x3{w} +w; twr~1)=0.

Since x; =10/3 and x; =20/3, w; =0, 4w} +wy =5 and w} +w} =1, 50 wi=1=w]
and 4w, +1~w, =5, so that w, = 4/3 and w; =~1/3,

Thus we find that: w; = Az, =4/3, w; = Az, =0 and w} = Az, =~1/3, The shadow price
of each constraint is equal numerically to optimal vallue of the dual variable associated with

that constraint,



Exnmmez
Choose x;, Xz
o minimise: Z = 5x + x»
subject m; | o2l
I +xs 24

| X20,%20
It is well known that if 7 = -Z, men maximising z i cdui"valem to minimising Z (Hadley,
1962, pb.l:,&l#mz). This problem hmy be written as a 'max‘imisation‘ problem in standard
form; | i |
Choose x, k3
o maximise; z=-5%-% | | o -
rsubjcé‘t tor o X e% =l - (8)
’ | C 3xtx o exs =4 e ‘ s ©)

X120, %20, x;?.ﬂ,x;zb %520

The problam may be solved using tho bxg M method or the two phasc method after addmg ,

an amﬁcml vanablc to xhc first constramt (xhs: sccond comtramm is already in canonical

- form.for a basis which includes X2

The optimal basic feasible solution to this problem is (x"=1,x} =1,x} =0, x} = 0) and the
| canaiiical k’ form of the objecxiw: function waluaied at the optimal basxc solution is

EE42K] + X, =6 50 that the canonical for of thc objccuvc function corrcspondmg to
- the objective function of thc minimisation problt,:m is (bccause Z¢=wy 4')

Z*'-»ZX; - K“, ”6 -



To obfaitﬁ the shadow price of the ﬁrstmnstmiﬁ@ note that:
| X -x =1,
, klnc‘masingr the RHSM this constraint by 1 yields:
X =Ky =2
This is equivalent to:
(x; + l) L,

Let the value of the ijccmm function when x, is changed from X; 10 (x, + I) be Z,, then:

Zi= (x,+l)+x‘+6 and: AZ=%~2 = (x,4 1=x; )-2 is the shadow pr;cc of the

first constraint. Gimilarly, the shadow price of the second constraint is: AZ, =Zz »;Z*r:-fv L

The dual of this problem is:
choose Wi, Wa,
| o minimise W = wi ;+4 wp
5u‘bj¢cttﬁo: : kw.,+j3‘ Wy 55
w; & 1

w20, WzZ 0
* Let w) and w; represent the optimal values of the dual variables, then the obniplcmemhry
slackness  theorem.  gives: x;(w’,"?kﬁw;wﬁ)&(l. x;(w;«-l) 0, w;(x, ~1)=0 and

Wi X 8) =0, Since )= Land K61, , W +3wh =5 and w =1 5o that w) =2,



o
Thus we find that: w; = AZ, =2 and w, = AZ, = 1, The shadow price of each constraint s

nusnerically equal to the optimal value of the dual variable associated with cach constraint,

We conclude this section by noting that the shadow prices of a non-standard linear
programming problem containing equality constraints may be obtained by replacing each
equality constraint with two weak inequalities whose intersection gives tie equality

constraint and proceeding as above,

3 Shadow Prices and thc Canonicm l‘orm of the Objcctive Function
at the Optimal Solution ‘

{Zonsider the foll‘owi‘ng 1inear programming problem wnum in standard form:

Choose: %y - |

To maximise: | 1= 0%

Subjectto: A+ Aga=b

O x20,20
where; x; is an mkl vegtor ofﬁhoice variables with elements iy, j=1,..,0;

Xpis an mx1 vc;cmf of sluck and/or excess variables with elements X, j= L |
¢ is e.mk, nx1 vector of objective function coefficients with elements c; o §=tpmit

Ay is an mxn; matrix of coefficients with columns ayj, j=1,...n1}




Ay is an mxm mabix with column j being 1; or -1;, depending on whether Xy is a
slack variable or an excess variable, respectively, 1; is an mx1 vector with element j
being equal to 1 and the remaining elements being zero, and

bis an mx] vector of goefficients,

To simplify xiomﬁom we shall now re-label the vectors and matrices defined above so that
we can casily obtain cxr,%f:ssidns for the optimal basic solution of this problem. Let y,,
Y2en¥'m be the variables in the oﬁn’ma’i basis, collected in the mx1 vector yi let qy, Goyens ot
be the variables which are not in the optimal basis, colléctcd’ in the myx1 vector q; let ¢,
CapCin be tite objective function cocfficients corresponding to the 'ba:#is variables qy,
qz,.‘.-;q,,., Note: that ¢=0 1f ¥ r&;}::ﬂ:;:ts & aiaal or excess variable, otherwise ¢ is equal to
the element of ¢; corresponding to the basis variable q; (which is a re-labelling of one of

the variables in x;).

We shall assume that one of the basis v;ﬁ‘&?}s’!es, say ¥ is a slck or excess variable
corresponding to constraint s, and that one of the non-basis variables, say g fs a slack or
excess variable corresponding to cmﬁStr&i’nt k. Let D be the mxm rsstrix with columns
 being the columns of Ay or A; corresponding to the vaﬁabi&‘s in'y and let the columiis of D
be d}-, j—;li.,.,,'m. lctF be the npay matrix with columns being the colninns of Ay 6,1" Az

corresponding to the variables in g and let the columns of E be e, j=1,..,;.

The optimal value of the objective function may be written;

-
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where y* is the optimal value of the vector of variables which are in the optimal basis.

The constraint cqumieon‘s can be writien: | ’ ,

Dy+Eq=b .
Let D" be the inverse of D, then (11)canbe SOiVbd for y""

y*=D"b-D" Eq¥, : ST g (1:2)
where ¢* is the optimal value (zero for each él‘cmeht) of the vector of non-basis variables,
Now solving for z*: | »

2¥= c’y ¥ =c (Db~ D“‘ Eq¥)

=¢Db— oD Egt

or:

z*wn*‘tq*-_:cqr’b, 1 o S (13)

¥

~which s the canomcal form of thc objecnve function cvaluntcd at the optxmal basis.

Recallmg that € tepresems the column j of E (13) may a!so be wmten*

z*+}3¢'p*‘e,.q;*==c"o**b, ! (14)

~ where c’D“’c, is the coefficient of the non~ba51s vanable q; in the canomcal form of the

objcctxve function evaluated at the optimal basts, Since ¢’ is a 1xm vector, D is an mxm

matrix and e; ... an mx1 vg:ctor, ¢'D'e; is a scalar, and since (14) is the canomcal form of

 the objective function of a maximisation problem, ¢'De;, § = 1,..,m is & set of non-

negative scalars,
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To find the shadow price of a bixid‘i‘ng £ or 2 constraint, ¢¢nsidcr cons‘svmim’ k wtii'ch has
a slack or excess variable qc which is not in the optimal basis. To increase the RHS of
constraint k by 1 unit, add the vector 1y to b to obtain from (1 1) , |
Dy+Eq=bil,, S N 1)
let ¥, be the value of the basis vector when 1y is added td the RHS of (lﬁl);
 R=Db+DU, D EqY, e g
and let ;’he value of the vbjective function corresponding to this value of the bzisi'S‘ VOCtOi’ ‘

7, =c, =eD b+ D L~ ¢ Eq*, | oan

The shadow price of éonsuﬂmk is, from (13) and an,
Az’,i =%, ~z*=cD? i, : S ‘ | (18)
Now the coefficient of qlt in thi: canonical form of the objective function is, from (14):
| ‘c'bﬂe,,‘. . L . o
where e is column k of E. Now if G is a slack variable, e, = 1, and the canonical form of
'ifhe objestive function coefficient of Qe midy be written:
oD, ;

which is identical o the shadow price.

If qu is an excess variable, then e = «Jy and the canonical form of the objective function

coefficient of gy becomes:
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~~'-C'D'""~1k ¥
which must be mmucgaﬁvc, The shadow price is equal to ~{~¢D” .l;):*'c'l)“‘el. or
minus the canonical form of the dbjéctive function coefficient of qg. and is isrefors won

~ positive,

We shail now find the sha‘déw price of a Siack constraint or a binding éjOnstrai‘xu‘t which has
a slack or excess variable which is in the 'optim_n”l basis (at zero value). If a constraint is
slack, its corresponding excess or slack variable is positive and therefote in e optimal
basis. We : have already assumed that y, mpwséﬁts a slack or excess basic variable
associated with constraint s, fmc*reaising the RHS of constraint s by one unit is equivalent to |
* adding 1,10 the RHS of (11). The shadow price asocinted with this may be obtained by
substituting 1, for I in (18) to obtain: | |

Az, =¢'DM, . e e - 19)
Noting that 1, is column r of D, if o is a slack variable corresponding to con"strdidt s, we
have froms the definition of the matrix inverse:

i, =1,

so that Az, = c’l,# 0, because the element of ¢ cmsmdihg 10 g, is zero. So the
shadow pﬁc’e of a non-binding < c.onstraiﬁt or a binding S constraint which has an excess

variable which is in the optimal basis is z¢ro,

Now, if q. is an excess variable corresponding to constraint s, column r of D is -1,, and

 writing =Az, =¢'D™ +(~1,), from the definition of the matrix inverse,



15

DY) =1,
50 that ~Az, =¢"+1, =0, since the element of‘ ¢ 'cafr'cspgmding to 4, is zero, Thus, the
shadow orice Qf a non binding 2 constraint or a bmdmg 2 constraint which has an excess

variable which is in the optimal basis is also zero,

Using the conv‘cnti'cm‘tlm a stack or exff?:ss variable which is in: the optimal basis has a
coefficient of zero in the eanonical form of the objective function at the optimal '&1sis,
these results may be summarised as follows, In a misitmisation problem, the shadow price
of: | |
@  Aron bmdxng = or < < constmmt is zero.
(i) A binding < comtmnt 15 thc coefficient of the slack varigble co.respondmg to the
| s cohstmint in the cancnic_,al form of the objccﬁvc‘;‘ function (évaluatedi at the
optimal basis) and is therefore non-negative,
Gil) A binding 2 constraint is minus the coefficient of the slack variable corresponding
to the = ccinstr‘aint in the canonical form of the objective function (evaluated at the

&

optimal bi*is} and is therefore non«pomnvc.

Similar results hold for a minimisaticm problem except that the sign of the shadow price
associated with a binding < constraint is non-positive and the sign of ti’qc shadow price
associsted with & binding 2 constraint is non-negative, This fdl!osws because the
coefficients of the rion-basis variables in the canonical Yorm of thé objective function

(evalusted at the optimal basis) are non-positive,



© These results are identical to the results obtained by Winston (1995, pp.2]964297) on how
1o obtain the thi‘mal valuez of the dual variables from the coefficients of slack and excess
variables in the canonical form of the Objwtl\'c function, evaluated at the opmmal solution

of non—smnd'\rd pnmal maximisation and m:mmx«saﬁoha pmblems.

We shall aow verify that the method for obtaining shadow prices outlined in Section 2 is
correct. We b::gin with a coxistrainl‘ which has a slack or surplus Vaﬁnblc which is not in
the Op.ri‘mai pasis. Mote that from (14) lhe canonical form of the Objccﬁvc funcnon

evaluated at thc optimal basns may be written:

2¥=cD" ’b (‘m et +c’D“’c1q2+,,.;m’l)”'e,q; ke ’D“c,,'q,"\ BV

If the value of g is changed to gf, then the value of the objective fuction ¢valuated at
the optimal basis may be calculated as: * | ‘ '

B=eDo-(cDegt +eDeg) #ASD gk Ao D e S e
and | =

Az = ’i —2¥= ”C'D"Gi(% =0 )"' ~D" c&A‘h ’ o 22)

where Aq, q; q .
Now changmg the element of b corresponding to constraint i, 16 by + 1, will wshown to
be equivalent to changing g holding b; constant, Writing the constraint c;umions (.

using the notation that e; is column j of E:



n
Dy “+e1,‘q;‘,‘)+c,qtﬁ.&gq?‘th;,qf; sb, ‘ @3
 and changing by to bi+! yields:
Dy +c‘qu'»ﬁc;q{fi—.,m‘q??hﬁ%q; =b+l. ; (24)

Now € = 1;if q;is a slack variable, and ¢ = - 1, if ; is an excess variable.

Rcarrang’mg’(%)* |
Dy+elq, -!r~ezc1,~k.§.+f.'.,c1i fﬁ;m:,iq:! =b o (25)
or |
D’yfc,g,*4-c2q:‘+;‘.+ciq;+.;.+c,,,q; =b, | (26)

where q{ = q* ~ 1 if q; is  slack variable and qf = g+ 1if q;is an excess variable.

Now the shadow pncc of constraint i may bc obtémcd from (22), When q; is a slack
Vanablc. i '

| - Ay =D ciAq‘ =—D" ’c,(q -—1~—~ql) c’D"’
and when q; is an excess variable:

| Az = "Q'DHOEAQI = “ctﬁh'“i(‘l?‘ +1~ q(") =—cD *

These results agree with those obtained above,

If a constraint has a slack or excess vannblc which is in the optimal hms, then the

constraint has (as shown above) a shadow price of ze10
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4, Concludi‘?lg Comments

The method for computing shadow prices presented in section 2 was taught by the author
in conjunction with the simplex method and related topics for 5 years in a second year
 introductory operations esearch cavrse. Students taking the course were completing
degrees with majors in ’c,conom’zcs,. econometrics, marketing, finance, accounting, ‘appli('l:i

science ond textile seience.

The minimum prerequisite for the course was & one semester course in quantitative
methods covering basic caleulus, Tinear algcbra.“x’nat’hcmaﬁc;s of finance and some material

on the graphical éolu;iq‘n to linear programming problems, ‘Stude'n;s were generally happy

to accept propositions (1) and (2) as justifying the method outlined in section 2,f'o’f
| computing shadow prices. thle the justification of the method presented in section 3 was

made available to students (on re.ues *few asked for the material,
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Endnote

! Wugner's metod may briclly bo described as follows, If the right hand side of » constraint
equation (expressed n standard form) is altered by adding a scalar A and the linear programming problem
is solved for the new values of the variables which are in the optimal basic solution of the original
problem, A appears on the right hand side of each equation in which the slack or surpius variable of the
modified constraint appears, If the modificd constraint has a slack variable, then the coefficient of A is the
same as the cocfficient of the slack variable in that equation. If the modified constraint Vias an excess
variable, the coefficient of A is minus the cocfficicnt of the excess variable in that equation, The shadow
price: of the constraint is the coefficient of 4 in the canonical form of the objective function evaluated at
the new values of the basis variables, Thus, if » constraint is not binding, A does not appear in the
canonical form of the objective function at the new solution and the shadow price is zero, If a constraint is
binding and the slack or excess variable of the modified constraint is not.a basis variable, A appears in th¢
canonical form of the objective function and the shadow price is non-zero, being positive if the modified
constraint has a slack variable ot ncgative il the modified constraint has an excess variable, The range for
A which would not alter the variables in the optimal basis after the right hand side of a constraint is
- modified, is the range fos A which maintains the non-negaiivity of the new value of the slack or excess
yasiable of the modified constraint, It should be noted that the cocfficients of all variables appearing . b the
canonical form of the problem for the nptimal basic solution remain unchanged in the canonical fo. m of
the problem for the solution to the modified problem, 'nms, shadow prices may be obtained frot | the
 cooffivients of slack and/or excess varinbles which appear in the canonical form of the objective fus ;mon
corresponding (o the optimal solution of the original pmbicm, The method fur calculating shadow prices
preseried in section 2 is simpler than Wagner's method in that the range: of the right hand side parameter
of a constraint equation for which the shadow price of the constraint gives a marginal valuation of the
resonrce represented by the consirint is not addressed. :
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