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Parametric Bootstrap Tests for Futures Price and Implied Volatility Biases with 
Application to Rating Livestock Margin Insurance for Dairy Cattle 

 
 
ABSTRACT 
 
A common approach in the literature, whether the investigation is about futures price risk 
premiums or biases in option-based implied volatility coefficients, is to use samples in which 
consecutive observations can be regarded as uncorrelated. That will be the case for non-
overlapping forecast horizons constructed by either focusing on short time-to-maturity contracts 
or excluding some data. In this article we propose a parametric bootstrap procedure for 
uncovering futures and options biases in data characterized by overlapping horizons and 
correlated prediction errors. We apply our method to test hypotheses that futures prices are 
efficient and unbiased predictors of terminal prices, and that squared implied volatility, 
multiplied by time left to option expiry, is an unbiased predictor of terminal log-price variance. 
We apply the test to corn, soybean meal and Class III milk futures and options data for the period 
2000-2011. We find evidence for downward bias in soybean meal futures, as well as downward 
volatility bias in Class III milk options. Importance of these results is illustrated on the example 
of premium determination for Livestock Gross Margin Insurance for Dairy Cattle (LGM-Dairy).  
 
Keywords: parametric bootstrap, risk premium, volatility bias, revenue insurance, LGM-Dairy 
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Introduction 
 
Most crop insurance products supported by the U.S. federal government are priced based on 
historical information on variables such as crop yields, market prices and rainfall indices. 
Traditionally the use of forward looking information embedded in the market traded financial 
derivatives was limited to futures prices used as a forecast of the harvest-time crop price. More 
recently information regarding expected volatility embedded in options premiums has been 
utilized in ratemaking procedures for option-like insurance products. One such product is the 
Livestock Gross Margin Insurance for Dairy Cattle (LGM-Dairy), an Asian basket option-type 
insurance product that allows dairy farmers to protect their dairy-based income over feed cost 
margin.  
 
A key feature of LGM-Dairy is the contract design rule that stipulates premiums must be 
actuarially fair. An actuarially fair premium is one for which the calculated premium equals the 
expected contract indemnity. That premium equals expected indemnity holds only insofar as the 
accuracy of the assumptions supporting the rating method.  The LGM-Dairy rating method is 
based on assumptions of unbiasedness of both futures prices and implied volatilities inferred 
from at-the-money options. However, both these assumptions are strongly contested in the 
literature, with no consensus having been reached. For example, while Kolb (1992), Deaves and 
Krinsky (1995), and McKenzie and Holt (2002) find risk premiums in futures prices for at least 
some commodities they examined, Frank and Garcia (2009) find no evidence of time-varying 
risk premiums in any markets they investigated. Likewise, current evidence regarding biases in 
agricultural options on futures is also mixed. Some researchers have found implied volatilities to 
be upward biased estimates of realized volatility (McKenzie, Thomsen, and Phelan 2007; 
Brittain, Garcia and Irwin 2011). Others find no evidence to support such hypothesis (Urcola and 
Irwin 2011; Egelkraut, Garcia and Sherrick, 2007).  
 
After four years of pilot-program status LGM-Dairy has generated premium revenue that 
exceeds indemnity payments by more than thirty to one. Some dairy economists have started to 
question if LGM-Dairy premiums are indeed actuarially fair (Novakovic, 2012). The primary 
objective of this analysis is to determine if the observed discrepancy between collected 
premiums and paid indemnities can be explained by potential unaccounted biases in futures 
prices or volatility risk premiums in agricultural options.   
 
A common approach in the literature, whether the investigation is about price or volatility risk 
premiums, is to focus on short time-to-maturity horizons that allow consecutive observations in 
the sample to be uncorrelated by choosing non-overlapping forecast intervals. Such an approach 
is not feasible for our task as LGM-Dairy allows farmers to insure revenue up to 11 months into 
the future. Class III milk futures contracts have only been traded for 13 years and restricting our 
sample to non-overlapping horizons would thus effectively leave us with a sample size of 14 
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observations. However, forecast intervals for consecutive deferred futures contracts are strongly 
overlapping, and consequently prediction errors are indeed highly correlated. The main 
contribution of this paper is the development of a new parametric bootstrap method for testing 
unbiasedness of futures and options with long time-to-maturity horizons that explicitly addresses 
prediction error correlation. Application of this method to the rating method of LGM-Dairy 
allows us to answer questions regarding the actuarial fairness of this revenue insurance product. 
 
We begin this analysis with a brief description of the LGM-Dairy program, with a focus on 
assumptions regarding marginal distributions informed by futures and options data. In the second 
section we propose a parametric bootstrap procedure for uncovering futures and options biases in 
data characterized by overlapping horizons and correlated prediction errors. In the third section 
we investigate how biases in futures prices and volatility risk premiums would influence the 
price of LGM-Dairy contracts under alternative insurance contract designs. Finally, in the 
concluding section we discuss the implications of our findings for the LGM-Dairy rating method.   
 
A Brief Overview of the LGM-Dairy Rating Method 
 
LGM-Dairy is an Asian basket option-type revenue insurance product that compensates 
participating dairy farmers for unexpected declines in their gross margin defined as the 
difference between milk revenue and purchased feed costs (Gould and Cabrera 2011, Gould 
2012).  LGM-Dairy contracts can be purchased once a month after the CME futures markets 
close on the last business Friday of each month. Only one LGM-Dairy contract can be purchased 
by a dairy operation per month, and a farmer may insure at most 10 months of gross margin 
under any one insurance contract, not including the first month after the sales date.   
 
Let t represent the month of insurance contract purchase and i  the future month insured relative 

to the month of contract purchase  2,...,11 .i  Expected milk revenues under LGM-Dairy are 

based on the previous three day average of Class III futures settlement prices,  ,
M

t if  including 

the purchase day prices, and declared milk marketings,  ,t iM  in each of up to 10 insurable 

months. Expected feed costs are based on the previous three day average of futures prices for 

corn and soybean meal  , ,;C SBM
t i t if f  and declared corn  ,t iC and SBM  ,t iSBM  equivalents of 

livestock feed expected to be purchased over the coverage period to produce milk insured under 
the LGM-Diary contract. For those months for which corn or SBM futures are not traded, the 
associated prices are defined as the weighted average of the CME futures settle prices obtained 
from surrounding months.1  
 
                                                 
1 For example, when purchasing an LGM-Dairy contract at the end of July, the expected October corn price is the 
weighted average of September and December corn futures prices where the weights are 0.667 and 0.333, 
respectively.  This is not a problem for Class III milk as future contracts exist for all months. 
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In addition to monthly milk marketings and purchased feed use, a farmer must decide on the 

Gross Margin Deductible  D , i.e. the threshold decline in expected gross margin for insured 

milk after which LGM-Dairy will begin paying indemnities. Allowable deductible amounts 
range from $0.00 to $2.00 per cwt of milk and once chosen, deductible does not change across 
insured months.  Not surprisingly, the higher the deductible, the lower the insurance premium as 
it decreases the probability of payouts and level of indemnities when they are forthcoming. 
 
Given the decision on the quantity for milk marketings, purchased feed usage and deductible 

level, the gross margin guarantee  tG  is calculated as: 

  
11 11 11

, , , , , ,
2 2 2

M C SBM
t t i t i t i t i t i t i

i i i

G f D M f C f SBM
  

          (1) 

LGM-Dairy premiums are determined by the United States Department of Agriculture’s Risk 
Management Agency (RMA) using Monte Carlo simulation methods. They use draws from a 
joint distribution of the final prices, conditional on the information available at contract 
purchase. With 10 insurable months and three commodities involved, the joint distribution of 
interest consists of 30 marginal distributions and a copula that ties them together. Of the 30 
marginal distributions, up to 24 are fitted directly from options and futures data, and the rest are 
interpolated through weighted averaging of surrounding marginal distributions. 
 
All marginal price distributions are assumed to be lognormal. Futures prices are taken as 
conditional means of the terminal futures prices, and implied volatilities determine their 
conditional variance. Let us focus on a particular commodity and contract with nearby index j , 

expiring at time T .2 Conditional on information set at time t , given annualized time to terminal 

price determination 
252

T t 
 , futures price ,t jf and implied volatility , ,t j the marginal 

distribution of the terminal price Tp is 

   2 2
, , , , , ,

1
ln ; , ln ,

2T j t j t j t j t j t jF p f N f       
 

 (2) 

 
The marginal distributions of milk and feed prices are joined together through the Iman-Conover 
(1982) procedure equivalent to the Gaussian copula method (Mindenhall, 2006). The LGM-

                                                 
2 It may help reader if we summarize all information regarding subscripts in one footnote. Insurable months, relative 
to LGM-Dairy sales date, are always subscripted with 2,...,11i  . Commodity-specific nearby index of a futures 

contract is its relative ranking on a particular day, in terms of time left to maturity, with contract with the lowest 
time to maturity being 1st nearby, etc. Nearby indices are always subscripted with j , with 2,...,11j  for Class III 

milk, 1,...,5j  for corn, and 1,..., 6j  for soybean meal. We can also order contracts in the sample by their 

expiry dates. When needed, contract indices are subscripted by 1,..., ,l N where N is the total number of 

contracts of a particular commodity in the sample. 
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Dairy premium is estimated as the simple average of simulated indemnities observed over the 
5,000 simulations (RMA, 2005). 
 
Parametric Bootstrap Tests of Unbiasedness in Futures Prices and Implied Volatilities 

From equation (2) it is clearly seen that the LGM-Dairy rating method is based on the 
assumption that futures price and associated implied volatility are unbiased determinants of the 
moments of the conditional terminal price distribution. In this section we examine if these 
assumptions are valid. In particular, we devise a formal test of two hypotheses: 
 

H1:  Futures prices are efficient and unbiased predictors of terminal prices, 
H2:  Squared implied volatility, multiplied by time left to maturity is an unbiased predictor of 

terminal log-price variance.  
 
Under  H1 we have  

  , ,t j t T jf E p  (3) 

To standardize, we can divide (3) by ,t jf , and obtain 

 , ,

,

0t j T j
t

t j

f p
E

f

 
  

 
 (4) 

We shall denote the expression in the brackets, multiplied by 100, as prediction percentage error 
(PPE)   

 
, ,

,
,

100t j T j
t j

t j

f p
PPE

f


   (5) 

where ,t jf is the jth nearby futures price at the time of LGM-Dairy contract purchase and ,T jp is 

the terminal price for a futures contract in question. Over N contracts with unbiased futures 
prices, we would expect PPEs to average to zero. Therefore, an appropriate sample equivalent of 
hypothesis (4) is 

 
, ,

,
1 1,

1 1
100 0

N N
l j l j

l j
l ll j

f p
PPE

N f N 


     (6) 

where ,l jf is the futures price for contract l, observed at a time where it had nearby index j , and

lp is the terminal price.  
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As evident from (2), an implication of H2 is that  

 
2

2 2
, , , ,

1
ln ln 0

2t t j T j t j t jE p f   
             

 (7) 

To standardize, we divide by the conditional variance 2
,t j   and obtain  

 

 

2

2
, , ,

,

1
ln ln

2
1

T j t j t j

t

t j

p f
E



 

        
 
  

 (8) 

We denote the expression in the brackets as square standardized prediction error (SSPE). 

Summing up SSPEs over N contracts, and taking root mean, we obtain the testable implication 
of H2:  

 

2
, , ,

1 ,

1
ln ln

1 2
1

l j l j l jN

l l j

p f

N



 

        
 
  

  (9) 

A majority of previous analyses of the efficiency of commodity futures prices have focused on 
short time-to-maturity horizons. The principal reason behind such econometric strategy is the 
desire to avoid residual autocorrelation by using only non-overlapping contracts. However, if we 
want to utilize all available jth-nearby futures contracts to test the hypothesis of interest at distant 
time-to-maturity horizons, we need to explicitly account for the fact that for consecutive deferred 
contracts, prediction errors will likely be strongly positively correlated. To our knowledge, only 
Kolb (1992), and Deaves and Krinsky (1995) attempted to address this issue in the context of 
commodity futures. The Kolb (1992) method uses random draws of historic data, to be followed 
by a regression of realized prediction errors on time to maturity. Kolb then tested for 
autocorrelation in residuals using the Durbin-Watson test and found none.  We assert that his 
finding is due to failure to sort data in ascending date-of-trade order before testing for 
autocorrelation. Deaves and Krinsky (1995) use regression methods to test if the mean of log-
difference returns at given time-to-maturity horizon is statistically different than zero.3  They 

                                                 
3 Deaves and Krinsky do not correctly interpret results of their model. It does not follow from the assumption of 

unbiasedness. If  t t Tf E p  then  ln lnt Tf E p . Jensen’s inequality postulates that    E X E X  . 

For example, in the context of Geometric Brownian motion, which is the assumed stochastic process for futures 
prices that underpins classical Black’s option pricing model, it follows from Ito’s lemma that 
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explicitly account for autocorrelation in residuals when calculating the standard error of the 
intercept using a procedure developed by Hansen and Hodrick (1980) in their analysis of forward 
exchange rates as predictors for future spot rates. These methods rely on asymptotic theory and 
are thus only valid for large enough samples. In addition, correlation-corrected standard errors 
have only been applied in tests for unbiasedness of futures prices, not volatility biases.  
 
In order to test our stated hypotheses, subject to both correlated prediction errors and relatively 
small sample sizes, we proceed by utilizing a parametric bootstrap approach to approximate the 
distribution of test statistics in (6) and (9) under the null hypothesis.  We test each hypothesis 
using the bootstrapped p-values. 
 
To explain our test we first introduce a simple case of non-overlapping horizons followed by the 
description of the needed changes to account for error autocorrelation. The null hypothesis 
stipulates efficient and unbiased futures prices, log-normality of terminal prices and 
unbiasedness of implied volatilities. Under those assumptions, conditional on information 
available at time t , terminal prices Tp  are distributed lognormally as in equation (2). Given a 

particular futures price and implied volatility, it follows that we can simulate terminal prices by 
generating normal variables with desired mean and standard deviation, and then taking an 
exponent of them: 

      2exp ln 0.5T t t t tp z f        (10) 

In the case of non-overlapping forecast horizons, tz are independent draws from a standard 

normal distribution.  
 
For this analysis to mimic LGM-Dairy purchase day expected prices, we collect the futures 
prices and calculate implied volatilities on the last business Friday of the month. In calculating 
implied volatilities t we use standard Cox, Ross and Rubinstein (1979) binomial option pricing 

model with 500 steps and LIBOR interest rates with maturity matching option time-to-maturity. 
Denote the number of months in the sample as N. Let index j represent the nearby count for a 

particular futures contract, where 1j  denotes the first nearby contract, defined as the futures 

contract with the lowest number of days to corresponding options expiry. We first select a 

particular nearby index .j  We then obtain a 1N  vector of futures prices ,l jf  and expected 

variances 2
,l j  , and generate K bootstrapped 1N  vectors of realized prices  *

,l jp k . For 

                                                                                                                                                             

  21
ln ln

2t t Tf E p    . In this context, in the absence of risk premiums, log-differences should thus average 

not to zero, but to half of log-price conditional variance. 
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consistency and clarity, we denote bootstrapped statistics with asterisk to differentiate them from 
actual sample-based statistics.  
 
For each of the K bootstrapped samples of realized prices we calculate average PPE, denoted 

 *
PPE j k  as  

  * *
,

1

1
, 1,...,

N

j l j
l

PPE k PPE k K
N 

   (11) 

 
The formal tests of the futures unbiasedness hypotheses consists of constructing bootstrapped 

confidence interval for the  *
PPE j k  statistics, and determining if sample jPPE  value lies 

within the critical region. The bootstrapped confidence interval for  level of confidence is 

found by sorting the bootstrapped  *
PPE j k  statistics and identifying the critical values as 

entries at positions 
2

K


and 1
2

K
  

 
. We set the number of replications 10,000K  and 

0.05  so the critical values of the bootstrapped distribution are found at positions 250 and 

9,750. If the sample jPPE is lower than 
*

, /2jPPE  or higher than 
*

,1 /2jPPE  we reject the null 

hypothesis of unbiasedness of futures prices for jth nearby futures contracts. 
 
For volatility unbiasedness test we shall use bootstrapped standardized square prediction errors, 

 *
.jSSPE k The bootstrapped distribution of the variance unbiasedness test statistic in (9) 

depends directly only on the autocorrelation structure and sample size, not futures prices or 
implied volatilities. To see that, notice that from (10) it follows that square root of average 
bootstrapped SSPE can be simplified to: 

  
*

2
,

1

1
, 1,...,

N

l k
l

SSPE k z k K
N 

   (12) 

In case of non-overlapping forecast intervals,  ~ . . . 0,1lz i i d N , thus 

  * 2~N SSPE N  (13) 

For large enough sample, (13) converges to a normal distribution and asymptotic theory can be 
used for determination of critical SSPE values. In the case of correlated errors, described in the 
next section, we must use bootstrap methods to generate a distribution for  (12). If sample-based

SSPE falls outside the critical values of the bootstrapped 
*

SSPE distribution we reject the 

hypothesis that implied volatility coefficients multiplied by the square root of the time left to 
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maturity are unbiased estimates of the terminal log-price standard deviation for jth nearby 
contracts.  
 
The Case of Overlapping Prediction Horizons 
 
We now turn to case where realized prediction errors are allowed to be correlated. Such a 
situation would occur whenever the time of futures price measurement falls before all previous 
contracts have expired, i.e. whenever nearby index 1j  . For distant horizons, these correlations 

may be rather strong. For example, for 11-th nearby Class III milk futures contracts, the PPE 
autocorrelation at first lag is 0.906. If our bootstrapped distributions are to truly reflect the data 
generating process we need to explicitly account for these autocorrelations. In time series 
analysis, the classical method to account for autocorrelated error structures is to estimate an 
ARMA model. If we are to proceed in such fashion, there are two questions we need to address. 
First, what variable exactly to model as having an ARMA process, and second, are there any 
restrictions on the ARMA coefficients that  must be imposed in order to properly bootstrap 
terminal prices under the null hypothesis.  
 
An autocorrelated structure should be reflected in the time series process for tz in equation (10), 

so we need to find the way to transform correlations in prediction errors to dependence in the 
time series process with normal innovations and unit unconditional variance: 

  
1 1

, ~ 0,1
p q

t i t m j t m t t
m m

z z z N    
 

     (14) 

We start by utilizing the equation (2), obtaining implied quantile ,t ju of the contract that was the 

jth nearby at time t  given by  

  , , , ,ln ; ,t j T j t j t ju F p f   (15) 

That is, ,t ju tells us where realized price falls in the time-t conditional distribution that is based 

on futures price and implied volatility. For example, if implied quantile is 0.9 that means that 
realized price turned out to be quite higher than was expected at time t, i.e. chances of terminal 
price settling at that particular level or higher were deemed to be only 10%.  
 

Quantiles ,t ju  lie in the  0,1 interval and cannot be used directly in ARMA modeling. For that 

reason, we construct a series of standard normal z-scores based on quantiles ,t iu . The first step is 

to use the standard normal distribution function and inverse probability integral transform: 

  1
, ,t j t jz u   (16) 

 
We must also account for the possibility that unbiasedness of futures-implied mean and options-
implied variance may not actually be valid assumptions for the terminal price conditional 
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distribution. Consequently, quantiles ,t ju , which are distributed uniformly under the null, may 

not be distributed uniformly in our sample. In order to capture the autocorrelation structure under 

the null hypothesis, unrestricted z-scores ,t jz are standardized to insure zero mean and standard 

deviation of one. Denote the mean and the standard deviation of unrestricted z-scores ,t jz as

andj j   , respectively.   Restricted z-scores are then calculated as  

 ,
,

t j j
t j

j

z
z









 (17) 

 
We will use these restricted z-scores in the ARMA model. Under the assumption of futures 
market efficiency, for the jth nearby futures prices, z-score autocorrelations at lags higher than 

1j  must be zero. If that were not the case, then observed past prediction errors could improve 

the forecasting power of futures prices. In order to implement this restriction we always restrict 
the number of autoregressive lags to zero, and allow only up to 1j  moving average lags in the 

model. In other words, for  ,ARMA p q , the null hypothesis of efficiency and unbiasedness in 

futures prices implies that 0,p q j  . 

 

For a particular nearby index j , estimated coefficients from an  1MA j  model are then used in 

simulating z-scores to be used in parametric bootstrap. To insure unit unconditional variance of 
the simulated z-scores we set the variance of the innovation to be  

 2
, 1

2

1

1

ˆ1
j j

m
m











 (18) 

and simulate z-scores via ,
1

q

t j t m t m
m

z    


  .For each bootstrapped sample of z-scores, we 

allow the simulation to run for 500 time periods before recording a sequence of length N. In 
total, k  samples of 1N  vectors of z-scores are simulated. From this point forward, the 
procedure is the same as in the case of non-overlapping horizons. Bootstrapped terminal prices 
are simulated as in (10), and as before, formal tests for the presence of bias in futures prices or 
implied volatilities is conducted by comparing sample average PPE and root mean SSPE with 

critical bootstrapped values of 
*

PPE and 
*

SSPE distributions.  
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Description of Data Used in the Analysis 
 
We apply the above bootstrap procedures to a set of Class III milk, corn and soybean meal 
futures and options data from January 2000 through July 2011.4 For this analysis we need to 
recognize that Class III milk futures are traded for all twelve calendar months while corn futures 
trade for March, May, July, September and December, and soybean meal futures trade for 
January, March, May, July, August, September, October and December. We use 3nd through 11th 
nearby contract for Class III milk, 1st through 5th nearby contract for corn and 1st through 6th 
nearby contract for soybean meal.5 To be consistent with LGM-Dairy, futures prices and implied 
volatilities are observed on the last business Friday of the month. However, to keep the design of 
the test simple and relevant to situations outside our immediate application we do not average 
prices over three trading days. Furthermore, unlike LGM-Dairy rating method, terminal prices 
are defined as futures prices on the options expiry day.  
 
For corn, we wish to measure futures prices for the 1st nearby contract approximately 2 months 
before contract expiry, so we use prices observed in February, April, June, September and 
December. Given the expiration schedule for options on corn futures, first nearby futures 
contract in February is May, in April it is July, etc, and the time to maturity for the first nearby 
contract varies between 49 and 63 calendar days. For soybean meal, we observe prices in 
January, March, May, June, July, August, October and November. Given the expiration schedule 
for options on soybean meal futures, the first nearby futures contract in January is March, for 
March it is May, etc, and the time to maturity for the first nearby contract is between 21 and 28 
days. This procedure yields a sample size of 139 for Class III milk, 59 for corn, and 93 for 
soybean meal. Descriptive statistics are listed in Table 1. 
 
    [Insert Table 1 about Here] 
 
Results of the Parametric Bootstrap Tests  
 
Results from our testing of unbiasedness in Class III, corn and SBM futures prices and implied 
volatilities are summarized in Table 2 and graphically displayed via Figure 1. Bootstrapped mean 
prediction errors are generated under the null hypothesis, and overlap with x-axis so closely that 
they are barely visible in Figure 1. By comparing sample-based mean prediction errors and 
shaded 95% bootstrapped confidence interval it is clear that for Class III milk and corn there is 
no evidence of bias in futures prices. For soybean meal futures, however, we find substantial 
downward bias. For example, over the past 11 years, 6th nearby soybean meal futures (with a 

                                                 
4 All futures and options data were obtained from the University of Wisconsin, Understanding Dairy Markets 
website (http://future.aae.wisc.edu) 
 
5 Due to peculiar rules for Class III milk contract expiry (e.g. February contract expires in the first week of March), 
3rd nearby milk contract corresponds to 1st insurable month. 
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mean of 254 calendar days to maturity) have been on average 10.53% below the terminal price. 
From Figure 1 we see that for all tested nearby contracts mean prediction errors are very close to 
the lower boundary of the 95% bootstrapped confidence interval. Unbiasedness of soybean meal 
futures is formally rejected at 95% confidence level for the 2nd, 5th and 6th nearby contracts, and 
for all but the 1st nearby contract at 90% confidence level. We conclude that soybean meal 
futures do exhibit downward bias. 

[Insert Table 2 about Here] 
[Insert Figure 1 about Here] 

 
The results of our bootstrap tests for unbiasedness of expected variance are illustrated in Figure 
2. For both corn and soybean meal, the root mean square standardized prediction errors fall well 
within the 95% confidence interval. For Class III milk futures, however, we find that expected 
variance seems to be too low for all tested nearby indices. In previous literature, in situations 
where implied volatilities have been found biased, the direction of the bias was upward, i.e. 
implied volatilities were overpredicting the terminal price volatility. In this instance, it seems 
that implied volatilities have been under-predicting the terminal price variance. It would, 
however, be too soon to conclude that this result implies that options are in fact too cheap. If 
options were too cheap, there would be possible to create a trading strategy with positive 
expected profits over the long run. To properly evaluate if such strategy is feasible we would 
need to use bid and ask prices, rather than settlement prices.6  

[Insert Figure 2 about Here] 
 
If implied volatilities of Class III milk contract seem too low, we can ask the question – what are 
the lowest implied volatility coefficients that would still be consistent with the observed root 
mean square percentage prediction errors? In other words, we are looking for the lowest 
volatility coefficients for which we would not be able to reject the null, if the test is based on 
(non-standardized) root mean squared PPEs. To that end, we find calibrated, i.e. data-fitting 
average volatility coefficients such that the upper bound of the non-standardized root mean 
squared PPEs bootstrap confidence interval constructed using those coefficients as the null 
hypothesis coincides with the sample root mean square PPEs. As can be seen in Figure 3, the 
term structure of average implied volatilities should have a much more pronounced concave 
shape than is observed.  

[Insert Figure 3 about Here] 
 
These results raise two questions. First, why is the term structure of calibrated volatility 
coefficients concave? And why is the term structure of options-based average implied volatilities 
nearly flat?  
 

                                                 
6 We plan to conduct such analysis in further research and for now only warn against premature conclusions, as 
transaction costs and bid-ask spread may make the apparent bias still consistent with market efficiency. 
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To answer the first question, we multiply calibrated volatility coefficients by the square root of 
time-to-maturity and find the resulting terminal log-price standard deviation to be nearly constant 
for horizons longer than 6 months. This can perhaps be explained by extremely low price 
elasticity of supply of milk in the short run. Under such supply structure, minor demand or 
weather shocks can quickly result in substantial swings in milk prices, resulting in large increase 
of price risk for 3rd through 6th nearby milk contract. In addition a highly inelastic market 
demand for dairy products means that small shifts in supply coming from relatively small dairy 
herd adjustments induce strong mean-reversion in milk prices.  
 
Past experience has shown that most major weather and demand shocks, whether price-
enhancing or price-reducing, are mostly compensated for with adjustments in supply within nine 
months (Bozic et al. 2012). These structural features combined can make terminal log-price 
variance at first rise quickly with time-to-maturity followed by convergence to unconditional 
variance level. In the context of option-pricing model, terminal log-price variance at first rises 
faster than the square root of time, but stays nearly constant for time-to-maturity horizons longer 
than 6 months. As a consequence, implied volatilities should increase for the 2nd through 6th 
nearby contracts, and decrease for contracts with longer time to maturity, rendering the structure 
of implied volatilities concave. 
 
The second question to address is the apparent flatness of observed average implied volatilities. 
For the 1st and the 2nd nearby contracts implied volatilities are usually lower due to the fact that 
the Class III contract cash settles to USDA’s Announced Class III price which is formula based 
using historical commodity plant-level sales prices. The prevalent practice of buying options as 
‘packs’ rather than individual contracts may partially explain the absence of any substantial 
curvature in implied volatility term structure. Given the continuous nature of milk production, it 
is very rare that a producer will initiate an option position for just one month. Options are usually 
traded as bundles covering a minimum of three, and often more months. A “pack” of options is 
defined by a common strike, and quoted with a single price. When prices are recorded for official 
purposes, they are most likely split for individual months by assuming an average implied 
volatility for the entire period covered by the pack.  
 
Because of the relative thinness of the Class III options market, and the need for market 
coordination for multi-month offers, most options for Class III milk futures are still traded in the 
pit, with only a handful of market makers. Given the highly regulated U.S. fluid milk market it 
would not be surprising if floor traders used simplifying heuristics like setting a near flat implied 
volatility term structure off which to form bid and asks. In conclusion, the apparent option 
mispricing may be due to the peculiarities of market microstructure. 
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Impact of Futures Price and Implied Volatility Biases on LGM-Dairy Premiums  

In the previous section we performed formal tests of unbiasedness in futures prices and implied 
volatilities. In this section we use Monte Carlo experiments to examine the consequences of our 
results for LGM-Dairy premiums. To facilitate our analysis of the impact of price and volatility 
biases on LGM-Premium calculations, we define 18 representative policy profiles. All policy 
profiles assume milk marketings of 9,000 cwt. per month, an amount expected from a farm with 
500 milking cows with annual milk per cow yield of 21,600 lbs. Benchmarking profiles differ in 
three dimensions:  

(i) Amount of feed declared per cwt. of milk. We consider two opposing extremes – 
minimum and maximum program allowable feed levels. These extremes capture 
well the two distinct production systems: farms that grow all their feed, and drylot 
farming systems where all feed are purchased on the market. In addition, we 
examine the scenario where the LGM-Dairy default feed amounts per cwt of milk 
are utilized (RMA, 2005)  

(ii) Chosen deductible level. We consider an insurance under high risk aversion ($0.00 
deductible) and usage of LGM-Dairy as a catastrophe insurance that does not cover 
shallow losses ($1.10 deductible)  

(iii) Risk management strategy utilized.  
Four different risk management strategies are considered in our analysis. In each 
strategy, we assume the representative farmer purchases an LGM-Dairy contract 
every month and implements one of four alternative insurance strategies:  

1) Flat-10: 1/10 of expected milk marketings are insured for each of 
the ten insurable months.  

2) Up Front: 1/3 of expected milk marketings are insured for the 1st, 
2nd and 3rd insurable months 

3) Middle of the Road: 1/3 of expected milk marketings are insured 
for the 4th, 5th and 6th insurable months.  

4) Looking Ahead:  1/3 of expected milk marketings are insured for 
the 8th, 9th, and 10th insurable months. 

 
In this analysis we assume LGM-Dairy contracts were purchased in each of the 12 months of 
2011. Regardless of the strategy adopted, as long as it is persistently followed, eventually 100% 
of the expected milk marketings will be insured under the portfolio of LGM-Dairy contracts. 
These strategies are chosen to be consistent with our analysis recently undertaken in Bozic et al. 
(2012).  
 
To examine the impact of unbiasedness of soybean meal futures prices, assume that the true 
relationship between futures prices and expected terminal prices is  

    1 f
j t t Tr f E p   (19) 
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where index 1,...,8j   represents the nearby-ranking of the contract, and f
jr represents the risk 

premium. From (19) it follows that  ,
f

j t t jr E PPE . Given the results from the previous section, 

the important scenario to analyze is the one in which soybean meal futures prices are downward 
biased.  
In the scenario examined here, risk premiums for soybean meal prices are set at an observed 
sample average prediction percentage error, calculated separately for each time-to-maturity 
horizon, as shown in Table 3. With 6th nearby soybean contracts being the highest time-to-
maturity horizon we tested in previous section, we set the risk premium for 7th and 8th nearby 
contracts at the level observed for the 6th nearby contracts.  
 
In our next test, we examine the effect of potential volatility biases in Class III milk prices. In 
absence of biases and under assumed lognormality of terminal prices, from (2) it follows that 

  2lnt tVar p     . Allowing for volatility biases, and indexing nearby-ranking of Class III 

milk contracts with 3,...,12j  , the relationship between implied volatility coefficient and 

expected terminal log-price variance becomes: 

    , ,

1
1 lnt j j t t jr Var p


   (20) 

where jr denotes volatility bias. Although we continue to use the letter r , we deliberately avoid 

referring to these biases as risk premiums, as the direction of the observed bias is downward, and 
is likely due to market microstructure effects rather than extra reward needed for option sellers. 
 
To obtain volatility biases we can use in the simulation, we first calculated calibrated volatility 
coefficients, defined as the lowest volatility coefficients consistent with the observed root mean 
square prediction errors, as described in the previous section in the context of Figure 3. We then 
calculate the average options-based implied volatility coefficients. The ratio of average implied 

volatility to calibrated volatility is taken as 1 jr in equation (20). Calibrated volatility 

coefficients, average implied volatilities, as well as volatility biases jr  are presented in Table 3. 

We use Class III milk volatility bias coefficients jr  in the LGM-Dairy rating method sensitivity 

analysis to adjust implied volatility coefficients ,i j : 

 , ,

1

1t j t j
jr

 


  (21) 

Bias-adjusted volatility coefficients ,t j are then used in calculating LGM-Dairy premiums.  

 
[Insert Table 3 about Here] 
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Results of the Monte Carlo Experiments 
 
Table 4 is used to summarize the results of the above described simulations. Columns (1) 
through (3) show the representative insurance policy profiles in terms of risk management 
strategy chosen, level of deductible, and the amount of feed declared. In column (4) we provide 
average monthly insurance premiums using the official rating method currently utilized to price 
LGM-Dairy policies. Column (5) is used to present the premiums under the assumption of 
downward bias in soybean meal prices. We find that even for the policies that use maximum feed 
amounts and buy insurance for the distant months in which bias is most pronounced, accounting 
for the bias in the rating method would render insurance policy premiums less than 2% higher.  

 
[Insert Table 4 about Here] 

 
Results of the simulation in which Class III milk implied volatility biases are accounted for in the 
rating method are presented in column (6). LGM-Dairy premiums are found to be very sensitive 
to volatility biases, and inflating the volatility coefficients to account for these biases increased 
premiums up to 21%, with the highest increases observed for policy profiles utilizing middle-of-
the-road risk management strategies and high deductible.  
 
Conclusions 

In this article, we have developed a parametric bootstrap method that can be used to test for 
presence of bias in futures prices and implied volatilities in deferred contracts with overlapping 
time to maturity horizons. We applied our method to evaluate actuarial assumptions of the 
Livestock Gross Margin Insurance for Dairy Cattle. We find milk prices to be unbiased, but test 
results suggest the term structure of volatility is underestimating the risk in medium-run window 
covering 5 to 10 months to maturity. We propose that concave curvature of the term structure for 
the data-consistent implied volatility coefficients arises from inelastic supply and demand for 
milk, while flat term structure of options-based implied volatilities is due to peculiarities of Class 
III milk options market microstructure, i.e. particular CME options settlement procedures and 
heuristics used by floor traders. Excessive reliance on simple option pricing models that assume 
terminal price variance increases linearly with time-to-maturity may be a cause of option 
mispricing. Although we find that observed root mean square percentage prediction errors are 
consistent with volatility coefficients that are at least 3-5 percentage points higher, without an in-
depth analysis of bid-ask spreads it is not possible to say if our results imply a profit opportunity.  
 
Although LGM-Dairy is a government-sponsored agricultural risk insurance product, with 
transparent rating method and explicitly designed to be actuarially fair, large underwriter’s gains 
over the past 4 years have cast doubt on the soundness and robustness of the official rating 
method. Based on undertaken tests and simulation experiments, our conclusion is that 
assumptions regarding marginal distributions of milk and feed prices do not produce insurance 
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premiums that could be considered excessive. On the contrary, biases in Class III milk implied 
volatilities may suggest LGM-Dairy premiums are too low. Monte Carlo experiments suggest 
accounting for biases in implied volatility coefficients could increase the price of LGM-Dairy 
insurance between 3% and 21%, depending on the risk management strategy chosen. LGM-
Dairy premium overcharges, if they exist, are to be found not in assumptions regarding marginal 
distributions, but in choice and parameterization of copula tying marginal distributions together, 
a point we explore in depth in Bozic et al. (2012) 
 
Despite observed biases, we are not ready to recommend any changes to the rating method, as far 
as marginal distributions are concerned. The apparent biases may likely be a characteristic of 
coming-of-age issues in relatively young milk options market.  As volume, liquidity and market 
maker sophistication grow we would expect the terms structure of implied volatilities to start 
better reflecting the nature of the dairy markets. 
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Table 1. Descriptive Statistics for Data Used in Parametric Bootstrap 

Commodity/Nearby  Num. 
Obs. 

Time to Maturity  
(Calendar Days) 

 Futures 
($) 

 Implied Volatility 

Class III Milk   Mean S.D. Min Max  Mean S.D. Min Max  Mean S.D. Min Max 
3  139 66 3 63 72 13.61 2.79 9.33 20.67 0.195 0.048 0.070 0.374
4  139 96 3 91 100 13.67 2.54 9.77 20.49 0.209 0.043 0.105 0.369
5  139 127 3 119 134 13.68 2.37 9.80 20.56 0.210 0.040 0.112 0.348
6  139 157 4 154 163 13.69 2.24 9.77 20.16 0.207 0.038 0.115 0.314
7  139 188 3 182 191 13.72 2.17 9.83 20.00 0.204 0.034 0.114 0.299
8  139 218 3 217 225 13.70 2.11 9.85 19.95 0.201 0.032 0.114 0.298
9  139 249 4 245 254 13.70 2.07 9.85 19.65 0.198 0.030 0.115 0.300
10  139 279 3 273 287 13.69 2.03 10.50 19.39 0.196 0.029 0.115 0.309
11  139 309 3 307 317 13.65 2.02 10.61 19.45 0.194 0.029 0.116 0.298

Corn                 
1  93 57 3 49 63  3.34 1.54 1.96 7.68  0.301 0.091 0.151 0.500
2  93 130 15 112 154  3.41 1.51 2.08 7.87  0.298 0.081 0.171 0.473
3  93 203 23 175 245  3.46 1.46 2.17 8.04  0.292 0.074 0.170 0.465
4  93 277 23 238 302  3.49 1.42 2.24 8.11  0.285 0.066 0.196 0.461
5  93 350 15 329 365  3.53 1.42 2.31 8.14  0.274 0.060 0.189 0.432

Soybean Meal                 
1  59 26 3 21 29  232.65 74.38 146.70 424.70  0.273 0.077 0.151 0.464
2  59 72 15 56 92  230.62 73.11 144.10 421.70  0.269 0.073 0.156 0.449
3  59 117 21 84 149  228.99 72.02 142.30 412.00  0.264 0.069 0.155 0.431
4  59 163 26 112 212  227.30 70.75 143.80 409.70  0.256 0.066 0.149 0.410
5  59 208 26 175 245  225.25 69.29 142.80 411.70  0.249 0.063 0.154 0.400
6  59 254 26 210 304  223.80 68.42 143.10 413.70  0.247 0.063 0.154 0.403

 

Note: For time to maturity and implied volatility, minimum and maximum values are reported. For futures, mean and standard deviations are listed, and for mean 
prediction error and root mean prediction error only means are listed.  
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Table 2. Parametric Bootstrap Results 

Commodity/ 
Nearby 

Mean 
Prediction 

Error 
 

Root Mean 
Square 

Prediction 
Error 

Root Mean 
Square 

Standardized 
Prediction 

Error 

Bootstrap  
Prediction Error  

Confidence 
Interval 

Bootstrap Root 
Mean Square 
Standardized 

Prediction Error 
Confidence 

Interval  

Bootstrap test for 
Unbiasedness of 
Futures Prices 

Bootstrap test for 
Unbiasedness of  

Implied Volatilities 

 (%) (%) (%) (%) (%) (p-values) (p-values) 
Class III 

Milk 
       

3 -0.72 9.33 1.27 (-2.09, 2.08) (0.86, 1.14) 0.505 <0.001 
4 -0.83 13.62 1.36 (-3.01, 2.96) (0.84, 1.16) 0.582 <0.001 
5 -1.49 16.74 1.42 (-4.17, 3.93) (0.82, 1.19) 0.485 <0.001 
6 -2.12 19.12 1.45 (-4.84, 4.73) (0.80, 1.20) 0.376 <0.001 
7 -2.61 20.95 1.45 (-5.67, 5.42) (0.79, 1.22) 0.350 <0.001 
8 -3.25 22.27 1.43 (-6.60, 6.15) (0.78, 1.24) 0.325   0.001 
9 -3.76 23.13 1.39 (-7.15, 6.85) (0.76, 1.24) 0.282   0.002 
10 -4.16 23.52 1.37 (-7.76, 7.62) (0.76, 1.26) 0.286   0.008 
11 -4.87 24.15 1.35 (-9.42, 8.53) (0.74, 1.28) 0.283   0.017 

Corn        
1 1.10 12.80 1.05 (-3.26,     3.21) (0.82, 1.18) 0.507    0.515 
2 0.82 20.50 1.13 (-6.80,     6.50) (0.78, 1.22) 0.817    0.242 
3 -0.29 26.08 1.12 (-9.99,     9.33) (0.74, 1.27) 0.916    0.338 
4 -1.69 29.69 1.06 (-13.39, 11.82) (0.72, 1.30) 0.777    0.614 
5 -2.66 31.63 1.06 (-15.84, 13.85) (0.71, 1.31) 0.694    0.613 

Soybean 
Meal 

       

1 -1.23 8.22 1.08 (-1.59,   1.54) (0.86, 1.14) 0.128    0.270 
2 -3.27 13.03 1.09 (-3.13,   3.08) (0.84, 1.15) 0.041    0.244 
3 -4.95 16.84 1.13 (-5.12,   4.93) (0.81, 1.19) 0.058    0.173 
4 -6.82 20.72 1.19 (-6.87,   6.65) (0.79, 1.22) 0.051    0.079 
5 -8.65 22.53 1.20 (-8.39,   7.78) (0.77, 1.25) 0.043    0.096 
6 -10.53 24.69 1.21 (-10.45, 9.44) (0.74, 1.28) 0.049    0.118 
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Table 3. Class III Milk Volatility Biases Used in LGM-D Rating Method Sensitivity Analysis 

Nearby 
Calibrated 
Volatility 

Average 
Implied 

Volatility 
Volatility 

Bias 
3rd 0.191 0.195    2.09% 
4th 0.226 0.209   -7.52% 
5th 0.232 0.210   -9.48% 
6th 0.235 0.207 -11.91% 
7th 0.232 0.204 -12.07% 
8th 0.225 0.201 -10.67% 
9th 0.215 0.198   -7.91% 
10th 0.206 0.196   -4.85% 
11th 0.195 0.194   -0.51% 

 
Note: Volatility bias is here expressed as the ratio of options-based average implied volatility to 
calibrated (data-consistent) volatilities minus 1. Calibrated volatility is the lowest average 
volatility coefficient for which null hypothesis would not be rejected. For example, for 6th nearby 
contract, calibrated volatility is 0.235. Average options-based implied volatility for 6th nearby 
contract is 0.207, and their ratio is 0.8809. Volatility bias is expressed as -11.91%. 
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Table 4. Sensitivity Analysis of Changes in LGM-Dairy Premiums Under Biased Futures Prices and Implied Volatilities 

(1) (2) (3)     (4)         (5) (6)  (7) (8) 

Strategy Deductible 
Level 

($/cwt) 

Feed 
Declared 

RMA 
Rating 

Method

Biased SBM Futures Prices  Biased Milk Implied 
Volatilities 

        ($)          ($) (%)  ($) (%) 

Flat-10 

$0.00 
Minimum 8,195             8,197  0.02%    8,757   6.86% 

Default 8,582             8,600  0.21%    9,118   6.25% 
Maximum 11,447           11,576  1.13%  11,843   3.46% 

$1.10 
Minimum 3,843             3,844  0.03%    4,317 12.33% 

Default 4,256             4,274  0.42%    4,712 10.71% 
Maximum 7,154             7,276  1.71%    7,499   4.82% 

Up Front 
$0.00 

Minimum 6,819             6,821  0.03%    7,239    6.16% 
Maximum 8,783             8,836  0.60%    9,101    3.62% 

$1.10 
Minimum 2,723             2,724  0.04%    3,057  12.27% 
Maximum 4,685             4,727  0.90%    4,946    5.57% 

Middle of 
the Road 

$0.00 
Minimum 9,743             9,744  0.01%  10,972  12.61% 
Maximum 13,316           13,438  0.92%  14,235    6.90% 

$1.10 
Minimum 5,191             5,192  0.02%    6,287  21.11% 
Maximum 8,873             8,992  1.34%    9,686    9.16% 

Looking 
Ahead 

$0.00 
Minimum 12,017           12,019  0.02%  12,180    1.36% 
Maximum 16,276           16,483  1.27%  16,396    0.74% 

$1.10 
Minimum 7,250             7,252  0.03%    7,399    2.06% 
Maximum 11,710           11,919  1.78%  11,819     0.93% 
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Figure 1. Observed vs. Bootstrapped Percentage Prediction Errors 
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Figure 2. Parametric Bootstrap Tests for Unbiasedness of Implied Volatility 
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Figure 4. Option-based Implied Volatilities vs. Calibrated Volatilities in Class III milk futures 

 

Note: Lowest Average IV Consistent with Data are average calibrated volatilities coefficients obtained such that the 
upper bound of 95% confidence interval for the bootstrapped root mean square prediction errors matches the mean 
of observed mean root square percentage prediction error. 
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