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I. INTRODUCTION

The objective of this paper is to provide a starting point for

those interested in using vector autoregression (VAR) techniques. It

is assumed that the reader has a basic previous understanding of time

series estimation and notation. With this purpose in mind,

references will be made to VAR uses in the literature and the theory

behind VAR's. This paper will also provide example code from the

Regression Analysis of Time Series (RATS) econometric package to

illustrate different types of VAR analysis. This paper, then, is

essentially a companion guide to the sections of the RATS manual

dealing with VAR techniques. Since this paper is applied in nature,

only cursory discussion will be given to the development of VAR

theory. References to several articles will be made instead.

Section II of this paper discusses the use of unrestricted VAR's

and Section III discusses VAR's restricted with Bayesian priors.

Section IV discusses forecasting with VAR's. Section V discusses

extensions of VAR analysis beyond its forecasting use to impulse

response analysis and decomposition of variance. Each of these

sections includes discussions of the literature relevant to the topic

at hand and annotated RATS code used for similar problems. Section

VI concludes this paper with some ideas on future uses of VAR

techniques. A list of variable definitions appears in the appendix.
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II. UNRESTRICTED VAR'S

This section will briefly discuss the theory behind unrestricted

VAR's and their intuitive appeal. Again, note that the purpose of

this paper is not to fully develop the theory behind VAR's, but is

instead to present an applied background for empirical applications

of these techniques. References are made to important sources in the

literature for those wishing to explore the underlying theory

further.

A. Unrestricted VAR's

A vector autoregression is essentially a system of equations

whose dependent variables are regressed on lagged observations of all

the variables in the system. Exogenous or deterministic variables

thought to be important can also be included in the system, however,

these variables would not appear as regressands in the system.

Using Sargent's [28] notation, an Mth order (M lags) VAR for the

(N x 1) wide sense stationary stochastic process, (Zt), is

M M

t =Z Dj Zt j + t (1)j=1

Mwhere the Dj s are (N x N) matrices, and the (N x 1) stochastic error

M M
process, nt, satisfies the orthogonality conditions Et [It Ztk']=O,

k=l,...,M 1 .

The form of a VAR comes from the Wold Decomposition Theorem and

the ability to model a moving average representative of a covariance

1 There are t=l, ..., T observations of each of the N variables
in Zt in this VAR. The VAR is written with M lags.
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stationary process with autoregression techniques. Good discussions

of this theoretical development are found in Sargent [29], Orden

[25], Litterman [15], and Nerlove, Grether and Carvalho [24]. These

references explain the Wold theorem and show that any stochastic

stationary process can be represented by the sum of deterministic and

nondeterministic terms. The nondeterministic term is represented as

a moving average. Litterman [15] shows that since this moving

average representation, if invertible, can be represented as an

infinite-order autoregression, then it can be approximated reasonably

well by a finite order autoregression. This argument in support of

univariate autoregression is then extended to vector analysis.

B. Intuitive Appeal of VAR's

A VAR is really a set of reduced form equations similar to what

might be derived from a structural econometric model that relies

heavily on economic theory. Such structural models make highly

restrictive assumptions on the values of estimated parameters in

their reduced form equations. These restrictions most often take the

form of exclusions of variables or lags of variables from these

models. This in effect restricts the estimated parameters of these

"excluded" variables to zero. This implies that these variables have

no predictive or explanatory power in the model. A VAR, however,

will include some of these variables, relying on a much less

restrictive concept of economic theory as it applies to these reduced

form equations. Data is then allowed to determine the contribution

of variables instead of a priori economic structure.
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Borrowing a simple example from the literature (Fisher [10]),

let the supply and demand equations for a commodity be:

Qt + 12Pt + llPIt + 713 = Ult (supply) (2)

P21Qt + Pt + '22Yt + 23 = u2 t (demand) (3)

where Qt = quantity supplied in period t

*
Pt = expected price in period t

PIt = price of inputs in period t

Pt = actual price in period t

Yt = disposable income.

uit = error terms on equation i

Note that the market clears in each period.2 Fisher develops this

simple model in the context of rational expectations in Pt. The

resulting reduced form equations are:

-12021 12 22 ^ 12723 - "12021713
Qt PIt + - Yt + [( )-713] + Vl t (4)

w w w

2a
21 12 ^A 2 1 a12 2 2

^

Pt - Pit --- Yt + 821 711 Pit - 722 Yt
w w

2,
821 12713 - P21-12723

+ [( ) + 821713 - 723 + V2 t (5)
w

2 I have removed a fertilizer price subsidy variable from the

supply equation to simplify the model.
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where, w = 1 - P21l12

vit = reduced form disturbances on equation i

and A denotes an expectation.

One can see that the rational expectations and the economic structure

imposed on the form of the supply and demand equations have carried

over into the reduced form equations in two ways: 1) each of these

equations has expectations variables as regressors, expectations in

this model being made at some prior time; and 2) there are important

non-linear cross-equation restrictions on the model.

The forecasting ability of this model obviously depends on the

economic structure imposed on the data a priori. This structure may

not, however, represent exactly the true forces at work in the

market. It also does not allow the dynamics of the market to enter

the model other than in the expectations for the exogenous variables;

input prices and disposable income. Additionally, the model is

highly dependent on the method of generating expectations for these

exogenous variables.

Vector autoregression offers an alternative to this structural

model. For the model above, a four variable VAR including price,

supply, input price, and income as the system variables could be

estimated. Such a VAR would be consistent with the economic

structure that was imposed on the model previously. Any cross-

equation restrictions would be linearly approximated, in a sense, by

the VAR, and would reflect the true but unknown relationships among

the parameters as the data suggest. Also, expectations for all
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variables are now generated within the model, taking advantage of any

dynamic relationships that may exist among the variables.

A six lag VAR estimation of the above model would look like:

6 1 6 1 6 1 6 1
Qt=al + Z bliQt-i + Z b2iPt-i + Z b3iPIt- i + Z b4iYt-i + vlti=l i=l i=l i=l

6 2 62 62 6 2
Pt=a 2 + Z bliQt-i + Z b2iPt-i + Z b3iPIt i + Z b4iYt- i + v2t

i=l i=l i=l i=l

63 63 6 3 63
PIt=a 3 + Z bliQt i + Z b2iPt. i + Z b3iPIt- i + Z b4iYt-i + v3t

i= i-1 i= iil

64 64 64 64
Yt-a 4 + Z bliQt i + Z b2iPt-i + Z b 3 iPIt i + Z b4iYt- i + v4t

i=l i=l i=l i=l

Note that a constant has been included in the VAR system. There are

N=4 variables with M=6 lags each.

The right hand sides of each of these four system equations

contains exactly the same variables and lags of variables.

Consequently, the moment matrix (X'X) will be the same for each

equation. In this case where the right hand sides are the same and

are predetermined the system can be estimated equation by equation

using ordinary least squares (OLS) with no simultaneous equation

bias. This means that no special software is required to estimate

unrestricted VAR's. Each equation can be estimated independently

using OLS with exactly the same results.
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It is intuitively appealing to let market data show how

particular components of the market, the variables, interact.

However, it is important to note that VAR's are not totally devoid of

economic theory and structure. The underlying theory and any

hypothesized structure indicate to the economist which variables to

include in the model and how many lags would be appropriate. The

method of determining the appropriate lag length is still an

important issue in the literature on unrestricted VAR's (Webb [39],

Bessler [2], Doan and Litterman [7]).

C. Determination of Lag Length

There have been several methods proposed to deal with the

problem of correctly determining the proper lag length for an

unrestricted VAR. A lag structure of any particular length

essentially states that lags from any longer period do not add

information to the model and have parameter values of zero. Longer

lag lengths also increase the number of estimated parameters, reduce

degrees of freedom, and increase data requirements. Hence, it is

important for the investigator to take care in choosing the lag

length of the model.

The technique used by Sims [31] involves a likelihood ratio

between models of different lag lengths. The ratio is of the form:

(T-C) [In Zll - In IZ21]

where T = number of observations

C = a correction factor to bring the test statistic closer

to its asymptotic distribution
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IZil = the determinant of Zi, the covariance matrix (cross

products) of the residuals from VAR system i.

This statistic has the chi-squared distribution. Sims states,

however, that this procedure is somewhat ad hoc in nature and more

work must be done in this area. 3

An alternative to Sims method is to first determine the

statistic

M(k) = -(T - 1/2 - M · N) (in JZlJ - In IZ21)

where M is the autoregressive order, N is the number of variables,

and all other variables remain the same as above (Brandt and Bessler

[4]). This statistic is used to determine the lag length of the VAR

and is asymptotically distributed chi-squared with m2 degrees of

freedom. Once the lag length is determined, the VAR is reestimated

with statistically insignificant lags on the variables deleted from

the model. While Sims includes all intermediate lags, this method

removes many, and results in a model with fewer parameters.

The final method of lag length determination discussed here is

that used by Webb [39]. Lag lengths are chosen to minimize the

Akaike Information Criterion (AIC):

AIC = (T-p) in a2 + 2p

3 Sims [31].
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where T = number of observations

p = number of estimated parameters

a2 = estimate of the residual variance.

This criterion functions similarly to the adjusted R2 statistic. As

the number of estimated parameters increases, a2 is reduced, as is

the first term in parentheses. However, the second term, 2p,

increases. Consequently, the inclusion of additional parameters may

actually increase the AIC in some instances as a reduction in

residual variance is out-weighed by the increase in the number of

parameters.

The actual procedure used by Webb is quite complex. Basically,

a search procedure is used to avoid comparing pairwise the vast

number of possible exclusions on intermediate lag lengths. The

precise procedure used is described in the appendix to Webb's

article.

D. Basic References

Good references on the statistical and time series theory behind

unrestricted VAR's are Granger and Newbold [12] and Nerlove, Grether,

and Carvalho [24]. Another more basic discussion of time series

analysis appears in Nelson [23]. Good treatments of this subject

matter also appear in Sargent [29].

Perhaps the most cited article dealing with VAR's is Sims' [31]

original piece. Sims presents good intuitive arguments for the use

of VAR's and a very rigorous treatment of the statistical theory.

Beyond this piece, other good general treatments of VAR methodology

appear in Orden [25], Webb [38], Brandt and Bessler [4], Hakkio and
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Morris [13], the RATS manual [7], and Sargent [28].

Applications of VAR methodology have been made to: the

Brazilian economy (Bessler [1]), the U.S. agricultural financial

market (Chambers [5]), the U.S. hog market (Brandt and Bessler [4]),

U.S. agricultural trade (Orden [25, 26, 27]), and the U.S. macro-

economy (Hakkio and Morris [13]). Thus, a wide variety of

applications of VAR methodology is possible, and many different types

of questions can be answered with these techniques.

E. VAR's and RATS

This section will list the RATS code used for unrestricted VAR's

and the determination of lag length as proposed by Sims. The code is

annotated to clarify the discussion of these commands presented in

the RATS manual. Not all options of the commands will be presented,

and only the code required for the VAR's is presented. Data handling

commands and the setting of variables are not discussed. These

commands are discussed in the RATS manual.

The series of commands defining a four variable, six lag VAR

with a constant appears below:

SYSTEM 1 TO 4
VARIABLES X1 X2 X3 X4
LAGS 1 TO 6
DET CONSTANT
END(SYSTEM)

The SYSTEM command defines the equation numbers involved in the

VAR system. VARIABLES provides a list of the system variables and

LAGS provides a list of the lag lengths to include in the system.
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DET lists any deterministic or exogenous variables. These variables

will be different from those listed on the VARIABLES command. This

command may be omitted if no constant or other exogenous variable is

to be included. The final command for the system definition sequence

is END(SYSTEM). This is required. The discussion of system

specification in the RATS manual is quite good.

Once the VAR is defined it is estimated with the ESTIMATE

command. The basic form of this command is (for example):

ESTIMATE 70,1 80,4 9

This example estimates a previously defined system over the period

from first quarter 1970 to fourth quarter 1980. Residuals from this

estimation are put in several series beginning with series 9.

Caution is warranted on two points. First, it is important to

allow for lag length when setting the range of the estimation. For a

six lag system, the above ESTIMATE command would require data back to

third quarter 1968 because of the lag structure.

Second, residuals must be saved to data series if they are

required later for further analysis. In the above example the

residuals are written to series nine. (This parameter is unnecessary

if the residuals are not to be saved.) The 9 represents data series

nine which must be free or the series will be overwritten, resulting

in a loss of any previous series nine. It may be necessary to adjust

the ALLOCATE command to create this series (See the RATS manual). A

separate data series is required for the residuals from each equation
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in the VAR system. If the VAR has four equations, then the above

example would store the residuals from this system in series nine

through twelve in the order of the variables listed in the VARIABLES

command. It is important, then, to be careful in defining series of

residuals so that series containing data are not overwritten.4

The RATIO command is used to test for the appropriate lag length

of the model using the likelihood ratio method used by Sims [31]. It

takes the form:

RATIO (DEGREES=16,MCORR=25) 70,1 80,4
#9 TO 12
#13 TO 16

This command would be used to test the difference between the system

defined previously and the system defined below:

SYSTEM 5 TO 8
VARIABLES X1 X2 X3 X4
LAGS 1 TO 5
DET CONSTANT
END(SYSTEM)
ESTIMATE 70,1 80,4 13

The likelihood ratio is calculated over the same period as the

estimation of each of the VAR's. It is testing for a significant

difference between a five lag model and a six lag model. The series

containing the residuals from the two VAR's are listed on the two

4 The microcomputer version of RATS handles data series slightly
differently. Care must still be taken to make sure residual series
do not overwrite some other series.
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supplementary lines. DEGREES tells RATS the number of restrictions

placed on the model. In this example we have one lag of four

variables in each of four equations restricted to zero. This results

in sixteen restrictions. The MCORR parameter is the adjustment Sims

includes in this test. It is the number of regressors in each

unrestricted regression (four variables times six lags plus a

constant).

There is a wide variety of options to what is presented above.

The code listed above provides a good starting place for estimating

generic unrestricted VAR's.
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III. BAYESIAN.VECTOR AUTOREGRESSION

The use of Bayesian priors on parameter values in a VAR simply

involves the incorporation of our prior beliefs about parameter

values and their distributions into the estimation technique. The

exclusion of variables in a structural model really involves the

imposition of our very strong prior beliefs that parameter values are

zero with certainty. Incorporating such strong beliefs about

parameter values, even if non-zero, creates the same problems

encountered with a priori economic structure discussed in the

previous section. Consequently we wish to make broader, more general

assumptions about the distributions of parameter values. These

priors have sometimes been referred to in the literature as Minnesota

or Litterman priors.

A. Underlying Theory

A prior distribution can be created for each estimated

parameter. With a quarterly VAR of five variables and six lags, this

would involve thirty parameters per equation (assuming no constant)

times five equations for a total of 150 prior distributions to

specify. Although these can be specified individually, it is by no

means an easy task. Also, the individual specification of each

parameter's prior could be subject to critical arguments about its

specification. Each parameter's prior would have to be justified.

Instead, a systematic method to specify more general and accessible

priors is developed that alleviates the task of specifying each prior

individually, weakens the basis for criticism of individual priors,

and allows reproduction by other investigators.
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The general specification of the Litterman priors revolves

around the assumption that each equation follows a random walk

process; Yt = Ytl- + vt. That is, the expectation of this period's

value of the dependent variable is simply last period's observation

of that value. This means that in the model presented earlier in

equation (1), E[DI] = 1 and E[Dj] = 0 for all j ' 1 and m 1. Thus,

the prior mean for the parameter on the first lag of the dependent

variable will be one and the prior mean on all other variables will

be zero.

Since such naive forecasts are restrictive and unsatisfactory

for a variety of reasons, prior distributions are placed around these

means. One assumption of these distributions is that variable lags

further into the past have less explanatory power than more recent

lags. The resulting distributions are illustrated in Figure 1.

Distributions around the prior means must still be quantified.

These distributions are specified with general priors imposed in the

form of standard deviations of the estimated parameters. The

Litterman prior on standard deviations is of the form 5

C - -- if i = j

I 71

2 i f i jif i # j
RY1 l

5 See Litterman [15], and Bessler and Kling [3]. Note that the
RATS manual [Doan and Litterman] is incorrect in its specification of
this prior. The subscripts on the scale factors, ai and aj, are reversed.
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where 6Sj is the standard deviation of the coefficient for variable j

with lag 5 in equation i.

The investigator must specify three parameters (A, 71, 72) to

derive the standard deviations. A is the constant overall tightness

of the prior.6 As this parameter is set very tightly (approaches

zero), the estimated coefficients in the model approach their prior

means since the distributions around these means become spiked.

71 is a decay parameter which determines the rate at which lags

farther back receive less weight (become tighter around their means).

Bessler and Kling use a harmonic lag decay of the form g(R) = Q-71

They note, however, that 71 = 0 gives better results than other

values of 71. This means that there is no decay, and that past lags

receive weights equal to more recent lags. This structure would not

look like Figure 1. Instead all lags would have distributions

similar to lag 1 around their respective means. An alternative to

harmonic decay is geometric decay of the form g(,) - 71(-Y1) This

specification decays much more rapidly than the harmonic lag

specification.

Finally, 72 is used to specify the relative weights of variables

in each equation. Own lags of dependent variables typically carry a

6 A is described by Litterman [15] and Bessler and Kling [3] as
the "constant standard deviation on the first lag of the dependent
variable in each equation." For higher lags and other variables, A
is then adjusted by the decay term and the appropriate weights, y2.
This interpretation is correct in the true form of the Litterman
prior. However, if the prior structure is altered so that the random
walk assumption is changed, A should be reinterpreted as a general
prior standard deviation for all lags which is modified for
individual sets of parameters.
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weight of 1.0. Other variables would be assigned weights ranging

from 0.0 to 1.0. Other variables can receive the same weight in each

equation or the weights can be more finely tuned to each individual

equation (Bessler and Kling [3]).7

Before estimation, priors are scaled by a ratio of standard

errors of univariate autoregressions of the same lag length to be

estimated in the VAR. ai is the standard error of residuals from

such an autoregression for variable i. This scaling is to ensure

that individual variables do not receive inappropriate weights in

their contributions to the VAR merely because of the magnitude of

their units of measurement.

Once the prior means and standard deviations of the parameters

are specified, the equation coefficients can be estimated using a

form of Theil mixed estimation (Theil). This is a method of

incorporating prior information about the equation parameters into

the estimation procedure.

Let y = X: + u be the general linear statistical model, and let

our series of "dummy observations" on the parameter values be

described as r = R3 + v. (var(u) - var(v) = a2.) The Theil mixed

estimator is

3m = (X'X + R'R)-1 (X'y + R'r). (6)

Given the prior on an individual parameter as i - N (bi,e2), an

individual restriction on pi is ri = Ripi where Ri = a/O and ri =

7See the RATS manual [Doan and Litterman] for "symmetric" and
"general" prior specifications.
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(a/Oi) bi . b is the prior mean. For a set of these restrictions, in

matrix notation, R becomes a diagonal matrix with a/Oi in the iith

entries along the diagonal. With mean 1 on the first lag of the

dependent variable, r becomes a vector with a/e as the entry in the

(,*(i-l)+l)th cell and zeros everywhere else, where this would be the

entry for the first lag of the dependent variable in equation i.8

Since a2 is unknown, we substitute an estimate, s2, where s2 is

the variance of the residuals from a univariate autoregression of the

same lag length as the VAR. We have specified our 8's previously

using the notation 6Fj. The entries in the R and r arrays then

become s/Sfj. This is a slightly different approach taken from that

appearing in Litterman [15] or Bessler and Kling [3]. However, it is

consistent with the RATS manual and the way RATS computes the

priors. 9 The R and r arrays as specified above are then used to

derive the Theil mixed estimation parameter estimates.

One further comment is necessary to clarify the degrees of

freedom reported by RATS. Since dummy observations are added for

lags of each system variable, the number of observations increases.

The degrees of freedom are no longer T-(N*M)-W as one would expect in

8 This notation is for single equation estimation. The arrays
R, r, and b would expand if we thought of this procedure as
estimating the system simultaneously.

9Bessler and Kling have misspecified the array r; in their
paper. r is not simply the vector of means (ones and zeros). That
vector is b. However, in the case of the Litterman priors A is the
standard deviation of the parameter of the first lag of the dependent
variable and their specification of r works. A more general
specification appears in Ford [11].
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a normal regression, where T is the number of observations over time,

N is the number of system variables, M is the number of lags on those

variables, and W is the number of deterministic or non-system

variables. Instead they are T-W.

B. References to Bayesian VAR's in the Literature

By far, the most important contribution to VAR estimation with

Bayesian priors is that of Litterman [15]. Other work in this area

has been contributed by Doan, Litterman, and Sims [8], Todd [37], and

Doan and Litterman [7].

There have been few published applications of Bayesian vector

autoregressions to agricultural markets. The article by Bessler and

Kling [3] is the only instance at this time. Obviously, there are

many opportunities open in this area for work with Bayesian VAR's.

C. Bayesian VAR's and RATS

Bayesian priors are included in VAR estimation in RATS through

the inclusion of the SPECIFY command in the system definition. This

appears as:

SYSTEM 1 TO 4
VARIABLES X1 X2 X3 X4
LAGS 1 TO 6
DET CONSTANT
SPECIFY (TIGHT=A,DECAY=71 ,LAGTYPE=HARMONIC,TYPE=SYMMETRIC) Y2
END(SYSTEM)

where A, 71, and 72 are defined as described previously.

The A and 71 parameters require little further explanation.

LAGTYPE can either be HARMONIC or GEOMETRIC as discussed previously.

The greatest flexibility RATS provides is in the TYPE specification

20



and in 72. Scaling is done automatically by RATS.

The SPECIFY command above uses a symmetric prior where 72 is set

the same for lags on the non-dependent variables. This is the

SYMMETRIC specification. An alternative would be that used by

Bessler and Kling in which a more specific determination of 72 is

used. This is the TYPE=GENERAL specification. This takes the form:

SPECIFY (TIGHT=A,DECAY-7 1 ,LAGTYPE-HARMONIC,TYPE=GENERAL)
# 1.0 .8 .7 .6 $

.9 1.0 .7 .6 $

.9 .8 1.0 .6 $

.9 .8 .7 1.0

In this example, X1 would have a weight of Y2 = .9 in all equations

other than its own, X2 a weight of 72 = .8 in all equations other

than its own and so on. In this manner the 72 parameter can be set

to reflect the investigator's prior on the relative importance of

each variable in each equation.

A third method of specifying the prior is to use the FULL option

which takes the form: 10

SPECIFY(FULL=ARRAY)

where ARRAY is a rectangular matrix containing entries of the 6if in

a particular format. The scaling can be left up to RATS if the SCALE

option of the ESTIMATE command is used.

10 A fourth method involves the Circle-Star type of prior
specification. Litterman [15] and the RATS manual provide good
explanations.
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A final method of estimating a VAR with Bayesian priors is to

use Theil mixed estimation. In this method, the R and r arrays are

set with a prior structure and then the model is estimated equation

by equation using equation (6). RATS can be programmed to do this

estimation, however it is somewhat complicated and a good working

knowledge of RATS is required (See the RATS manual). This method

does, however, provide a greater degree of flexibility in choosing

prior structure.
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IV. FORECASTING WITH VAR'S

One of the advantages VAR models have over other types of models

is their forecasting accuracy. This has been shown to be especially

true when Bayesian priors are used (Bessler and Kling [3], Litterman

[15]). Two types of forecasting can be done with VAR's. Both

involve the use of the chain rule of forecasting. One method,

however, updates equation parameters as the model progresses through

time. These two methods will be discussed below, as will their use

in RATS.

A. The Chain Rule of Forecasting

For our vector stochastic process (Zt} and our estimated VAR

with parameters Dj, a one step ahead forecast would bel l

m

Et[Zt+l] = Z Dj Zt+i-j.
j=1

If forecasts were being made farther into the future to time t+2, for

example, this method could not be used since Zt+l is unknown. The

chain rule of forecasting allows Et[Zt+l] to be substituted for Zt+ .

The two step ahead forecast then would be

m

Et[Zt+2] = D1Et[Zt+1] + Z Dj Zt+2-j
j=2

This process could feasibly be repeated for some k-step ahead

forecasts. The general form of this method for a k-step ahead

11 See Sargent [28].
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forecast is

M

Et[Zt+k] = Z Dj Et[Zt+k-j], k > 1
j=l

where Et[Zt-j] = Zt-j for j > 0.

The chain rule of forecasting allows forecasts to be made to

arbitrarily long intervals into the future. The accuracy of these

forecasts of course diminishes with longer forecast intervals. Note,

however, that this forecast mechanism works only for VAR's that are

"self-contained." Forecasts of all system variables can be fed back

into the system representing future values of these variables in

forecasts of longer intervals. If exogenous or non-system variables

for which no estimating equations exist are included in the model,

then only one-step ahead forecasts can be made. If future values of

these variables are known, are generated by some external statistical

process, or are assumed to be at some particular level, then these

values can be inserted into the system as forecasts are made, and the

forecasts will be conditioned on these values.

B. Forecasting With the Kalman Filter

The Kalman Filter offers an inexpensive method of updating the

estimated parameters of an equation as information is added over

time. For example, in the previous discussion on the chain rule of

forecasting, Et[Zt+l] is treated as an actual observation of Zt+l in

forecasts beyond time t+l. If for some a priori reasons the

investigator feels that the estimated parameters change over time
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from structural change or some other occurrence, then Et[Zt+l] would

be used as an actual observation in the reestimation of the VAR. New

estimates would then be used for a one step ahead forecast and the

process would contrive for longer step ahead forecasts.

Given the general linear statistical model yt = XtPt + ut with

var(ut) = 7t, two additional assumptions are necessary.

1) The coefficient vector follows a random walk, i.e.,

=t = AtPt-l + Vt with var(Vt) = Mt.

2) ut and Vt are independent.

The case which is most often used is where At=I and Mt=O. This

essentially indicates that the true parameters themselves do not

change, but as more information becomes available better estimates of

them can be made.

The Kalman Filter update estimator is:

1 -1
At = Pt-l + ZtXtt (Yt - xtpt-l) (7)

where,

Zt = St - StXt(XtStX7nt) Xts

St = Zt-l + Mt

Zt-1 = cov (Pt-l)

The new estimate of Ot in equation (7) can be decomposed into three

parts. It is the previous period's parameter estimate altered by a
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1 -1term composed of the filter gain, StXtt , and the one step ahead

forecast error, yt-Xtpt-l. This is better seen as:

E[Btlt,Yt-l] = E[PtlYt.l] + kt(yt - E[ytlYtl])

where given information through t-l in the form of the data, Yt-l,

the expected value of Pt with added information, yt, is equal to Pt-l

(since E[PtlYt_l] = Pt-l) plus a coefficient times the deviation of

Yt from its conditional mean. The Kalman filter, is the coefficient

kt 12

Again, the advantage of using the Kalman filter is that it is

unnecessary to re-regress an entire system as observations are added.

This will become an obvious time-saver when forecast statistics are

discussed in the next sections.

C. Testing Forecasting Ability

Two forecast statistics will be discussed here. The first is

the root mean squared forecast error of k-step ahead forecasts. It

takes the form

RMSE = +[Z (Ft+k - At+k)2/n]1/2
t

where Fi = k step ahead forecast

Ai = actual value of the forecast variable

n = number of forecasts in the sample

12 A thorough discussion of the Kalman filter is given in Chow
[6].
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This statistic will be discussed further in the next section. Note

at this point, however, that this statistic gives a good estimate of

the magnitude of forecast errors in the units of the forecast

variable.

The second test statistic is the Theil U statistic. It takes

the form:

t (Ft+k - At+k)/n /

Z (At - At+k) /n

where the variables are defined as for RMSE. This statistic compares

the forecasting ability of the model, measured in RMSE, to the naive

forecast of no change. This statistic is useful because it is not

unit dependent and therefore cross equation comparisons of

forecasting ability can be made. Theil U values between zero and one

imply that the model does a better job of forecasting than the naive

forecast.

D. Testing Model Selection Through Forecasting Ability With RATS

The primary command used to calculate forecast statistics in

RATS is THEIL. The output from this command includes the mean

forecast error, the mean absolute forecast error, the root mean

squared forecast error, and the Theil U statistic for each of the k-

step ahead forecasts requested. Example RATS code for the system

defined in section III is:
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(1) THEIL(SETUP) 4 12 80,4
(2) #1 TO 4
(3) ESTIMATE(NOPRINT,NOFTESTS) 70,1 75,4
(4) DO DATE=(76,1),(80,4)
(5) THEIL DATE
(6) KALMAN 0 0 DATE.EQ.(80,4)
(7) END DO
(8) THEIL(DUMP)

These statements are numbered for the convenience of discussion.

The first statement sets up the procedure to calculate and

compile the forecast statistics. This example tells RATS that there

are 4 equations, statistics are desired for up to 12 -step ahead

forecasts, and the sample data ends with fourth quarter, 1980. The

second statement indicates which four equation numbers are to be

used, as defined in the SYSTEM definition.

Statement (3) computes the initial equation parameter estimates

of the previously defined system. This estimate is over a subset of

the entire data series. Forecast statistics will be calculated from

this initial estimate and then the parameter estiamtes will be

updated with the Kalman filter and new statistics will be calculated.

It is convenient to include the NOPRINT and NOFTEST options of the

ESTIMATE command. Otherwise, parameter estimates and F-tests of

this initial model will be printed for each new observation.

Statements (4) through (7) form a loop which does the

statistical calculation and parameter estimate updates over the

period (76,1) to (80,4). THEIL DATE calculates the forecast

statistics on forecasts beginning with the period associated with

DATE in each loop. Statement (6) updates the parameter estimates.

The two 0's indicate that residuals and parameter values are not to
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be saved to series. The regression output will be printed when DATE

equals 80,4. The final statement, THEIL(DUMP), lists the compiled

forecast statistics.

If this series of statements is used to generate forecast

statistics as model selection criteria, selection is based, then, on

the performance of forecasts from models estimated on subsets of the

data sample. In actuality it is not so much the final parameter

estimates which are being compared between two models, but the

specification of the models instead. The comparison is really of

chosen variables, lag length, priors, and deterministic variables in

the models under consideration. The forecasting ability of such a

specification through time becomes the issue of importance.

Mention should be made of other forecasting command in RATS.

RATS offers a wide variety of forecasting options. The two most

important of these commands for forecasting VAR's are FORECAST and

SIMULATE.

FORECAST applies the chain role of forecasting to the estimated

VAR. It is used as:

FORECAST 4 20 81,1
#1 X1 81,1
#2 X2 81,1
#3 X3 81,1
#4 X4 81,1

This set of commands indicates that RATS is to forecast a set of four

equations for twenty periods beginning in the first quarter, 1981.

The four equations are then listed with forecasts for equation 1
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being entered in series X1 beginning with 81,1. It is important to

remember that as forecasts are generated and written to a series, the

original series may be overwritten. Care must be taken to ensure

this is done correctly. Also, the ALLOCATE series may have to be

altered to accommodate series generated into the future. Any future

exogenous or deterministic.variables necessary to be forecast must be

provided as well.

SIMULATE does the same thing as FORECAST except random shocks

are added to the system equations. FORECAST generates only

deterministic forecasts. Rather than describe this command here, the

RATS manual presents the command in sufficient clarity.

Two additional forecasting tools, of a kind, are ERRORS and

IMPULSE. These commands are discussed in the following section.
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V. IMPULSE RESPONSE ANALYSIS AND DECOMPOSITION OF VARIANCE

Two uses of VAR models other than for forecasting are

decomposition of variance and impulse response analysis. These tools

can be used to analyze the data in terms of the relationships among

variables, given the estimated model.

A. Impulse Response Analysis

Impulse response analysis looks at the effects to a system of an

exogenous shock to one of the variables in that system. For example,

it may be used to predict what will happen to hog prices if the price

of corn increases because of some force outside the model.

This analysis is based on the moving average transformation of

the autoregressive model. If our autoregressive model is

m
Zt = Z DjZt-j + 't

j=l

then the moving average representation is

Zt = Z Hj 't-j'
j=0

Thus, the effects of any unexpected shock to the system can be traced

through deviations of the shocked time paths from the expected time

paths given by the model. This technique is quite useful in certain

types of policy analysis and sensitivity analysis. It is also useful

in analyzing the dynamic interrelationships among variables in the

model.
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One problem that often arises in this type of analysis and in

the decomposition of variance is the contemporaneous correlation of

forecast errors; i.e., the covariance matrix of the error terms

Z = EntPt is not diagonal. Because of this non orthogonality, the

obvious step is to orthogonalize the innovations (errors).

Although there are many methods one can use to orthogonalize

these innovations, the most common method used in VAR work has been

the Choleski decomposition. This technique factors the covariance

matrix of the errors such that cov(r) - Z = SS' so that n = Sv and

var(v) = I. v, then, is the orthogonalized error vector. These

orthogonal innovations are then traced over time in response to

shocks to the system. More complete treatments of this technique

appear in Litterman [15], Doan and Litterman [7], Orden [25,26] and

Bessler [2].

B. Decomposition of Variance

The decomposition of forecast variance allows one to attribute

portions of the forecast variance to particular variables in the

system. Again, because of the contemporaneous correlation in the

error terms, an orthogonalization technique must be used before the

variance can be decomposed.

Working from the moving average representation and the

orthogonalization in the previous section, the orthogonalized moving

average representation becomes:

Zt - Z HjSvtj.
j=0
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where the Hj are the moving average parameters. The k-step ahead

forecast error variance is

k-l
var(Zt+k - Et[Zt+k]) - Z (HkS)(HkS)'.

k=j=0

th 2Let hkSij be the ij element of HkS. Then (hkSij) , j=l, ... , m is
th

the i diagonal element of (HkS)(HkS)'.

The k-step ahead forecast variance of the ith variable is then

given by

k- 2
Z Z (hkSij)

k=0 j

and the percentage of that variance from equation i accounted for by

variable J is

k-l
Z (hkSij)

k=0

100
k-l 2

Z (hkSiji)
k=0 j

There are two important points to remember in this discussion.

First, this decomposed variance is highly dependent on the ordering

of the variables prior to the decomposition. Second, the resulting
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decomposition is of this orthogonalized variance.

The most complete source dealing with this material is Litterman

[15]. Other sources that discuss this technique are: Orden [25,26],

Hakkio and Morris [13], and Bessler [2].

This technique can also be used for the historic decomposition

of variance; to investigate possible shocks to the economy from a

historic viewpoint. This technique will not be discussed in this

paper. Discussion of historic decomposition of variance can be found

in Orden [27].

C. Impulse Responses and Variance Decomposition in RATS

The two primary commands used in RATS to generate impulse

responses and the decomposition of variance are IMPULSE and ERRORS.

Only the simplest options of these commands will be discussed here.

Impulse responses to exogenous shocks to a VAR system are

generated with the IMPULSE command. This command would be placed in

the RATS code some place after the system is estimated. Using the

example presented in the previous section, the code to generate

impulse responses would look like:

ESTIMATE 70,1 80,4 5
DECLARE SYMMETRIC V(4,4)
VCV(MATRIX-V) 70,1 80,4
#5 TO 8
IMPULSE 4 20 0 V
#1 001
#2 0 0 2
#3 0 0 3
#4 0 0 4.
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The system is estimated with residuals being stored in data

series beginning with series 5 and continuing through series 8 (since

there are four equations). A 4x4 symmetric matrix, V, is declared

into which the variance-covariance matrix of the residuals will be

written. This is done by the statements DECLARE and then VCV. The

VCV statement requires a supplementary card listing the series

continuing the residuals.

IMPULSE indicates that innovations for four equations over

twenty periods are to be generated. This example indicates by the

zero value of the third parameter that responses to shocks to each

equation will be computed in turn. If this parameter is non-zero it

must give the equation number (from the order in the accompanying

supplemental cards) to be shocked. The fourth parameter, V, is the

array name from which the error covariance terms are supplied. If

this parameter is omitted, impulses from non orthogonal innovations

will be computed. The Choleski decomposition is the default in RATS,

although options exist to enable the use of other decomposition

methods.

Finally, the supplemental cards, are listed, one for each

equation, in the desired order of orthogonalization. Equations for

variables with no expected predictive value for the other variables

are generally placed last in the ordering. In this example X1 is

placed first and X4 is placed last.

Impulse responses can also be computed with the IMPULSE option

of ERRORS. ERRORS is used to decompose the forecast variance into

its variable components. If both types of analysis are desired it is
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more convenient to use just the ERRORS command with the IMPULSE

option for the simplest forms of these analyses.

The ERRORS command is used in the same way as IMPULSE. It

appears as:

ERRORS 4 20 V
#1 001
#2 0 0 2
#3 0 0 3
#4 O O 4.

where forecast errors for four equations are decomposed for twenty

steps given the covariance matrix V. Everything else is as it

appears for IMPULSE.
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VI. SUMMARY AND CLOSING REMARKS

This paper has presented a basic introduction to vector

autoregression theory and methodology for those familiar with time

series methodology. Its intent has been to present a cursory

discussion of the theory underlying VAR's, identify important

references in the literature using VAR techniques, and provide a

complement to the RATS user's guide.

What is most striking about VAR methodology is the wide variety

of situations to which it may be applied. Much like what occurred

with the incorporation of risk into economic analysis, there exists

the opportunity to take another look at a wide range of previously

studied topics where conventional econometric techniques were

applied.

VAR techniques have only recently been introduced to

agricultural studies, especially those using Bayesian priors. VAR's

could be used to study individual agricultural commodity markets or

more aggregate sectoral models. There may be a need to use VAR's to

generate more accurate forecasts from large scale econometric models

of the agricultural sector. There are also policy applications of

VAR methodology, although there is still some controversy over the

use of VAR's in this arena (Sims [33], Sargent [30]. Hansen and

Sargent [14]).

Finally, there are applied methodological issues concerning

VAR's to be addressed. Some issues are: seasonality problems with

VAR's, the use of VAR's with panel data, and the appropriate choice

of Bayesian priors.
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One can see, then, that vector autoregression techniques are a

valued, and relatively new asset in an economist's "tool box." It is

appropriate, however, to end with a note of caution. Users of vector

autoregression must remain aware that an appropriate methodology must

be used for the analysis at hand. Although vector autoregression is

a powerful analytical tool, its use may not be advisable in many

situations.
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APPENDIX

List of variables and their definitions.

This list omits some of the obvious variables found in the

paper. Most of these variables are defined when used, however, this

notation is fairly standard throughout the paper.

Zt = a wide sense stationary stochastic process

M = autoregressive order (number of lags)

N = number of system variables

T = number of observations over time

7 = error term

M
Dj = coefficients in VAR

6 = standard deviations on prior means

Q = lag

A = overall tightness of prior standard deviation

N7 = decay parameter of prior standard deviation

Y2 = weight of variables in prior standard deviation

pm = estimated parameter in Theil mixed estimation

R,r = arrays of parameter restrictions

e = a generic 6

a = actual standard deviation of regression residuals

s = estimated standard deviation of regression residuals

Z = covariance matrix

H = parameter estimates in moving average representation
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