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ABSTRACT 

Shadow prices in linenr programming problems can be obulined (rom the coefficients or 
slack and surplus variables ill the canonical rorm of the oqjective fu~ctim' at the. optimal 
solution. 'flowever, most introductory textbooks present a method for extracting shadow 
prices from the. canonical fom1 of the objective function in conj\1ncdon with materhtl on 
the dual. An introductory course in operations research would nonnally begin with the 
graphical soh1tion to simple Hr1ear programming problems including ahndow prices and 
then cover the simplex:. method and the related topics of ·artificial variables, the big M 
method. and the two phase method followed by material on the du~l.lt is desirable to teach 
a method tor detemliriin~ shadow prices in ~conjunction with the simplex. method because 
the continuity ofconcepts introduced at the beginning of the col'rse. is maintained and the 
interpretation of dual varhtbles as ~,had ow prices reinforced when the material on the dual 
is covert-d •. 'The student can verify thtu the shadow prices cutcuhtted in conjunction with 
the solution to linear prograrnming problems using the simplex method are numerically 
identical to the optimal values o£ the dual variables in each case. 11tis article presents a 
simple met~od for calculating shadow prices from the optimal canonical fonn of the primal 
objective functiont the method and its justification does not depend in any way on the 
dual. 

Key words~ Shadow ptices, Unenr programtning 
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l. Introduction 

ln line~ progrrtn1tt1lng problems the shadow price of a constraint is th~ difference betw~n 

the optimised value of the objective function and the value ,t)f the obj~tive function, 

evalua~ed at the optimal basis, when the right hand side (RHS) of a constuunt is m~sed 

by or:e 1\ioit It ~Y be shown, using the. approach of Winston (1995, pp.2S0 .. 2SS, 293-

300) that the shllc;iow prices coJTesponding to the constraints of a primal LP problem .ate: 

equal to the optin1al vahv~s \,ir l.4e dual variable$, 

The iraportnnce of shadow prl~es stems from the fact that. over the ntnge for· which: 

chauges to th~~ lUIS coefficient of a constraitlt in a primal problem do not lead to a cbange 

in the variablt·s which ate it1 the optimal basis. the shadow price associated with the 

coostraint giVC$\.the change in the nlUXin:lJ&·~d valUe of the primal objective fliOCU011per unit 

of change in tlv~ RBS coefficient of the cor\straint. Thus, the :;hadow pdc~ pf ~cb 

constraint gives \'h¢ marginal valuation of the (tXed tc.source rep~seottd by the RHS 

coefficient of the constrain~ as determined by the optirnal solution w the primal problem. 

The optimal valuc:s c.1f the dual variables may be, obtained from the coefficients ot slack ~d: 

excess variables whit'h ~e irt the canonical form ot'" the prltdal objective ftmction Jt· the 

optimal solution. or the primal problem, However, it is an unfortunate . .fact from the 

pedagc:lgic viewpoint, that most textbooks explain how to· extract the shadow prlc¢s nf the 

constraints from the canonical €otltl of the objective function of the primal problent a\t tbe 

opthtml solution after covering a cortsiderable amount of.roaterial on the dual (see\1.fot 



example! WirtSt()n (1995). Daellenbach, Oeorge and McNickle (1983) and Bierman, 

Bonini and Hausman (1986)). An hnponant. exception is Wagner (1.970. pp.1l3 .. 1.14) Who 

covers shndow prices jn conjunction with matcrluJ on finding .,5 rang~ over which the, 

RHS coefficient or n primal constraint may be changed and the marginal valuarittn 

interpretation of the shadow price cnn be maintained. oofore coverinA. material on the 

dtltll. i. 

A typical inlt~uctot)' course in oper~tions research would start with th~ graphical 

solution to simple linear programming problems including lhc definition and calculation of 

shadow pri.ces, proceed to the simplex method for solving stnnd;u'd linear prograrruning 

ptoblcm.c> and then cover artificial variables and the soluti9n of uc:m·.-standard linear 

programm1ng problems using Jhe big .M and two phase methods. Material on the dual, 

mixed integer linear programming and other topic$ would then lJt coveted. 

n1e author has found it useful to incorpOrate material on how t() extract. shadow pricC$ 

ftom the coefficients or slack and excess variables in the canonk..al form of the primal 

objective function nt the Optimal ~huion, when the simplex methOd is aaugbt. This 

approach maintains the continuity of the ideas introduced when the gtapbical $0ludon t(l 

simple. line~ programming problems is covered Alld prepates student$ f()t the 

interpretation of the solution to the dual as gl.ving lhe marginal valuations. of th4' re$4>urces 

rep~sented by the lUIS coefncient$ of the cons~ints of the primal :problem. After 

rr.ateriru on the cJuat is covered,. students citn use the solution$ to standard a•.kl non-. 



standatd linear programming problems they bave $0lved and the ·comple~ntaty sblckncss 

theorem. to obtain the solutions to the corre~ponding dual problems. Thus lhey· can verify 

that the optimal vaiur:s of the dual. vminble$ t!otrespond nun)Cric;llly to the stuaclow pice$ 

they have already calculated for each problem, 

1ne remainder of the papc.r is as ·follows. ln the next section ~· simple meth<xl. for 

C001puting .shadow prices is outlined. Two ~xamples are provided and w each case it is. 

shown that the shadow pric~s are identical to the optimal values of the cor~sponding dual 

variabl~s~ In section 3 the relationship between the shadow price of a constraint of a Unc:ar 

ptogtamming problem and the coefficient of the corresponding slack: or surplus variable in 

the canonical form of the ~bJective function of: a linef1t programJ1ling problem •t d~Q 

optimal solution is rigorously derived. lt is also shown that th~ method for eqmputing 

shadow prices which is outlined in section 2 gives correct answers. The final SC(:tipn 

cvntains some concluding remarks~ 

2. Con•puting Shadow Prices 

In this section we shall outline a simple methcd {or computing shadow price$ which can ~ 

taughtin conjunction with material on the simplex method, 'l'he method outlined below for 

computing shadow prices is based on the following two ptop<>Sitions: 

(l) The coefficient of a non-b~sic variable in Ule canonical form of the objectjve 

function at the opJirnal solution to tb¢ linear programming problem Btv~ .the 
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chao~- in the value of the objective function per unit !n~ in the v•lp~ gf the 

non-basic variable wh~n all othet non-basic variables :lte maintained at a zero ~vel 

and the basic variables are allowed to chansc. (lJadlc-.y, 1962, p.9l) 

(2) The optirnat solution to a. linear programming problem must ~tisfy the consttahus 

of the probl~m. Jncre3$ing the lUiS ot a constraint: (expressed in standard f~"'rtl) 

which has a slack or excess variable whi¢h is not in the, optimal bnsls, c4\n be shown 

to be equivalent to inducing a change of +l to the optimal value of the excess 

variable (if applicable) or a. chnnge <>f .. t to the optimal value of thQ slack :variable 

(if applicable) which is in that equation. Using proposition {1), the change in the 

valul! of the excess o_r ~lrtck variable can be usr.d in CQnjunction with callQnical 

form. of the objective function at th~ ()ptimal $olution to find. th~ change in Valu~; of 

the obje.ctive fUn11tion. 'Olis chang~ in the value of the objective function is th~ 

shadow price ofthe consflilint which had its RHS coefficient increased" 

lf a. constraint has a slack 9t exces$ variable which is in the optimal lw.$i$t 

increasing the RfiS of the constl'aiot by t unit will change the valu~- of th~ sl"ck or 

exc~ss variable but: wili not change the value .of th~ objective function t«ause th~ 

$lack or ~xcess variable ha$ a cQe(f'ic,ieot of zeta in the primal objecd.v~ function. 

Th~ shaqow price of this constraint. is zero. 

We shall now fdve two examples of the methcxi .of computing shadow prices outlined in 

proposition (2) above, 



4Xt +X2 S20 

nds problern n1ny be writt~o in standard form: 

Choose "'·' xz 
{l) 

(2) 

(3) 

(4) 

This problem may-~· solv~ by adding· al) ~tricittl variable to (4) and· U$inJ either Jh~ big 

1.\-i. method ot the two phuse methodt The optimal lxl$le .S41Ut1QQ ·i$ 

(:c.:~ 1<¥3 t x:· = 20/3, x; = o.x: .;;. 35/6, xi~. o) and the canonleal form of .the .. objective. 

• • • • • 4x1 + x1 +"'~ #; 20 

Increasing the RliS by 1 !: 

'1. _) 



6. 

(S) 

The basis vari~bles "' and ,,. nt-e not $tnrt,~.d in (5} because they ctmn<>t: tNth be· ~pal t<> 

their oprlmal values when x:s is held «l its optimttl value and .the RHS of the constrllint 

equation is increased by l unit~ 

Rearrnng~ {5) to obtnitl: 

(6) 

Equation (6) shows that inct:-rtsing the RHS nf th~ first constraint by l unit is equivalent 

to k~~ping the RHS of the first constntiM constant, chnnging x~ to (x; .. l.) and letting tb~ 

basis vruil.\blcs chnn~e to satisfy the orisinttl constntint ~lu:Uion. 

Let the vu)ue or the of;)jective function when X3 is changc4 from x; to (x: .... 1) be·~, then: 

price: at the fitst constraint. 

The SCCQnd constraint has a s.tnck vfuiubl~ which. is irt the. optimal basis (x! ~ 35/6) and 

bence tt· shadow voce of zero. that is A'/4 = 0. 

To find the stwdow price of the third constraint, nale thuu 

increasing the RHS by 1; 

• Xt + )(:~ - 'Xs == ll 

this is equiv11tent to: 
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is the shadow price of the third constrnint. 

11•e dual of this problem is: 

to mtnhnise W ;:: 20 Wt + l.S W2 + lO W3 

subject to: 

'A · . .;· ....••. · . . . • I ... ...... ·;·· and ~w1 +1-w~ ;:;5. so that w1 =4 3 and w~ :::..-.13. 

Thus we fmd that: wi ;;:Azl.-;.:4/3t wr;:;A~~o and w;=A~= .... l/3# Th~ shadow price 

<>fe:!ch constraifJJ is equal nurnerlcally to optimal value:Q.f the dual variable associat~ with 



subj~ct ro: 

subject to: 

(7) 

(8) 

(9) 

8 

The problem may be solved using the big M method or the two phase method. after adding 

an artificial vAriable to the ftrst constraint Cth~ second constraint is alr¢ady in canooical 

f9tm for a basis which includes Xi) •. 

The o~timal basic feasible solution f<> this problem is (x~·;: l, ~;:;; l, x:;:; 0~ x: ·:;: o) and the 

call~Ahlcal form of the obJ<:ctive function evaluated at the opti~l basic $91Udm i$ 

.e ~ +2x: + x::::: .-.{) so tha,t th~ canonical . .fomt of th~ objectiv~ function COJresp<>nding to 

f .. I 



9 

The dual of .this problem i~: 

w~ ·~1 



to 

thu;s we. find thnt: w~ ::-: ~ = 2 nnd w; ~ AZ, = .1. the shadow price ot ettch con$tr•int is 

nutlnericaHy eqtHtlto the optimal v"lue or the du.nl YitdabJe associ"tcd whh ellcb 4Willtrnlttf, 

We conclude this secdon by nodng that the shadovl prices 9f ~ non•smndt!rd linear 

programming problem containh1g equality constnthns m1y be obtnlned by n:pla~ing each 

eq,unlity constrninl. with two weuk inequnlhies whose intet$®tiort gives the ~ttality 

c(msttahuand proceeding as above. 

~. Shadow I•dccs nnd the Caoonicni l~or.rn of the ObjccUve F'unctJon 
nt the Opthr .. nl Solution 

~::Onsider th~ followJng Un~r progrnmming probl~m wrin~n in standard form~ 

Choose: X1 

Subject to: Aoh + A1:xz :',':; b 

Xt ~01 X~~O 

where: Xt is an ntxl vector ofchoice v:trlab1es with elements ~u, j=l,,..,n;; 

x~ is an mxl vector of slack and/ot· excess v.ariables with elements X'lJt j;:;1p ... m: 

C} l~ tm JhX 1 vecwr ofobjective runctiott coefficienJs with clement$ em j;::: t ,m,nH 

A, i.s an tnXnJ m~ttrlx, of eoefficierJts whh columns a,1, J=l,u.,n.; 

:J 



slack vnrlablc or un excess variable. respectively, 11 is an mxl vec.tor with elemeotj 

~ing equal to 1 und the remaining clements beiug zetr.>, and 

b is an mx l vcct.or of coefficients. 

1~o ~·implify notation,. we shp.Jl now re-label the vectors and matrices defined above so that 

we cnn ~sily obtain cxr.r~~ssions for the optimal basic solution of this problem. Let y,. 

Yz ..... ,ym be the vntiablcs irt the optimnl basis, collected in the mxl vector y; letqh Q2, ... ,qnJ 

be the variables which nre not in the optimal basis, collected in the nt><l vector q; let ct. 

cz,n•tcm be the objective functlon cocfficienls corresponding to the basis variables qt, 

the element of c1 cottcfponding to the basis variable CJi (which is a te,.fabelling of one of 

the variables ill.x,). 

W~ shall assume thttt Ot)e of tho basis vttrlah!cs, say Yt is n slack or excess variable 

corresponding to consttaint s, and that one of the non"basis variubles .• say qk is a slack. or 

excess variable corresponding to constraint k. Let D be the mxm tt.;rtiix with colutJ:Uls 

being the columns of At or A1. correspotlding to the vatinbles in y and let the oolumns of D 

The optimal value of the objective function may be written: 



12 

(10) 

where y~ is the. optimal value of the vector of variables which are in the optimal bnsis. 

Dy+Eq=b 

t.et o·t be the inverse of D, then ( ll) cnn be solved for y*~ 

y*=D-tb- D""t Eq*, 

(11) 

(12) 

where; q~' is: the optimal value (zero for each element) of the vector of non .. basis variables. 

Now solving fat z*: 

z*=t'y * =c{o:--•b- 0"'1 Eq,*) 

= c'I.r4b- c'P"'1Eq* 

(13) 

which is the ca11onical fon11 of the objective function evaluated at the optimal basis. 

Recalling that ej represehts the column j of.E, (13) may also be writtent 

(14) 

where c'D-1e
1 

is the coefficient of the nort .. basis variable qs in the canonical fortt1 of the 

objective function evaluated at the optimal basis. Since c/ is a lxm vector, lY
1 

is an mxm 

matrix and e1 ~··an mxt vector, c'D-1e1 is. ~l scalar, and since (14) is the canonical fonrt of 

the objective function of a maximisation problem. c'D-1e1, j = l, .• ~,m is a set of nort"' 

negadve .scalars. 
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To find the 5had(tW price of n binding s or ~ consttaintt cco~ider constrahu k which has 

a slack or excess vnrinble Qt' which is not ht the opritnal basis. To incre;~se the lU-IS of 

constraint k by t ttt\it, add the vcc.Jor h to b to obtain from (11 ): 

let. Yk be the value of \he basis V~Clot when his add<~ ~() the RHS Qf n l)t 

y~ ::;D'"''b+0-1.\ -o~·• Eq*, 

(lS) 

(16) 

~d .let the value of the \1bjectivc functkm corresponding to this value of the basis veetor 

(17) 

The tihndow price of constnt~·1t k is, from (13) and (17), 

(18) 

Now the coefficient of q; in tin;~ canonical fonn of the objective function b~ frorn (14): 

the objective function coeCficicnt '~~r q~ mJy be wrhtem 

. 'D"'lt·· 
c . . "' 

which is identical to the sh:tdow prht:e. 

lfq~ is.ru\ excess v~riable. then c~r .;:; "'h and the canonical form. of·,the objecdv~ function 

coefficietu Qf ql beoomes! 
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--o'o"'• 1._ • 

which n1nst be non· negative. The shtldow price is equal to -{ .,..c'D'"' t..) .~ -c'O"'•et, or 

winus the canordcnl fonn of the objective function cooff1cient of <lb and l$ the~fore non 

po~itivet 

We shttll now find the shadow price of a slttck constraint or a bitldirtg constrtdnt Which has 

a slack or excess v~rlable which is in the opdmal basis (at .Zt!ro vtdue). If a. con,;traint is 

slack, its corresponding exce.ss Qr ~lack variable is positive and. \herefote in the optimal 

basis. We have already assumed that y, represents tl stack or excess basic variable 

ns$ociated with cot\Strt\int s.lncttasing the RHS or constraint s. by one unit is equivalent to 

adding 1, to the RHS of' (t l) .. 'll1e shadow price associated with thi~ may be obtained by 

substituting l, for h in (18) to obtain: 

(19) 

Noting that t. is column r of D, if qr is a slack variable corresponding- to con$traint' $, we 

have fmnl 01e d~finition of the matrix inverse: 

p·•t •. ;:; l,, 

so that Az. ;:; ¢ 1lr ;::: 0, because the element of c corresponding· to qr- I$ zero. So the 

shadow price of a notl .. b)nding s constraint or a binding ·.~ constraint Whieh ba$ .. n. excess 

variable which is in the optimal basis is ttttot 

Now, if q, i$ an excess variable corrcsp()nding to constraint 5, column t of b i$ -t,. and 

writing ~Az~ =c'D"", ·(.-t.), front thedeflnidon of the matrix inve~. 



D"t( .... i.):;: lt, 

so that -.Az. = c'·l,. = 0, since the elen1ent of' e corresJ)(lnding. to q, is zero, thus, the 

shadow price of a non binding ~ ¢(mstrairn or a binding z consttuint which has ao e~cess 

varluble which :is h1 the optirnttl bttsis is also zero~ 

Using the convention Umt a slack or excess vnriabl.e which is in the optimal basi~ has a 

coefficient of zero in. the canonical form of:' the objective function at the opthnal basis, 

these results may be summarised as follows. ln a rnaximisadon t>roblet-n, the shadow price 

of: 

(i} A t'Qil binding ~ or ~ constrohu is zero. 

(ti) A binding ~ constraint is the qoefflcicnt of the slack variable cotresponding to the 

~ constraint in the canonict\l form of the objective function (evaluated at the 

optimal basis) and ls therefore nort .. negativc~ 

(iii) A binding ~ constraint is minus the coefficient of the shtck ~nriable corresponding 

to the 2 constraint in the canonic:tl form of the objective function. (evaluated at the 

optimal bi;t-~a) and is theretorc non .. positive. 

SlmUar results huld for a minhl1isation problem except that the $ign of tbe shadow price 

associated with a binding. $ constraint is non-positive and the sign. of the shadow price 

associ:Jted wlth a binding ~· constraint is non•ne~n.tivef. This folloW$ because the 

coefficients of the non•basjs variables in th~ canonical ioon uf Ute Qb~dv~ fUnction 

(twalulltcd at the optimal basis) are non•posidvet, 



Th~se rt!Suhs :tte identJcal to the results obtained by WinstQrt (199$, pp.296t291) on how 

to obtain. the optimal value:;· of the dual variabl~" from the coefficients of sta<~k and e~~s 

varlabl¢s in the canonical foon of the objecdve functioth evaluated rn the optimal solutl® 

We shill ~'ow v.;ri(y that the· tnethod for obtaining sh~dow prices maUioed in·~ Section 2 b 

cottecl. We begin whh a constraint which has a slack or surplus variable which is not in 

the optinm' basis. Nute that ftom. (14) the canOflical form of tbe objecdve fprtcd<Jn 

evahnued at the opthnal basis may be written:. 

~•=c'D""1b-{c'D"'te.qt+c'P~'t1-qi+ .. ~+c'D .. 1ejq~+ ••.. ~'D-te"1q~) • 

It the value of qt is changed to q:, then the value of the objective function <valuated at 

the optimal basis may be calculated ~s: 

~ ~ c'D""1b-(c~ .. Je,qff c'O!"ie~qf+r •. f<l1)~le.q:+m+c1)"'1e",q~) ; (21) 

and 

(22) 

Now changing the element of b corre~ponding tp constrttiot i, .t<> l\ + 1, wiU ~~· ,$bQ.WtJ f(J 

'-·' 
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(23) 

(24) 

Re;~rranging {24): 

or 

Now t® ~hadow price of constndnf i may be obtained from (22). Whera q! is a slack 

variable; 

These resultS agr¢e with those obtained above. 

(25) 

(26) 
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4. Conthtd;ng Comments 

The, method fen· computing $hlldow prices presented in se¢tion 2 w;as t-'ught by the author 

in coJ\}Unction with the simplex methOd l\J\d relnted J()pics for $ years in a. second y~ 

introductory operations research course. Students takin~ the course w~ <»mpledng 

degrees with majors in economics, ec.onometrlc~, marketing• finance, nccoutlting, applied 

Science u,nd texdte science. 

Th¢ Qlinirnum prt.r<!QUisite for the course was a one sem¢sfer course in quantiu.dv~ 

metl10ds co'lr.ring basic calculus. linear nlaebra, mnthemadcs or finance and some material 

on the gmphicnl solutkm to Uucar prograrruning problems. Students were generally happy 

to accept propositions (1) and (21 us Justifying the methoo oudine41 in sectioo '- tor 

computing shadow prices~ While the .Justification of dH~ method presented ln sc.ction 3 WPi 

m'-ck av~ilable to students (on re4ur:.s ~.few nskcd fot the material.-
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Endnote 

* . .. Wagnr.r•s. meci~od may brieflY oo described •$ fulloWih If ~b~ rigiJl hand Jidc of a CONIIIint 
equation (exprf!~<t ~ll ~aan~ t()Qll) is uhcred by tAddlns at ~Jar A. QOd the lin• progrannniQ& ~l 
is tAA\'¢d fQt the pc:,w vah.a~t; ot Jhe variablf!S which arc in the ()Jl,iflta.l baSi~ roh•aicKl 9f UIC original 
pr9bl4m. ).,. appears on the righl. hand side of each r4~tion in Which Ule siact or ~~us ~'* of~ 
moolraed C()ll~trnint &l)peaa"$. If the modified C()r'lstrniot h!l$ a s!;lCk Y!Vinblet f.htm lhe coetr~i~t ()( ·~ is the 
same.~ the cocfracieot Qf the slack va.r.iabl«l in thut equau<m. tr· Ulf! rnbdUie:d tons(tlint lias . .n c.xc:ets 
vari:~bJe, the ~rfleien~ of·~. is minus the cocftici~rn of the excess V;trilible in U.at (!QU.tiM. ·~ . ...., 
price or the ¢qnstraint is lhe c4l¢fflciwt <>f h in the c~nonlcat torm qf the. ~~uve ft~ncaioo evahaaltd at 
tile new v;.h•e.'f, or th~ basis variable$. Thus; . if ;l .. ~on$lmint. i:~. not bindhl~J, ). ~ not apPCar in the; 
canoni~t fonn of the Qbj~Jive tuoction ut Ute m~w $0hltion Jmd the shadow pri<».l$ 7.crCJ. If a c;~tr4int L1 
bhldiolt and the shack or c~tes$' V~ilblc ofthc modified coMtroh1t is not. a basts vwble, ~. ·~ in th? 
ca.umical form ofthe objective func~on and' tflC> sh~tow pri~ is non,.l.ero; t.ehag ~itive ifUle ~~f'ttd 
CQft:tttaint llD$ a $htcl:. ~abte or negative lr the mooificd consftllirtl hilS an e~ce&$ -v~bte. ~· railJe for 
~· which would not 3Jtcr the t~ariabl¢s ht Ute Oilthtt%11 ba~is after Ule right hand 5ide of' a constnahlt l$ 
modified, i.'> the r.mge fq~ ).., which maintains the non·nca!lli.vHy o( the new value Of .the •tack .m ~ 
variable of Ule modified c011smuot. lt $hould be noted ~•=-t dle ~ffi(:ieols of aU v..-iable.ii •PPCMing. , ~ the 
caamni~ form of Ute probl~m (()( th~~ t~ptimnl b3sic solution remain u•achaogtd in the cal1onical fo.- m rl 
Jhe pr:nblcm .for ~)c JQhttion to. Ule modiOed problem. Tim$, ;shadow price$. may be. ob~ine.d frot ~ a.e 
~rn~icnts of $l;tck and/or c~¢e$S ''miabl¢.~ which nppear in the c:31Jonic;al form of me otJ.i«tiv~ fatr ctibfl 
~rresponding Ul the optimnl wlution of the origin~) J'robtcm. The mtth(>(lf()t ~cadating. $hAdow p~ 
~'itt.(( in seed on 2 is sinlplcr Jlutn Wagner's m~thoojn thn~ the tang~ of the riBht hand silt¢, PQJ11nu~tA:r 
of a constnafn~ equ~Ucm fPr whlch the- $hadow price or tt:ec constraint gives ~ marginal valuatioo of Ulq 
tC$U~~.rcprcscoted by the con5tmint is not addr¢$sed~ 
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